Online Chemical Characterization and Source Identification of Summer and Winter Aerosols in Măgurele, Romania
Abstract
:1. Introduction
2. Methodologies and Instrumentation
2.1. Experimental Site
2.2. Measurement Campaigns
2.3. Instruments
2.3.1. Mass Spectrometry
2.3.2. Collocated Measurements
2.3.3. Radiocarbon Analysis
2.3.4. Source Apportionment Analysis
3. Results and Discussion
3.1. Seasonal Distribution of NR–PM Species Concentrations
3.2. Vertical Distribution and In Situ Concentration of Aerosols
3.3. Source Apportionment
3.3.1. City Influence during Summer
3.3.2. Regional Influence during Summer
3.3.3. Organic Aerosol Sources during Winter
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Young, D.E.; Allan, J.D.; Williams, P.I.; Green, D.C.; Flynn, M.J.; Harrison, R.M.; Yin, J.; Gallagher, M.W.; Coe, H. Investigating the annual behaviour of submicron secondary inorganic and organic aerosols in London. Atmos. Chem. Phys. 2014, 15, 12031–12053. [Google Scholar] [CrossRef] [Green Version]
- Leru, P.; Eftimie, A.M.; Thibaudon, M. First Allergenic Pollen Monitoring in Bucharest and Results of Three Years Collaboration with European Aerobiology Specialists. Rom. J. Intern. Med. 2018, 56, 27–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Core Writing Team; Pachauri, R.; Meyer, L. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 1535. [Google Scholar]
- Stocker, T.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Tao, J.; Zhang, L.; Gao, J.; Wang, H.; Chai, F.; Wang, S. Aerosol chemical composition and light scattering during a winter season in Beijing. Atmos. Environ. 2015, 110, 36–44. [Google Scholar] [CrossRef]
- Li, Y.J.; Lee, B.P.; Su, L.; Fung, J.C.H.; Chan, C. Seasonal characteristics of fine particulate matter (PM) based on high-resolution time-of-flight aerosol mass spectrometric (HR-ToF-AMS) measurements at the HKUST Supersite in Hong Kong. Atmos. Chem. Phys. 2015, 15, 37–53. [Google Scholar] [CrossRef] [Green Version]
- Tsimpidi, A.P.; Karydis, V.A.; Pandis, S.N.; Lelieveld, J. Global combustion sources of organic aerosols: Model comparison with 84 AMS factor analysis data sets. Atmos. Chem. Phys. 2016, 16, 8939–8962. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Jimenez, J.L.; Canagaratna, M.R.; Allan, J.D.; Coe, H.; Takami, A.; Middlebrook, A.M.; Sun, Y.L.; Dzepina, K.; Dunlea, E.; et al. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. Geophys. Res. Lett. 2007, 34, L13801. [Google Scholar] [CrossRef] [Green Version]
- Simoneit, B.; Kobayashi, M.; Mochida, M.; Kawamura, K.; Lee, M.; Lim, H.J.; Turpin, B.; Komazaki, Y. Composition and major sources of organic compounds of aerosol particulate matter sampled during ACE-Asia campaign. J. Geophys. Res. 2004, 109, D19S10. [Google Scholar] [CrossRef] [Green Version]
- Canagaratna, M.R.; Jayne, J.T.; Jiménez, J.L.; Allan, J.D.; Alfarra, M.R.; Zhang, Q.; Onasch, T.B.; Drewnick, F.; Coe, H.; Middlebrook, A.; et al. Chemical and Microphysical Characterization of ambient aerosols with the Aerodyne Aerosol Mass Spectrometer. Mass Spectrom. Rev. 2007, 26, 185–222. [Google Scholar] [CrossRef]
- Minguillón, M.C.; Perron, N.; Querol, X.; Szidat, S.; Fahrni, S.M.; Alastuey, A.; Jimenez, J.L.; Mohr, C.; Ortega, A.M.; Day, D.A.; et al. Fossil versus contemporary sources of fine elemental and organic carbonaceous particulate matter during the DAURE campaign in Northeast Spain. Atmos. Chem. Phys. 2011, 11, 12067–12084. [Google Scholar] [CrossRef] [Green Version]
- Crippa, M.; DeCarlo, P.F.; Slowik, J.G.; Mohr, C.; Heringa, M.F.; Chirico, R.; Poulain, L.; Freutel, F.; Sciare, J.; Cozic, J.; et al. Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris. Atmos. Chem. Phys. 2013, 13, 961–981. [Google Scholar] [CrossRef] [Green Version]
- He, L.Y.; Huang, X.; Xue, L.; Hu, M.; Lin, Y.; Zheng, J.; Zhang, R.; Zhang, Y. Submicron aerosol analysis and organic source apportionment in an urban atmosphere in Pearl River Delta of China using high-resolution aerosol mass spectrometry. J. Geophys. Res. 2011, 116, D12304. [Google Scholar] [CrossRef]
