Impact of Air–Wave–Sea Coupling on the Simulation of Offshore Wind and Wave Energy Potentials
Abstract
:1. Introduction
2. Method and Experiments
2.1. Energy Potential Parameters
2.2. Numerical Model
2.2.1. WRF
2.2.2. WW3
2.2.3. NEMO
2.3. Experiments
- Exp1: Exp1 is the control experiment, which is a one-way coupling experiment between WRF and WW3 components. The NEMO model is switched off. In this experiment, WW3 receives the wind field from WRF. WRF does not get any information from the wave model. In other words, this experiment is the same as that we run atmosphere and wave stand-alone models separately.
- Exp2: In this experiment, the WRF and WW3 models are used. The difference from Exp1 is that the Charnock coefficient estimated by WW3 (sea-state-dependent Charnock coefficient) is used in WRF. In other words, WRF model incorporates the wave information in the simulations. Thus, the surface fluxes, such as wind stress, heat fluxes, and humidity fluxes, will be altered as a response to the sea-state-dependent Charnock coefficient. On the wave side, the new wind information forcing the wave model has indirect wave feedback, and the wave energy simulation is altered indirectly. The simulation difference between Exp2 and Exp1 is due to the atmosphere–wave interaction processes.
- Exp3: The WRF, NEMO and WW3 are switched on in this experiment. The differences between Exp3 and Exp2 are that the atmosphere–ocean coupling processes are included in the system. The forcing data for NEMO is from the WRF model, which provides wind stress, short and long wave radiations, and net water flux (see Table 1). The variables that the NEMO model sends back to the WRF include surface currents and SST. The other settings are the same as in Exp2. Thus, the WPE and WPD difference between Exp3 and Exp2 is due to the atmosphere–ocean coupling processes.
- Exp4: The wave–current interactions are activated in Exp4, which include (1) the sea-state-dependent water-side stress, (2) sea-state-dependent TKE flux, (3) Stokes drift impact on the currents (in terms of Coriolis–Stokes force and Stokes advection in the momentum and tracer equations), (4) wave impact on ocean surface TKE roughness length, and (5) ocean current impact on waves. The water level impact on the wave simulation is also added in this experiment. The water level information is from NEMO model where the tide impact is also included. The other settings are the same as in Exp3 (see Table 1 for the details of those processes). Thus, the difference between Exp4 and Exp3 is due to the wave–current interaction processes.
3. Results
3.1. Mean Energy Potentials
3.2. Impact of Coupling on Mean Energy Potentials
3.3. Energy Potentials Dependence on the Distance From Coast
3.4. Coupling Influences with the Distance from the Coastline
4. Discussion
4.1. Sea-State-Dependent Stress
4.2. Feedback from SST and Current Coupling
4.3. Wave–Current Coupling Influence
4.4. Resolution Influences
4.5. Wind Direction Influences
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Esteban, M.D.; Diez, J.J.; López, J.S.; Negro, V. Why offshore wind energy? Renew. Energy 2011, 36, 444–450. [Google Scholar] [CrossRef] [Green Version]
- Rusu, E.; Onea, F. A review of the technologies for wave energy extraction. Clean Energy 2018, 2, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Dvorak, M.J.; Archer, C.L.; Jacobson, M.Z. California offshore wind energy potential. Renew. Energy 2010, 35, 1244–1254. [Google Scholar] [CrossRef]
