Statistical Analysis of Turbulence Characteristics over the Tropical Western Pacific Based on Radiosonde Data
Abstract
:1. Introduction
2. Data and Data Processing Methods
2.1. Data
2.2. Data Processing
2.3. Remove Noise Interference
3. Results and Discussion
3.1. Case Analysis
3.2. Background Wind Field, Local Instability and Occurrence Rates of Turbulence
3.3. Distribution of Turbulent Overturn Size, Energy Dissipation Rate and Diffusion Coefficient
3.3.1. Distribution Characteristics of the Statistical Histogram
3.3.2. Distribution Characteristics of Time Series
3.3.3. Profile Distribution Characteristics of Multiyear Monthly Averages
3.4. Overview and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Riveros, H.G.; Riveros-Rosas, D. Laminar and turbulent flow in water. Phys. Educ. 2010, 45, 288–291. [Google Scholar] [CrossRef]
- Belu, R.; Jumper, G. Gravity Waves and Turbulence as Seen in the Radiosonde-Thermosonde Observations. In Proceedings of the 7th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 5–8 January 2009. [Google Scholar]
- Zhao, X.R.; Sheng, Z.; Li, J.W.; Yu, H.; Wei, K.J. Determination of the “wave turbopause” using a numerical differentiation method. J. Geophys. Res. Atmos. 2019, 124, 10592–10607. [Google Scholar] [CrossRef]
- Wang, W.; Shangguan, M.; Tian, W.; Schmidt, T.; Ding, A. Large uncertainties in estimation of tropical tropopause temperature variabilities due to model vertical resolution. Geophys. Res. Lett. 2019, 46, 10043–10052. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, W.; Chipperfield, M.P.; Xie, F.; Huang, J. Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades. Nat. Clim. Chang. 2016, 6, 1094–1099. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, W.; Xie, F.; Chipperfield, M.P.; Feng, W.; Son, S.W.; Abraham, N.L.; Archibald, A.T.; Bekki, S.; Butchart, N.; et al. Stratospheric ozone loss over the Eurasian continent induced by the polar vortex shift. Nat. Commun. 2018, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zaichik, L.I.; Alipchenkov, V.M. A statistical model for transport and deposition of high-inertia colliding particles in turbulent flow. Int. J. Heat Fluid Flow 2001, 22, 365–371. [Google Scholar] [CrossRef]
- He, Y.; Sheng, Z.; He, M. The First Observation of Turbulence in Northwestern China by a Near-Space High-Resolution Balloon Sensor. Sensors 2020, 20, 677. [Google Scholar] [CrossRef] [Green Version]
- Hu, D.; Guan, Z.; Tian, W.; Ren, R. Recent strengthening of the stratospheric Arctic vortex response to warming in the central North Pacific. Nat. Commun. 2018, 9, 1697. [Google Scholar] [CrossRef]
- Hu, D.; Tian, W.; Xie, F.; Wang, C.; Zhang, J. Impacts of stratospheric ozone depletion and recovery on wave propagation in the boreal winter stratosphere. J. Geophys. Res. Atmos. 2015, 120, 8299–8317. [Google Scholar] [CrossRef] [Green Version]
- Xie, F.; Li, J.; Zhang, J.; Tian, W.; Hu, Y.; Zhao, S.; Sun, C.; Ding, R.; Feng, J.; Yang, Y. Variations in north Pacific sea surface temperature caused by Arctic stratospheric ozone anomalies. Environ. Res. Lett. 2017, 12, 114023. [Google Scholar] [CrossRef] [Green Version]
- Saad, T. Turbulence Modeling for Beginners; University of Tennessee Space Institut: Tullahoma, TN, USA, 2011. [Google Scholar]
- Thorpe, S.A. Turbulence and Mixing in a Scottish Loch. Philosophical Transactions of the Royal Society A: Mathematical. Phys. Eng. Sci. 1977, 286, 125–181. [Google Scholar] [CrossRef]