- He, L.Y.; Lin, Y.; Huang, X.F.; Guo, S.; Xue, L.; Su, Q.; Hu, M.; Luan, S.J.; Zhang, Y.H. Characterization of high-resolution aerosol mass spectra of primary organic aerosol emissions from Chinese cooking and biomass burning. Atmos. Chem. Phys. 2010, 10, 11535–11543. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Wang, Z.; Dong, H.; Yang, T.; Li, J.; Pan, X.; Chen, P.; Jayne, J.T. Characterization of summer organic and inorganic aerosols in Beijing, China with an Aerosol Chemical Speciation Monitor. Atmos. Environ. 2012, 51, 250–259. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, Q.; Schwab, J.J.; Demerjian, K.L.; Chen, W.; Bae, M.S.; Hung, H.M.; Hogrefe, O.; Frank, B.; Rattigan, O.V.; et al. Characterization of the sources and processes of organic and inorganic aerosols in New York city with a high-resolution time-of-flight aerosol mass spectrometer. Atmos. Chem. Phys. 2011, 11, 1581–1602. [Google Scholar] [CrossRef] [Green Version]
- Slowik, J.G.; Vlasenko, A.; McGuire, M.; Evans, G.J.; Abbatt, J. Simultaneous factor analysis of organic particle and gas mass spectra: AMS and PTR-MS measurements at an urban site. Atmos. Meas. Tech. 2010, 10, 1969–1988. [Google Scholar] [CrossRef] [Green Version]
- Mohr, C.; DeCarlo, P.F.; Heringa, M.F.; Chirico, R.; Slowik, J.G.; Richter, R.; Reche, C.; Alastuey, A.; Querol, X.; Seco, R.; et al. Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data. Atmos. Chem. Phys. 2012, 12, 1649–1665. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, K.; Elsasser, M.; Arteaga-Salas, J.M.; Gu, J.; Pitz, M.; Schnelle-Kreis, J.; Cyrys, J.; Emeis, S.; Prévôt, A.; Zimmermann, R. Source apportionment and the role of meteorological conditions in the assessment of air pollution exposure due to urban emissions. Atmos. Chem. Phys. Discuss. 2014, 14, 2235–2275. [Google Scholar] [CrossRef] [Green Version]
- Caggiano, R.; Macchiato, M.; Trippetta, S. Levels, chemical composition and sources offine aerosol particles (PM1) in an area ofthe Mediterranean basin. Sci. Total Environ. 2010, 408, 884–895. [Google Scholar] [CrossRef]
- Pateraki, S.; Asimakopoulos, D.; Maggos, T.; Assimakopoulos, V.; Bougiatioti, A.; Bairachtari, K.; Vasilakos, C.; Mihalopoulos, N. Chemical characterization, sources and potential health risk of PM2.5 and PM1 pollution across the Greater Athens Area. Chemosphere 2020, 241, 125026. [Google Scholar] [CrossRef]
- Yubero, E.; Galindo, N.; Nicolás, J.F.C.J.; Calzolai, G.; Lucarelli, F. Temporal variations of PM1 major components in an urban street canyon. Environ. Sci. Pollut. Res. 2015, 22, 13328–13335. [Google Scholar] [CrossRef]
- Stojić, A.; Stojić, S.; S̆os̆tarić, A.; Iliv, L.; Mijić, Z.; Rajs̆ić, S. Characterization of VOC sources in an urban area based on PTR-MS measurements and receptor modelling. Environ. Sci. Pollut. R. 2015, 22, 13137–13152. [Google Scholar] [CrossRef] [PubMed]
- Perrone, M.; Vratolis, S.; Georgieva, E.; Török, S.; Šega, K.; Veleva, B.; Osán, J.; Bešlić, I.; Kertész, Z.; Pernigotti, D.; et al. Sources and geographic origin of particulate matter in urban areas of the Danube macro-region: The cases of Zagreb (Croatia), Budapest (Hungary) and Sofia (Bulgaria). Sci. Total. Environ. 2018, 619–620, 1515–1529. [Google Scholar] [CrossRef] [PubMed]
- Vasilescu, J.; Mărmureanu, L.; Nemuc, A.; Nicolae, D.; Talianu, C. Seasonal variation of the aerosol chemical composition in a Romanian peri-urban area. Environ. Eng. Manag. J. 2017, 16, 2491–2496. [Google Scholar]
- Nicolae, D.; Nemuc, A.; Müller, D.; Talianu, C.; Vasilescu, J.; Belegante, L.; Kolgotin, A. Characterization of fresh and aged biomass burning events using multiwavelength Raman lidar and mass spectrometry. J. Geophys. Res. Atmos. 2013, 118, 2956–2965. [Google Scholar] [CrossRef]
- ACTRIS. Aerosols, Clouds, and Trace gases Research InfraStructure. 2020. Available online: http://www.actris.eu (accessed on 1 March 2020).