- Iglesias, G.; López, M.; Carballo, R.; Castro, A.; Fraguela, J.A.; Frigaard, P. Wave energy potential in Galicia (NW Spain). Renew. Energy 2009, 34, 2323–2333. [Google Scholar] [CrossRef]
- Mattar, C.; Borvarán, D. Offshore wind power simulation by using WRF in the central coast of Chile. Renew. Energy 2016, 94, 22–31. [Google Scholar] [CrossRef]
- Nilsson, E.; Rutgersson, A.; Dingwell, A.; Björkqvist, J.V.; Pettersson, H.; Axell, L.; Nyberg, J.; Strömstedt, E. Characterization of Wave Energy Potential for the Baltic Sea with Focus on the Swedish Exclusive Economic Zone. Energies 2019, 12, 793. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Breivik, O.; Rutgersson, A. Ocean-Wave-Atmosphere Interaction Processes in a Fully Coupled Modeling System. J. Adv. Model. Earth Syst. 2019, 11, 3852–3874. [Google Scholar] [CrossRef] [Green Version]
- Guan, C.; Xie, L. On the linear parameterization of drag coefficient over sea surface. J. Phys. Oceanogr. 2004, 34, 2847–2851. [Google Scholar] [CrossRef]
- Jiang, Q.; Sullivan, P.; Wang, S.; Doyle, J.; Vincent, L. Impact of swell on air–sea momentum flux and marine boundary layer under low-wind conditions. J. Atmos. Sci. 2016, 73, 2683–2697. [Google Scholar] [CrossRef]
- Soloviev, A.V.; Lukas, R.; Donelan, M.A.; Haus, B.K.; Ginis, I. The air-sea interface and surface stress under tropical cyclones. Sci. Rep. 2014, 4, 5306. [Google Scholar] [CrossRef]
- Rutgersson, A.; Smedman, A.S.; Högström, U. Use of conventional stability parameters during swell. J. Geophys. Res. Oceans 2001, 106, 27117–27134. [Google Scholar] [CrossRef]
- Wu, L.; Rutgersson, A.; Sahlée, E.; Guo Larsén, X. Swell impact on wind stress and atmospheric mixing in a regional coupled atmosphere-wave model. J. Geophys. Res. Oceans 2016, 121, 4633–4648. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Hristov, T.; Rutgersson, A. Vertical profiles of wave-coherent momentum flux and velocity variances in the marine atmospheric boundary layer. J. Phys. Oceanogr. 2018, 48, 625–641. [Google Scholar] [CrossRef]
- Wu, L.; Sproson, D.; Sahlée, E.; Rutgersson, A. Surface wave impact when simulating midlatitude storm development. J. Atmos. Ocean. Technol. 2017, 34, 233–248. [Google Scholar] [CrossRef] [Green Version]
- Larsén, X.G.; Du, J.; Bolaños, R.; Imberger, M.; Kelly, M.C.; Badger, M.; Larsen, S. Estimation of offshore extreme wind from wind-wave coupled modeling. Wind Energy 2019, 22, 1043–1057. [Google Scholar] [CrossRef] [Green Version]
- Kalvig, S.; Manger, E.; Hjertager, B.H.; Jakobsen, J.B. Wave influenced wind and the effect on offshore wind turbine performance. Energy Procedia 2014, 53, 202–213. [Google Scholar] [CrossRef] [Green Version]
- Motta, M.; Barthelmie, R.J.; Vølund, P. The influence of non-logarithmic wind speed profiles on potential power output at Danish offshore sites. Wind Energy Int. J. Prog. Appl. Wind Power Convers. Technol. 2005, 8, 219–236. [Google Scholar] [CrossRef]
- Ardhuin, F.; Roland, A. Coastal wave reflection, directional spread, and seismoacoustic noise sources. J. Geophys. Res. Oceans 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Uchiyama, Y.; McWilliams, J.C.; Restrepo, J.M. Wave-current interaction in nearshore shear instability analyzed with a vortex force formalism. J. Geophys. Res. Oceans 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Hashemi, M.R.; Neill, S.P.; Robins, P.E.; Davies, A.G.; Lewis, M.J. Effect of waves on the tidal energy resource at a planned tidal stream array. Renew. Energy 2015, 75, 626–639. [Google Scholar] [CrossRef] [Green Version]