- Haack, A.; Gerding, M.; Lübken, F.J. Characteristics of stratospheric turbulent layers measured by LITOS and their relation to the Richardson number. J. Geophys. Res. 2014, 119, 10605–10618. [Google Scholar] [CrossRef]
- Gavrilov, N.M.; Luce, H.; Crochet, M.; Dalaudier, F.; Fukao, S. Turbulence parameter estimations from high-resolution balloon temperature measurements of the MUTSI-2000 campaign. Ann. Geophys. 2005, 23, 2401–2413. [Google Scholar] [CrossRef] [Green Version]
- Johnson, H.L.; Garrett, C. Effects of Noise on Thorpe Scales and Run Lengths. J. Phys. Oceanogr. 2004, 34, 2359–2372. [Google Scholar] [CrossRef]
- Thorpe, S.A. The Turbulent Ocean; Cambridge University Press: Cambridge, UK, 2005; 439 p. [Google Scholar] [CrossRef]
- Lorke, A.; Wüest, A. Probability density of displacement and overturning length scales under diverse stratification. J. Geophys. Res. Oceans 2002, 107, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Dillon, T.M. Vertical overturns: A comparison of Thorpe and Ozmidov length scales. J. Geophys. Res. 1982, 87, 9601. [Google Scholar] [CrossRef]
- Li, D.; Salesky, S.T.; Banerjee, T. Connections between the Ozmidov scale and mean velocity profile in stably stratified atmospheric surface layers. J. Fluid Mech. 2016, 797. [Google Scholar] [CrossRef] [Green Version]
- Clayson, C.A.; Kantha, L. On turbulence and mixing in the free atmosphere inferred from high-resolution soundings. J. Atmos. Ocean. Technol. 2008, 25, 833–852. [Google Scholar] [CrossRef]
- Wesson, J.C.; Gregg, M.C. Mixing at Carmirana Sill in the Strait of Gibraltar. J. Geophys. Res. 1994, 99, 9847–9878. [Google Scholar] [CrossRef]
- Fer, I. Mixing of the Storfjorden overflow (Svalbard Archipelago) inferred from density overturns. J. Geophys. Res. 2004, 109, C01005. [Google Scholar] [CrossRef] [Green Version]
- Nath, D.; Ratnam, M.V.; Patra, A.K.; Murthy, B.V.K.; Rao, S.V.B. Turbulence characteristics over tropical station Gadanki ( 13.5° N,79.2° E)estimated using high-resolution GPS radiosonde data. J. Geophys. Res. 2010, 115, 1–13. [Google Scholar] [CrossRef]
- Wilson, R.; Dalaudier, F.; Luce, H. Can one detect small-scale turbulence from standard meteorological radiosondes? Atmos. Meas. Tech. 2011, 4, 795–804. [Google Scholar] [CrossRef] [Green Version]
- Kohma, M.; Sato, K.; Tomikawa, Y.; Nishimura, K.; Sato, T. Estimate of Turbulent Energy Dissipation Rate from the VHF Radar and Radiosonde Observations in the Antarctic. J. Geophys. Res. Atmos. 2019, 124, 2976–2993. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhang, S.D.; Huang, C.M.; Huang, K.M.; Gong, Y.; Gan, Q.; Zhang, Y.H. Statistical Study of Atmospheric Turbulence by Thorpe Analysis. J. Geophys. Res. Atmos. 2019, 124, 2897–2908. [Google Scholar] [CrossRef]
- Kvasov, B.I. Cubic Spline Interpolation. In Methods of Shape-Preserving Spline Approximation; World Scientific Pub Co Inc, SG: Singapore, 2000. [Google Scholar] [CrossRef]
- Wilson, R.; Luce, H.; Hashiguchi, H.; Shiotani, M.; Dalaudier, F. On the effect of moisture on the detection of tropospheric turbulence from in situ measurements. Atmos. Meas. Tech. Discuss. 2013, 5, 697–702. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Chen, H.; Li, Z.; Fan, X.; Peng, L.; Yu, Y.; Cribb, M. Analysis of cloud layer structure in Shouxian, China using RS92 radiosonde aided by 95 GHz cloud radar. J. Geophys. Res. Atmos. 2010, 115, 1–13. [Google Scholar] [CrossRef]
- Emanuel, K.A.; Hide, R. Atmospheric Convection. Phys. Today 2008, 48, 88–89. [Google Scholar] [CrossRef]