- EMEP. European Monitoring and Evaluation Programme. 2020. Available online: http://www.emep.int (accessed on 1 March 2020).
- Schlag, P.; Kiendler-Scharr, A.; Blom, M.J.; Canonaco, F.; Henzing, J.S.; Moerman, M.M.; Prévôt, A.; Holzinger, R. Aerosol source apportionment from 1-year measurements at the CESAR tower in Cabauw, The Netherlands. Atmos. Chem. Phys. 2016, 16, 8831–8847. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Sartelet, K.N.; Bocquet, M.; Chazette, P.; Sicard, M.; D’Amico, G.; Léon, J.F.; Alados-Arboledas, L.; Amodeo, A.; Augustin, P.; et al. Assimilation of lidar signals: Application to aerosol forecasting in the western Mediterranean basin. Atmos. Chem. Phys. 2014, 14, 12031–12053. [Google Scholar] [CrossRef] [Green Version]
- Henry, R.; Lewis, C.; Hopke, P.; Williamson, H. Review of receptor model fundamental. Atmos. Environ. 1984, 18, 1507–1515. [Google Scholar] [CrossRef]
- Paatero, P. The Multilinear engine—A table-driven, least squares program for solving multilinear Problems, Including the n-Way Parallel Factor Analysis Model. J. Comput. Graph. Stat. 1999, 8, 854–888. [Google Scholar] [CrossRef]
- Canonaco, F.; Crippa, M.; Slowik, J.G.; Baltensperger, U.; Prévôt, A.S.H. SoFi, an IGOR-based interface for the efficient use of the generalized multilinear engine (ME-2) for the source apportionment: ME-2 application to aerosol mass spectrometer data. Atmos. Meas. Tech. 2013, 6, 3649–3661. [Google Scholar] [CrossRef] [Green Version]
- Lanz, V.; Alfarra, M.; Baltensperger, U.; Buchmann, B.; Hueglin, C.; Szidat, S.; Wehrli, M.; Wacker, L.; Weimer, S.; Caseiro, A.; et al. Source Attribution of Submicron Organic Aerosols During Wintertime Inversions by Advanced Factor Analysis of Aerosol Mass Spectra. Environ. Sci. Technol. 2008, 42, 214–220. [Google Scholar] [CrossRef]
- Zhu, Q.; Huang, X.F.; Cao, L.M.; Wei, L.T.; Zhang, B.; He, L.Y.; Elser, M.; Canonaco, F.; Slowik, J.G.; Bozzetti, C.; et al. Improved source apportionment of organic aerosols in complex urban air pollution using the multilinear engine (ME-2). Atmos. Meas. Tech. 2018, 11, 1049–1060. [Google Scholar] [CrossRef] [Green Version]
- Zotter, P.; Ciobanu, V.G.; Zhang, Y.L.; El-Haddad, I.; Macchia, M.; Daellenbach, K.R.; Salazar, G.A.; Huang, R.J.; Wacker, L.; Hueglin, C.; et al. Radiocarbon analysis of elemental and organic carbon in Switzerland during winter-smog episodes from 2008 to 2012—Part 1: Source apportionment and spatial variability. Atmos. Chem. Phys. 2014, 14, 13551–13570. [Google Scholar] [CrossRef] [Green Version]
- Crilley, L.R.; Bloss, W.J.; Yin, J.; Beddows, D.C.S.; Harrison, R.M.; Allan, J.D.; Young, D.E.; Flynn, M.; Williams, P.; Zotter, P.; et al. Sources and contributions of wood smoke during winter in London: Assessing local and regional influences. Atmos. Chem. Phys. 2015, 15, 3149–3171. [Google Scholar] [CrossRef] [Green Version]
- Petit, J.E.; Favez, O.; Sciare, J.; Crenn, V.; Sarda-Estève, R.; Bonnaire, N.; Moc̆nik, G.; Dupont, J.C.; Haeffelin, M.; Leoz-Garziandia, E. Two years of near real-time chemical composition of submicron aerosols in the region of Paris using an Aerosol Chemical Speciation Monitor (ACSM) and a multi-wavelength Aethalometer. Atmos. Chem. Phys. 2015, 15, 2985–3005. [Google Scholar] [CrossRef] [Green Version]
- Krzywanski, J.; Rajczyk, R.; Nowak, W. Model Research of Gas Emissions From Lignite and Biomass Co-Combustion in a Large Scale CFB Boiler. Chem. Process. Eng. 2014, 35, 217–231. [Google Scholar] [CrossRef]