- Hashemi, M.R.; Neill, S.P. The role of tides in shelf-scale simulations of the wave energy resource. Renew. Energy 2014, 69, 300–310. [Google Scholar] [CrossRef]
- Qiao, F.; Yuan, Y.; Yang, Y.; Zheng, Q.; Xia, C.; Ma, J. Wave-induced mixing in the upper ocean: Distribution and application to a global ocean circulation model. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Wahle, K.; Staneva, J.; Koch, W.; Fenoglio-Marc, L.; Ho-Hagemann, H.; Stanev, E.V. An atmosphere–wave regional coupled model: Improving predictions of wave heights and surface winds in the southern North Sea. Ocean Sci. 2017, 13, 289–301. [Google Scholar] [CrossRef] [Green Version]
- Warner, J.C.; Sherwood, C.R.; Signell, R.P.; Harris, C.K.; Arango, H.G. Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Comput. Geosci. 2008, 34, 1284–1306. [Google Scholar] [CrossRef]
- Warner, J.C.; Armstrong, B.; He, R.; Zambon, J.B. Development of a coupled ocean–atmosphere–wave– sediment transport (COAWST) modeling system. Ocean Model. 2010, 35, 230–244. [Google Scholar] [CrossRef] [Green Version]
- Strajnar, B.; Cedilnik, J.; Fettich, A.; Ličer, M.; Pristov, N.; Smerkol, P.; Jerman, J. Impact of two-way coupling and sea-surface temperature on precipitation forecasts in regional atmosphere and ocean models. Q. J. R. Meteorol. Soc. 2019, 145, 228–242. [Google Scholar] [CrossRef] [Green Version]
- Lewis, H.W.; Castillo Sanchez, J.M.; Graham, J.; Saulter, A.; Bornemann, J.; Arnold, A.; Fallmann, J.; Harris, C.; Pearson, D.; Ramsdale, S.; et al. The UKC2 regional coupled environmental prediction system. Geosci. Model Dev. 2018, 11, 1–42. [Google Scholar] [CrossRef] [Green Version]
- Lewis, H.W.; Castillo Sanchez, J.M.; Arnold, A.; Fallmann, J.; Saulter, A.; Graham, J.; Bush, M.; Siddorn, J.; Palmer, T.; Lock, A.; et al. The UKC3 regional coupled environmental prediction system. Geosci. Model Dev. 2019, 12, 2357–2400. [Google Scholar] [CrossRef] [Green Version]
- Carniel, S.; Benetazzo, A.; Bonaldo, D.; Falcieri, F.M.; Miglietta, M.M.; Ricchi, A.; Sclavo, M. Scratching beneath the surface while coupling atmosphere, ocean and waves: Analysis of a dense water formation event. Ocean Model. 2016, 101, 101–112. [Google Scholar] [CrossRef]
- Staneva, J.; Alari, V.; Breivik, Ø.; Bidlot, J.R.; Mogensen, K. Effects of wave-induced forcing on a circulation model of the North Sea. Ocean Dyn. 2017, 67, 81–101. [Google Scholar] [CrossRef]
- Ricchi, A.; Miglietta, M.M.; Barbariol, F.; Benetazzo, A.; Bergamasco, A.; Bonaldo, D.; Cassardo, C.; Falcieri, F.M.; Modugno, G.; Russo, A.; et al. Sensitivity of a Mediterranean tropical-like cyclone to different model configurations and coupling strategies. Atmosphere 2017, 8, 92. [Google Scholar] [CrossRef] [Green Version]
- Kalvig, S.; Gudmestad, O.T.; Winther, N. Exploring the gap between ‘best knowledge’and ‘best practice’in boundary layer meteorology for offshore wind energy. Wind Energy 2014, 17, 161–171. [Google Scholar] [CrossRef]
- Langodan, S.; Viswanadhapalli, Y.; Dasari, H.P.; Knio, O.; Hoteit, I. A high-resolution assessment of wind and wave energy potentials in the Red Sea. Appl. Energy 2016, 181, 244–255. [Google Scholar] [CrossRef]