- Durran, D.R.; Klemp, J.B. On the Effects of Moisture on the Brunt-Väisälä Frequency. J. Atmos. Sci. 2002, 39, 2152–2158. [Google Scholar] [CrossRef]
- Cushman-Roisin, B.; Beckers, J.M. Stratification. In Introduction to Geophysical Fluid Dynamics; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar] [CrossRef]
- Houry, S.; Dombrowsky, E.; De Mey, P.; Minster, J.-F. Brunt-Väisälä Frequency and Rossby Radii in the South Atlantic. J. Phys. Oceanogr. 1987, 17, 1619–1626. [Google Scholar] [CrossRef] [Green Version]
- Alappattu, D.P.; Kunhikrishnan, P.K. First observations of turbulence parameters in the troposphere over the Bay of Bengal and the Arabian Sea using radiosonde. J. Geophys. Res. 2010, 115, 1–12. [Google Scholar] [CrossRef]
- Kuang, Z.; Bretherton, C.S. Convective Influence on the Heat Balance of the Tropical Tropopause Layer: A Cloud-Resolving Model Study. J. Atmos. Sci. 2004, 61, 2919–2927. [Google Scholar] [CrossRef] [Green Version]
- Wilson, R.; Luce, H.; Dalaudier, F.; Lefrère, J. Turbulence patch identification in potential density or temperature profiles. J. Atmos. Ocean. Technol. 2010, 27, 977–993. [Google Scholar] [CrossRef]
- Lindzen, R.S. Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res. 2008, 86, 9707. [Google Scholar] [CrossRef] [Green Version]
- Luce, H.; Wilson, R.; Dalaudier, F.; Hashiguchi, H.; Nishi, N.; Shibagaki, Y.; Nakajo, T. Simultaneous observations of tropospheric turbulence from radiosondes using Thorpe analysis and the VHF MU radar. Radio Sci. 2014, 49, 1106–1123. [Google Scholar] [CrossRef] [Green Version]
- Wilson, R.; Hashiguchi, H.; Yabuki, M. Vertical spectra of temperature in the free troposphere at meso-and-small scales according to the flow regime: Observations and interpretation. Atmosphere 2018, 9, 415. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Xue, M.; Wang, Y.; Huang, H. Mechanisms of secondary convection within a mei-yu frontal mesoscale convective system in Eastern China. J. Geophys. Res. Atmos. 2017, 122, 47–64. [Google Scholar] [CrossRef]
- He, Y.; Sheng, Z.; He, M. Spectral Analysis of Gravity Waves from Near Space High-Resolution Balloon Data in Northwest China. Atmosphere 2020, 11, 133. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Wang, Y.; Xue, M.; Zhu, K. Impacts of horizontal propagation of orographic gravity waves on the wave drag in the stratosphere and lower mesosphere. J. Geophy. Res. 2017, 122. [Google Scholar] [CrossRef]
- Xu, X.; Song, J.; Wang, Y.; Xue, M. Quantifying the effect of horizontal propagation of three-dimensional mountain waves on the wave momentum flux using Gaussian beam approximation. J. Atmos. Sci. 2017, 74, 1783–1798. [Google Scholar] [CrossRef]
- Xu, X.; Shu, S.; Wang, Y. Another look on the structure of mountain waves: A spectral perspective. Atmos. Res. 2017, 191, 156–163. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.Y.N.; Newell, R.E.; Anderson, B.E.; Barrick, J.W.; Thornhill, K.L. Characterizations of tropospheric turbulence and stability layers from aircraft observations. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Vanzandt, T.E.; Fritts, D.C. A Theory of Enhanced Saturation of the Gravity Wave Spectrum Due to Increases in Atmospheric Stability. Pure Appl. Geophys. 1989, 130, 399–420. [Google Scholar] [CrossRef]
- Sheng, Z.; Zhou, L.; He, Y. Retrieval and Analysis of the Strongest Mixed Layer in the Troposphere. Atmosphere 2020, 11, 3. [Google Scholar] [CrossRef] [Green Version]