- Nowak, W.; Muskala, J.K.; Czakiert, T. The Research of CFB Boiler Operation for Oxygen Enhanced Dried Lignite Combustion. In Proceedings of the 10th International Conference on Circulating Fluidized Beds and Fluidization Technology-CFB-10, ECI Symposium Serie, Sun River, OR, USA, 1–5 May 2011. [Google Scholar]
- Belegante, L.; Nicolae, D.; Nemuc, A.; Talianu, C.; Derognat, C. Retrieval of the Boundary Layer Height from Active and Passive Remote Sensors. Comparison with a NWP Model. Acta Geophys. 2014, 62, 276–289. [Google Scholar] [CrossRef]
- Marin, C.; Mărmureanu, L.; Radu, C.; Dandocsi, A.; Stan, C.; Ţoancă, F.; Preda, L.; Antonescu, B. Wintertime Variations of Gaseous Atmospheric Constituents in Bucharest Peri-Urban Area. Atmosphere 2019, 10, 478. [Google Scholar] [CrossRef] [Green Version]
- Mărmureanu, L.; Deaconu, L.; Vasilescu, J.; Ajtai, N.; Talianu, C. Combined optoelectronic methods used in the monitoring of so2 emissions and imissions. Environ. Eng. Manag. J. 2013, 12, 277–282. [Google Scholar]
- Romanian Ministry of Environment. Authorization No. 104 / 13.02.2013 on Green Gases Emissions. 2019. Available online: http://mmediu.ro/new/wp-content/uploads/2014/10/2014-10-20_Autorizatie_GES_2013-ELCEN_CTE_SUD_rev_iulie_2013.pdf (accessed on 8 November 2019).
- Burcea, S.; Cheval, S.; Dumitrescu, A.; Antonescu, B.; Bell, A.; Breza, T. Comparison between radar estimated rain gauge measured precipitation in the Moldavian Plateau. Environ. Eng. Manag. J. 2012, 4, 723–731. [Google Scholar] [CrossRef]
- Antonescu, B.; Burcea, S.; Tanase, A. Forecasting the onset of cloud-to-ground lightning using radar and upper-air data in Romania. Int. J. Climatol. 2013, 33, 1579–1584. [Google Scholar] [CrossRef]
- Nemuc, A.; Vasilescu, J.; Talianu, C.; Belegante, L.; Nicolae, D. Assessment of aerosol’s mass concentrations from measured linear particle depolarization ratio (vertically resolved) and simulations. Atmos. Meas. Tech. 2013, 6, 3243–3255. [Google Scholar] [CrossRef] [Green Version]
- Mărmureanu, L.; Marin, C.; Andrei, S.; Antonescu, B.; Ene, D.; Boldeanu, M.; Vasilescu, J.; Viţelaru, C.; Cadar, O.; Levei, E. Orange Snow—A Saharan Dust Intrusion over Romania During Winter Conditions. Remote Sens. 2019, 11, 2466. [Google Scholar] [CrossRef] [Green Version]
- Sicard, M.; D’Amico, G.; Comerón, A.; Mona, L.; Alados-Arboledas, L.; Amodeo, A.; Baars, H.; Baldasano, J.M.; Belegante, L.; Binietoglou, I.; et al. EARLINET: Potential operationality of a research network. Atmos. Meas. Tech. 2015, 8, 4587–4613. [Google Scholar] [CrossRef] [Green Version]
- Holzinger, R. PTRwid: A new widget tool for processing PTR-TOF-MS data. Atmos. Meas. Tech. 2015, 8, 3903–3922. [Google Scholar] [CrossRef] [Green Version]
- Drewnick, F.; Hings, S.; DeCarlo, P.; Jayne, J.; Gonin, M.; Fuhrer, K.; Weimer, S.; Jimenez, J.; Demerjian, K.; Borrmann, S.; et al. A new Time-of-Flight Aerosol Mass Spectrometer (ToF-AMS): Instrument Description and First Field Deployment. Aerosol. Sci. Tech. 2005, 39, 637–658. [Google Scholar] [CrossRef]
- Zhang, J.K.; Sun, Y.; Liu, Z.R.; Ji, D.S.; Hu, B.; Liu, Q.; Wang, Y.S. Characterization of submicron aerosols during a month of serious pollution in Beijing, 2013. Atmos. Chem. Phys. 2014, 14, 2887–2903. [Google Scholar] [CrossRef] [Green Version]
- Murphy, D.M. The effects of molecular weight and thermal decomposition on the sensitivity of a thermal desorption aerosol mass spectrometer. Aerosol Sci. Technol. 2016, 50, 118–125. [Google Scholar] [CrossRef] [Green Version]