- Davy, R.; Gnatiuk, N.; Pettersson, L.; Bobylev, L. Climate change impacts on wind energy potential in the European domain with a focus on the Black Sea. Renew. Sustain. Energy Rev. 2018, 81, 1652–1659. [Google Scholar] [CrossRef] [Green Version]
- Mirzaei, A.; Tangang, F.; Juneng, L. Wave energy potential assessment in the central and southern regions of the South China Sea. Renew. Energy 2015, 80, 454–470. [Google Scholar] [CrossRef]
- Zheng, C.W.; Wu, G.X.; Chen, X.; Wang, Q.; Gao, Z.S.; Chen, Y.G.; Luo, X. CMIP5-Based Wave Energy Projection: Case Studies of the South China Sea and the East China Sea. IEEE Access 2019, 7, 82753–82763. [Google Scholar] [CrossRef]
- Craig, A.; Valcke, S.; Coquart, L. Development and performance of a new version of the OASIS coupler, OASIS3-MCT_3.0. Geosci. Model Dev. 2017, 10, 3297–3308. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.; Klemp, J. A Description of the Advanced Research WRF; Version 3, NCAR Technical Report, Note NCAR/TN-4751STR; National Center for Atmospheric Research: Boulder, CO, USA, 2005; 113p. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.; Simmons, A.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.; Balsamo, G.; Bauer, D.P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- WAVEWATCH III Development Group. User Manual and System Documentation of WAVEWATCH III; Version 5.16; WAVEWATCH III Development Group: College Park, MD, USA, 2016. [Google Scholar]
- Janssen, P. Wave-induced stress and the drag of air flow over sea waves. J. Phys. Oceanogr. 1989, 19, 745–754. [Google Scholar] [CrossRef] [Green Version]
- Bidlot, J.; Janssen, P.; Abdalla, S.; Hersbach, H. A Revised Formulation of Ocean Wave Dissipation and Its Model Impact; ECMWF: Reading, UK, 2007. [Google Scholar]
- Janssen, P.; Janssen, P.A. The Interaction of Ocean Waves and Wind; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Madec, G. NEMO Ocean Engine. 2015. Available online: https://epic.awi.de/id/eprint/39698/1/NEMO_book_v6039.pdf (accessed on 28 March 2020).
- Wu, L.; Staneva, J.; Breivik, Ø.; Rutgersson, A.; Nurser, A.G.; Clementi, E.; Madec, G. Wave effects on coastal upwelling and water level. Ocean Model. 2019, 140, 101405. [Google Scholar] [CrossRef]
- Janssen, F.; Schrum, C.; Backhaus, J.O. A climatological data set of temperature and salinity for the Baltic Sea and the North Sea. Dtsch. Hydrogr. Z. 1999, 51, 5. [Google Scholar] [CrossRef]
- Charlotte, H.; Jake, B.; Ferhat, B.; Niels-Erik, C. Wind Energy Resources of the South Baltic Sea. In Proceedings of the World Renewable Energy Congress-Sweden, Linköping; Sweden, 8–13 May 2011. [Google Scholar]
- Smedman, A.; Högström, U.; Bergström, H.; Rutgersson, A.; Kahma, K.; Pettersson, H. A case study of air-sea interaction during swell conditions. J. Geophys. Res. Oceans 1999, 104, 25833–25851. [Google Scholar] [CrossRef]
- Sullivan, P.P.; Edson, J.B.; Hristov, T.; McWilliams, J.C. Large-eddy simulations and observations of atmospheric marine boundary layers above nonequilibrium surface waves. J. Atmos. Sci. 2008, 65, 1225–1245. [Google Scholar] [CrossRef] [Green Version]
- Semedo, A.; Saetra, Ø.; Rutgersson, A.; Kahma, K.K.; Pettersson, H. Wave-induced wind in the marine boundary layer. J. Atmos. Sci. 2009, 66, 2256–2271. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Rutgersson, A.; Nilsson, E. Atmospheric boundary layer turbulence closure scheme for wind-following swell conditions. J. Atmos. Sci. 2017, 74, 2363–2382. [Google Scholar] [CrossRef]