- Fritts, D.C.; Dunkerton, T.J. Fluxes of heat and constituents due to convectively unstable gravity waves. J. Atmos. Sci. 1985, 42, 549–556. [Google Scholar] [CrossRef] [Green Version]
- Fritts, D.C.; Rastogi, P.K. Convective and dynamical instabilities due to gravity wave motions in the lower and middle atmosphere: Theory and observations. Radio Sci. 1985, 20, 1247–1277. [Google Scholar] [CrossRef]
- Worthington, R.M. MST radar observations of turbulent altocumulus layers. Atmos. Sci. Lett. 2015, 16, 500–505. [Google Scholar] [CrossRef]
- Venkat Ratnam, M.; Narendra Babu, A.; Jagannadha Rao, V.V.M.; Vijaya Bhaskar Rao, S.; Narayana Rao, D. MST radar and radiosonde observations of inertia-gravity wave climatology over tropical stations: Source mechanisms. J. Geophys. Res. 2008, 113, D07109. [Google Scholar] [CrossRef]
- Mai, Y.; Sheng, Z.; Shi, H.; Liao, Q.; Zhang, W. Spatiotemporal Distribution of Atmospheric Ducts in Alaska and Its Relationship with the Arctic Vortex. Int. J. Antennas Propag. 2020, 13. [Google Scholar] [CrossRef]
- Leena, P.; Venkat Ratnam, M.; Krishna Murthy, B. Inertia gravity wave characteristics and associated fluxes observed using five years of radiosonde measurements over a tropical station. J. Atmos. Sol. Terr. Phys. 2012, 84–85, 37–44. [Google Scholar] [CrossRef]
- Nath, D.; Venkat Ratnam, M.; Jagannadha Rao VV, M.; Krishna Murthy, B.V.; Vijaya Bhaskara Rao, S. Gravity wave characteristics observed over a tropical station using high-resolution GPS radiosonde soundings. J. Geophys. Res. 2009, 114, D06117. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Li, T.; Zhong, Z.; Yi, L.; Chen, X.; Ha, Y.; Zhu, J.; Shen, Y.; Xu, Z.; Hu, Y. A recent reversal in the poleward shift of western North Pacific tropical cyclones. Geophys. Res. Lett. 2018, 45, 9944–9952. [Google Scholar] [CrossRef]
- Shen, Y.; Sun, Y.; Zhong, Z.; Liu, K.; Shi, J. Sensitivity Experiments on the Poleward Shift of Tropical Cyclones over the Western North Pacific under Warming Ocean Conditions. J. Meteor. Res. 2018, 32, 560–570. [Google Scholar] [CrossRef]
- Chang, S.; Sheng, Z.; Du, H.; Ge, W.; Zhang, W. A channel selection method for hyperspectral atmospheric infrared sounders based on layering. Atmos. Meas. Tech. 2020, 13, 629–644. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Sun, Y.; Camargo, S.J.; Zhong, Z. A Quantitative Method to Evaluate Tropical Cyclone Tracks in Climate Models. J. Atmos. Ocean. Technol. 2018, 35, 1807–1818. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Sheng, Z.; Zhou, L.; He, M.; Zhou, S. Statistical Analysis of Turbulence Characteristics over the Tropical Western Pacific Based on Radiosonde Data. Atmosphere 2020, 11, 386. https://doi.org/10.3390/atmos11040386
He Y, Sheng Z, Zhou L, He M, Zhou S. Statistical Analysis of Turbulence Characteristics over the Tropical Western Pacific Based on Radiosonde Data. Atmosphere. 2020; 11(4):386. https://doi.org/10.3390/atmos11040386
Chicago/Turabian StyleHe, Yang, Zheng Sheng, Lesong Zhou, Mingyuan He, and Shudao Zhou. 2020. "Statistical Analysis of Turbulence Characteristics over the Tropical Western Pacific Based on Radiosonde Data" Atmosphere 11, no. 4: 386. https://doi.org/10.3390/atmos11040386
APA StyleHe, Y., Sheng, Z., Zhou, L., He, M., & Zhou, S. (2020). Statistical Analysis of Turbulence Characteristics over the Tropical Western Pacific Based on Radiosonde Data. Atmosphere, 11(4), 386. https://doi.org/10.3390/atmos11040386