- Bahreini, R.; Ervens, B.; Middlebrook, A.M.; Warneke, C.; de Gouw, J.A.; DeCarlo, P.F.; Jimenez, J.L.; Brock, C.A.; Neuman, J.A.; Ryerson, T.B.; et al. Organic aerosol formation in urban and industrial plumes near Houston and Dallas, Texas. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Dandocsi, A.; Preda, L.; Nicolae, D.; Nemuc, A. Planetary boundary layer investigation from lidar measurements over Bucuharest. Univ. Politeh. Buchar. Sci. Bull. 2012, 78, 265–274. [Google Scholar]
- Ştefan, S.; Radu, C.; Belegante, L. Analysis of air quality in two sites with different local conditions. Environ. Eng. Manag. J. 2013, 12, 371–379. [Google Scholar] [CrossRef]
- Drinovec, L.; Moc̆nik, G.; Zotter, P.; Prévôt, A.S.H.; Ruckstuhl, C.; Coz, E.; Rupakheti, M.; Sciare, J.; Müller, T.; Wiedensohler, A.; et al. The “dual-spot” Aethalometer: An improved measurement of aerosol black carbon with real-time loading compensation. Atmos. Meas. Tech. 2015, 8, 1965–1979. [Google Scholar] [CrossRef] [Green Version]
- Sandradewi, J.; Prévôt, A.S.H.; Szidat, S.; Perron, N.; Lanz, V.; Weingartner, E.; Baltensperger, U. Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter. Environ. Sci. Technol. 2008, 42, 3316–3323. [Google Scholar] [CrossRef] [PubMed]
- Kalogridis, A.C.; Vratolis, S.; Liakakou, E.; Gerasopoulos, E.; Mihalopoulos, N.; Eleftheriadis, K. Assessment of wood burning versus fossil fuel contribution to wintertime black carbon and carbon monoxide concentrations in Athens, Greece. Atmos. Chem. Phys. 2018, 18, 10219–10236. [Google Scholar] [CrossRef] [Green Version]
- Bond, T.C.; Bergstrom, R.W. Light absorption by carbonaceous particles: An investigative review. Aerosol Sci. Technol. 2006, 40, 27–67. [Google Scholar] [CrossRef]
- Lewis, K.; Arnott, W.P.; Moosmuller, H.; Wold, C.E. Strong spectral variation of biomass smoke light absorption and single scattering albedo observed with a novel dual-wavelength photoacoustic instrument. J. Geophys. Res. 2008, 113, D16203. [Google Scholar] [CrossRef] [Green Version]
- Stein, A.; Draxler, R.; Rolph, G.; Stunder, B.; Cohen, M.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteor. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Davies, D.; Kumar, S.; Descloitres, J. Global fire monitoring using MODIS near-real-time satellite data. GIM Int. 2004, 18, 41–43. [Google Scholar]
- Szidat, S.; Salazar, G.A.; Vogel, E.; Battaglia, M.; Wacker, L.; Synal, H.-A.; Türler, A. 14C Analysis and Sample Preparation at the New Bern Laboratory for the Analysis of Radiocarbon with AMS (LARA). Radiocarbon 2014, 52, 561–566. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Perron, N.; Ciobanu, V.G.; Zotter, P.; Minguillón, M.C.; Wacker, L.; Prévôt, A.S.H.; Baltensperger, U.; Szidat, S. On the isolation of OC and EC and the optimal strategy of radiocarbon-based source apportionment of carbonaceous aerosols. Atmos. Chem. Phys. 2012, 12, 10841–10856. [Google Scholar] [CrossRef] [Green Version]
- Paatero, P. Least squares formulation of robust nonnegative factor analysis. Chemom. Intell. Lab. Syst. 1997, 37, 23–35. [Google Scholar] [CrossRef]
- Paatero, P.; Eberly, S.; Brown, S.G.; Norris, G.A. Methods for estimating uncertainty in factor analytic solutions. Atmos. Meas. Tech. 2014, 7, 781–797. [Google Scholar] [CrossRef] [Green Version]
- Fröhlich, R.; Crenn, V.; Setyan, A.; Belis, C.A.; Canonaco, F.; Favez, O.; Riffault, V.; Slowik, J.G.; Aas, W.; Äijälä, M.; et al. ACTRIS ACSM intercomparison—Part 2: Intercomparison of ME-2 organic source apportionment results from 15 individual, co-located aerosol mass spectrometers. Atmos. Meas. Tech. 2015, 8, 2555–2576. [Google Scholar] [CrossRef] [Green Version]