- Xiao, S.; Yang, D. Large-Eddy Simulation-Based Study of Effect of Swell-Induced Pitch Motion on Wake-Flow Statistics and Power Extraction of Offshore Wind Turbines. Energies 2019, 12, 1246. [Google Scholar] [CrossRef] [Green Version]
- Sproson, D.; Sahlée, E. Modelling the impact of Baltic Sea upwelling on the atmospheric boundary layer. Tellus A Dyn. Meteorol. Oceanogr. 2014, 66, 24041. [Google Scholar] [CrossRef]
- Renault, L.; Hall, A.; McWilliams, J.C. Orographic shaping of US West Coast wind profiles during the upwelling season. Clim. Dyn. 2016, 46, 273–289. [Google Scholar] [CrossRef]
- Renault, L.; McWilliams, J.C.; Gula, J. Dampening of submesoscale currents by air-sea stress coupling in the californian upwelling system. Sci. Rep. 2018, 8, 13388. [Google Scholar] [CrossRef]
- Cao, Y.; Dong, C.; Uchiyama, Y.; Wang, J.; Yin, X. Multiple-Scale Variations of Wind-Generated Waves in the Southern California Bight. J. Geophys. Res. Oceans 2018, 123, 9340–9356. [Google Scholar] [CrossRef] [Green Version]
- Mao, M.; Xia, M. Wave–current dynamics and interactions near the two inlets of a shallow lagoon–inlet–coastal ocean system under hurricane conditions. Ocean Model. 2018, 129, 124–144. [Google Scholar] [CrossRef]
- Wenegrat, J.; Arthur, R. Response of the atmospheric boundary layer to submesoscale sea surface temperature fronts. Geophys. Res. Lett. 2018, 45, 13–505. [Google Scholar] [CrossRef]
- Shao, M.; Ortiz-Suslow, D.G.; Haus, B.K.; Lund, B.; Williams, N.J.; Özgökmen, T.M.; Laxague, N.J.; Horstmann, J.; Klymak, J.M. The Variability of Winds and Fluxes Observed Near Submesoscale Fronts. J. Geophys. Res. Oceans 2019, 124, 7756–7780. [Google Scholar] [CrossRef]
Exp1 | Exp2 | Exp3 | Exp4 | |
---|---|---|---|---|
Charnock coefficient in WRF | Equation (6) | Equation (8) | Equation (8) | Equation (8) |
Wind forcing for WW3 | from WRF | from WRF | from WRF | from WRF |
SST | ERA-Interim | ERA-Interim | from NEMO | from NEMO |
Surface currents in WRF | 0 | 0 | from NEMO | from NEMO |
Forcing data for NEMO | × | × | from WRF | from WRF |
Stokes drift for NEMO | × | × | 0 | from WW3 |
Wind stress for NEMO | × | × | Equation (20) | |
TKE flux to NEMO | × | × | Equation (18) | Equation (11) |
Roughness length in NEMO | × | × | Equation (19) | Equation (21) |
Currents in WW3 | × | × | 0 | from NEMO |
Water level | × | × | 0 | from NEMO |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.; Shao, M.; Sahlée, E. Impact of Air–Wave–Sea Coupling on the Simulation of Offshore Wind and Wave Energy Potentials. Atmosphere 2020, 11, 327. https://doi.org/10.3390/atmos11040327
Wu L, Shao M, Sahlée E. Impact of Air–Wave–Sea Coupling on the Simulation of Offshore Wind and Wave Energy Potentials. Atmosphere. 2020; 11(4):327. https://doi.org/10.3390/atmos11040327
Chicago/Turabian StyleWu, Lichuan, Mingming Shao, and Erik Sahlée. 2020. "Impact of Air–Wave–Sea Coupling on the Simulation of Offshore Wind and Wave Energy Potentials" Atmosphere 11, no. 4: 327. https://doi.org/10.3390/atmos11040327
APA StyleWu, L., Shao, M., & Sahlée, E. (2020). Impact of Air–Wave–Sea Coupling on the Simulation of Offshore Wind and Wave Energy Potentials. Atmosphere, 11(4), 327. https://doi.org/10.3390/atmos11040327