- Aurela, M.; Saarikoski, S.; Niemi, J.V.; Canonaco, F.; Prévôt, A.; Frey, A.; Carbone, S.; Kousa, A.; Hillamo, R. Chemical and source characterization of submicron particles at residential and traffic sites in the Helsinki Metropolitan Area, Finland. Aerosol Air Qual. Res. 2015, 15, 1213–1226. [Google Scholar] [CrossRef] [Green Version]
- Allan, J.D.; Delia, A.E.; Coe, H.; Bower, K.N.; Alfarra, M.R.; Jimenez, J.L.; Middlebrook, A.M.; Drewnick, F.; Onasch, T.B.; Canagaratna, M.R.; et al. A generalised method for the extraction of chemically resolved mass spectra from Aerodyne aerosol mass spectrometer data. J. Aerosol Sci. 2004, 35, 909–922. [Google Scholar] [CrossRef]
- Ulbrich, I.M.; Canagaratna, M.R.; Zhang, Q.; Worsnop, D.R.; Jimenez, J.L. Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data. Atmos. Chem. Phys. 2009, 9, 2891–2918. [Google Scholar] [CrossRef] [Green Version]
- Crippa, M.; Canonaco, F.; Lanz, V.A.; PÄijälä, M.; Allan, J.D.; Carbone, S.; Capes, G.; Ceburnis, D.; Dall’Osto, M.; Day, D.A.; et al. Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach. Atmos. Chem. Phys. 2014, 14, 6159–6176. [Google Scholar] [CrossRef] [Green Version]
- Canonaco, F.; Slowik, J.G.; Baltensperger, U.; Prévôt, A.S.H. Seasonal differences in oxygenated organic aerosol composition: Implications for emissions sources and factor analysis. Atmos. Chem. Phys. 2015, 15, 6993–7002. [Google Scholar] [CrossRef] [Green Version]
- Ots, R.; Vieno, M.; Allan, J.D.; Reis, S.; Nemitz, E.; Young, D.E.; Coe, H.; Di Marco, C.; Detournay, A.; Mackenzie, I.A.; et al. Model simulations of cooking organic aerosol (COA) over the UK using estimates of emissions based on measurements at two sites in London. Atmos. Chem. Phys. 2016, 16, 13773–13789. [Google Scholar] [CrossRef] [Green Version]
- Jimenez, J.L.; Canagaratna, M.R.; Donahue, N.M.; Prévôt, A.S.H.; Zhang, Q.; Kroll, J.H.; DeCarlo, P.F.; Allan, J.D.; Coe, H.; Ng, N.L.; et al. Evolution of Organic Aerosols in the Atmosphere. Science 2009, 326, 1525–1529. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Yang, X.; Li, W.; Xue, L.; Wang, T.; Chen, J.; Wang, W. Mixed Chloride Aerosols and their Atmospheric Implications: A Review. Aerosol Air Qual. Res. 2017, 17, 878–887. [Google Scholar] [CrossRef] [Green Version]
- Ianniello, A.; Spataro, F.; Esposito, G.; Allegrini, I.; Rantica, E.; Ancora, M.P.; Hu, M.; Zhu, T. Occurrence of gas phase ammonia in the area of Beijing (China). Atmos. Chem. Phys. 2010, 10, 9487–9503. [Google Scholar] [CrossRef] [Green Version]
- Behera, S.; Sharma, M.; Aneja, V.; Balasubramanian, R. Ammonia in the atmosphere: A review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environ. Sci. Pollut. Res. Int. 2013, 20. [Google Scholar] [CrossRef] [PubMed]
- Jian, Y.; Fu, T.M. Injection heights of springtime biomass-burning plumes over peninsular Southeast Asia and their impacts on long-range pollutant transport. Atmos. Chem. Phys. 2014, 14, 3977–3989. [Google Scholar] [CrossRef] [Green Version]
- Fromm, M.; Bevilacqua, R.; Servranckx, R.; Rosen, J.; Thayer, J.P.; Herman, J.; Larko, D. Pyro-cumulonimbus injection of smoke to the stratosphere: Observations and impact of a superblowup in northwestern Canada on 3–4 August 1998. J. Geophys.Res. 2005, 110, D08205. [Google Scholar] [CrossRef] [Green Version]
- Samaras, S.; Nicolae, D.; Böckmann, C.; Vasilescu, J.; Binietoglou, I.; Labzovskii, L.; Ţoanca, F.; Papayannis, A. Using Raman-lidar-based regularized microphysical retrievals and Aerosol Mass Spectrometer measurements for the characterization of biomass burning aerosols. J. Comput. Phys. 2015, 299, 156–174. [Google Scholar] [CrossRef]
- Duduş, S. Dealu Spirii. Curaj si Devotament; Inspectoratul pentru Situatii de Urgenta “DEALU SPIRII” al Municipiului: Bucuresti, Romania, 2014; p. 140. [Google Scholar]
- Galindo, N.; Yubero, E.; Clemente, A.; Nicolás, J.; Navarro-Selma, B.; Crespo, J. Insights into the origin and evolution of carbonaceous aerosols in a Mediterranean urban environment. Chemosphere 2019, 235, 636–642. [Google Scholar] [CrossRef]
- Cubison, M.J.; Ortega, A.M.; Hayes, P.L.; Farmer, D.K.; Day, D.; Lechner, M.J.; Brune, W.H.; Apel, E.; Diskin, G.S.; Fisher, J.A.; et al. Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies. Atmos. Chem. Phys. 2011, 11, 12049–12064. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Sun, J.; Zhang, X.; Shen, X.; Wang, T.; Qin, M. Seasonal characterization of components and size distributions for submicron aerosols in Beijing. Sci. China Earth Sci. 2012, 56, 890–900. [Google Scholar] [CrossRef]
- Finlayson-Pitts, B.J.; Pitts, J.N., Jr. Chemistry of the Upper and Lower Atmosphere, Theory, Experiments, and Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2000; p. 969. [Google Scholar]
- Grîu, T.; Lunguleasa, A. Economics consideration on wooden biomass Consumption. In Proceedings of the International Conference of Scientific Paper AFASES, Brasov, Romania, 22–24 May 2014. [Google Scholar]
- Matthias, V.; Balis, D.; Bösenberg, J.; Eixmann, R.; Iarlori, M.; Komguem, L.; Mattis, I.; Papayannis, A.; Pappalardo, G.; Perrone, M.R.; et al. Vertical aerosol distribution over Europe: Statistical analysis of Raman lidar data from 10 European Aerosol Research Lidar Network (EARLINET) stations. J. Geophys. Res. 2004, 109, D18201. [Google Scholar] [CrossRef]
- Zhang, Q.; Worsnop, D.R.; Canagaratna, M.R.; Jimenez, J.L. Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: Insights into sources and processes of organic aerosols. Atmos. Chem. Phys. 2005, 5, 3289–3311. [Google Scholar] [CrossRef] [Green Version]
- Aiken, A.; Salcedo, D.; Cubison, M.; Huffman, J.A.; DeCarlo, P.; Ulbrich, I.M.; Docherty, K.S.; Sueper, D.; Kimmel, J.R.; Worsnop, D.R.; et al. Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0)—Part 1: Fine particle composition and organic source apportionment. Atmos. Chem. Phys. 2009, 9, 6633–6653. [Google Scholar] [CrossRef] [Green Version]
- Geicu, A.; Cândea, I. (Eds.) Clima României (The Climate of Romania), Romanian National Meteorological Administration; Romanian Academy Press: Bucharest, Romania, 2008; p. 366. [Google Scholar]
- Lei, L.; Xie, C.; Wang, D.; Yao, H.; Wang, Q.; Zhou, W.; Hu, W.; Fu, P.; Chen, Y.; Pan, X.; et al. Fine particle characterization in a coastal city in China: Composition, sources, and impacts of industrial emissions. Atmos. Chem. Phys. 2020, 20, 2877–2890. [Google Scholar] [CrossRef] [Green Version]
- Hennigan, C.J.; Sullivan, A.P.; Collett, J., Jr.; Robinson, A.L. Levoglucosan stability in biomass burning particles exposed to hydroxyl radicals. Geophys. Res. Lett. 2010, 37, L09806. [Google Scholar] [CrossRef] [Green Version]
- Ng, N.L.; Canagaratna, M.R.; Jimenez, J.L.; Chhabra, P.S.; Seinfeld, J.H.; Worsnop, D.R. Changes in organic aerosol composition with aging inferred from aerosol mass spectra. Atmos. Chem. Phys. 2011, 11, 6465–6474. [Google Scholar] [CrossRef] [Green Version]
- Hao, L.Q.; Kortelainen, A.; Romakkaniemi, S.; Portin, H.; Jaatinen, A.; Leskinen, A.; Komppula, M.; Miettinen, P.; Sueper, D.; Pajunoja, A.; et al. Atmospheric submicron aerosol composition and particulate organic nitrate formation in a boreal forestland–urban mixed region. Atmos. Chem. Phys. 2014, 14, 13483–13495. [Google Scholar] [CrossRef] [Green Version]
- Duan, J.; Huang, R.J.; Lin, C.; Dai, W.; Wang, M.; Gu, Y.; Wang, Y.; Zhong, H.; Zheng, Y.; Ni, H.; et al. Distinctions in source regions and formation mechanisms of secondary aerosol in Beijing from summer to winter. Atmos. Chem. Phys. 2019, 19, 10319–10334. [Google Scholar] [CrossRef] [Green Version]
- Xing, L.; Wu, J.; Elser, M.; Tong, S.; Liu, S.; Li, X.; Liu, L.; Cao, J.; Zhou, J.; El-Haddad, I.; et al. Wintertime secondary organic aerosol formation in Beijing–Tianjin–Hebei (BTH): Contributions of HONO sources and heterogeneous reactions. Atmos. Chem. Phys. 2019, 19, 2343–2359. [Google Scholar] [CrossRef] [Green Version]
- Bruns, E.A.; Krapf, M.; Orasche, J.; Huang, Y.; Zimmermann, R.; Drinovec, L.; Moc̆nik, G.; El-Haddad, I.; Slowik, J.G.; Dommen, J.; et al. Characterization of primary and secondary wood combustion products generated under different burner loads. Environ. Sci. Technol. 2015, 42, 3316–3323. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.W.; Hu, M.; Yuan, B.; Jimenez, J.L.; Tang, Q.; Peng, J.F.; Hu, W.; Shao, M.; Wang, M.; Zeng, L.M.; et al. Insights on organic aerosol aging and the influence of coal combustion at a regional receptor site of central eastern China. Atmos. Chem. Phys. 2013, 13, 10095–10112. [Google Scholar] [CrossRef] [Green Version]
- Eurostat. European Statistics. 2020. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 1 March 2020).
- Knoema Enterprise Data Solutions. World Data Atlas. 2020. Available online: https://knoema.com/atlas/Romania/topics/Energy/Coal/Coal-primary-consumption (accessed on 1 March 2020).
- Cruceru, M.; Voronca, M.; Popescu, L.; Diaconu, B. GHG emissions reduction by using miscanth usgig anteus as additional fuel in existing coal fired boilers. Ann. Constantin Brancusi Univ. Targu Jiu Eng. Ser. 2013, 1, 9–16. [Google Scholar]
- Zotter, P.; Herich, H.; Gysel, M.; El-Haddad, I.; Zhang, Y.; Moc̆nik, G.; Hüglin, C.; Baltensperger, U.; Szidat, S.; Prévôt, A. Evaluation of the absorption Ångström exponents for traffic and wood burning in the Aethalometer-based source apportionment using radiocarbon measurements of ambient aerosol. Atmos. Chem. Phys. 2017, 17, 4229–4249. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mărmureanu, L.; Vasilescu, J.; Slowik, J.; Prévôt, A.S.H.; Marin, C.A.; Antonescu, B.; Vlachou, A.; Nemuc, A.; Dandocsi, A.; Szidat, S. Online Chemical Characterization and Source Identification of Summer and Winter Aerosols in Măgurele, Romania. Atmosphere 2020, 11, 385. https://doi.org/10.3390/atmos11040385
Mărmureanu L, Vasilescu J, Slowik J, Prévôt ASH, Marin CA, Antonescu B, Vlachou A, Nemuc A, Dandocsi A, Szidat S. Online Chemical Characterization and Source Identification of Summer and Winter Aerosols in Măgurele, Romania. Atmosphere. 2020; 11(4):385. https://doi.org/10.3390/atmos11040385
Chicago/Turabian StyleMărmureanu, Luminiţa, Jeni Vasilescu, Jay Slowik, André S. H. Prévôt, Cristina Antonia Marin, Bogdan Antonescu, Athanasia Vlachou, Anca Nemuc, Alexandru Dandocsi, and Sönke Szidat. 2020. "Online Chemical Characterization and Source Identification of Summer and Winter Aerosols in Măgurele, Romania" Atmosphere 11, no. 4: 385. https://doi.org/10.3390/atmos11040385
APA StyleMărmureanu, L., Vasilescu, J., Slowik, J., Prévôt, A. S. H., Marin, C. A., Antonescu, B., Vlachou, A., Nemuc, A., Dandocsi, A., & Szidat, S. (2020). Online Chemical Characterization and Source Identification of Summer and Winter Aerosols in Măgurele, Romania. Atmosphere, 11(4), 385. https://doi.org/10.3390/atmos11040385