Consumption of Hydrocarbons and Its Relationship with Ozone Formation in Two Chinese Megacities
Abstract
:1. Introduction
2. Methodology
2.1. Site Description and Instrumentation
2.2. Method of Estimating Consumption of Precursor NMHCs
3. Results and Discussion
3.1. Relationship between Consumed NMHCs and Total Oxidant
3.2. Uncertainties in the Relationship between Oxidant and Precursors
3.3. Absolute Abundance versus Consumed NMHCs and CO
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Hao, J.; Wang, L. Improving urban air quality in China: Beijing case study. J. Air Waste Manag. Assoc. 2005, 55, 1298–1305. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Ding, A.J.; Gao, J.; Wu, W.S. Strong ozone production in urban plumes from Beijing, China. Geophys. Res. Lett. 2006, 33, L21806. [Google Scholar] [CrossRef] [Green Version]
- Beijing Environmental Protection Bureau [BJEPB]. Beijing Communiqué on Environmental Quality, 1998–2006. Available online: http://www.bjee.org.cn (accessed on 21 March 2020).
- Wang, T.; Xue, L.; Brimblecombe, P.; Lam, Y.F.; Li, L.; Zhang, L. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects. Sci. Total Environ. 2017, 575, 1582–1596. [Google Scholar] [CrossRef]
- Lu, X.; Hong, J.; Zhang, L.; Cooper, O.R.; Schultz, M.G.; Xu, X.; Wang, T.; Gao, M.; Zhao, Y.; Zhang, Y. Severe surface ozone pollution in China: A global perspective. Environ. Sci. Technol. Lett. 2018, 5, 487–494. [Google Scholar] [CrossRef]
- Ding, A.J.; Wang, T.; Thouret, V.; Cammas, J.P.; Nedelec, P. Tropospheric ozone climatology over Beijing: Analysis of aircraft data from the MOZAIC program. Atmos. Chem. Phys. 2008, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Poon, C.N.; Kwok, Y.H.; Li, Y.S. Characterizing the temporal variability and emission patterns of pollutant plumes in the Pearl River Delta of China. Atmos. Environ. 2003, 37, 3539–3550. [Google Scholar] [CrossRef]
- Ding, A.; Wang, T.; Zhao, M.; Wang, T.; Li, Z. Simulation of sea-land breezes and a discussion of their implications on the transport of air pollution during a multi-day ozone episode in the Pearl River Delta of China. Atmos. Environ. 2004, 38, 6737–6750. [Google Scholar] [CrossRef]
- Seinfeld, J.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; A Wiley-Interscience Publication: New York, NY, USA, 1998. [Google Scholar]
- Jacob, D.J. Introduction to Atmospheric Chemistry; Princeton University Press: Princeton, NJ, USA, 1999; 266p. [Google Scholar]
- Jin, X.M.; Holloway, T. Spatial and temporal variability of ozone sensitivity over China observed from the Ozone Monitoring Instrument. J. Geophys. Res. Atmos. 2015, 120, 7229–7246. [Google Scholar] [CrossRef]
- Chameides, W.L.; Fehsenfeld, F.; Rodgers, M.O.; Cardelino, C.A.; Martinnez, J.; Parrish, D.; Lonneman, W.; Lawson, D.R.; Rasmussen, R.A.; Zimmerman, P.; et al. Ozone precursor relationships in the ambient atmosphere. J. Geophys. Res. 1992, 97, 6037–6055. [Google Scholar] [CrossRef]
- Cardelino, C.A.; Chameides, W.L. An observation-based model for analyzing ozone precursor relationship in the ambient atmosphere. J. Air Waste Manag. Assoc. 1995, 45, 161–180. [Google Scholar] [CrossRef] [PubMed]
- Cardelino, C.A.; Chameides, W.L. The application of data from photochemical assessment monitoring stations to the observation-based model. Atmos. Environ. 2000, 34, 2325–2332. [Google Scholar] [CrossRef]
- Harley, R.A.; Russell, A.G.; McRae, G.J.; Cass, G.R.; Seinfeld, J.H. Photochemical modeling of the Southern California Air Quality Study. Environ. Sci. Technol. 1993, 27, 378–388. [Google Scholar] [CrossRef]
- Jacobson, M.Z.; Lu, R.; Turco, R.P.; Toon, O.B. Development and application of a new air pollution modeling system-part I: Gas-phase simulations. Atmos. Environ. 1996, 30, 1939–1963. [Google Scholar] [CrossRef]
- Sillman, S.; Logan, J.A.; Wofsy, S.C. The sensitivity of ozone to nitrogen oxides and hydrocarbons in regional ozone episodes. J. Geophys. Res. 1990, 95, 1837–1851. [Google Scholar] [CrossRef]
- Trainer, M.; Parrish, D.D.; Buhr, M.P.; Norton, R.B.; Fehsenfeld, F.C.; Anlauf, K.G.; Bottenheim, J.W.; Tang, Y.Z.; Weibe, H.A.; Roberts, J.M.; et al. Correlation of ozone with NOy in photochemically aged air. J. Geophys. Res. 1993, 98, 2917–2925. [Google Scholar] [CrossRef]
- Lou, S.; Holland, F.; Rohrer, F.; Lu, K.; Bohn, B.; Brauers, T.; Chang, C.C.; Fuchs, H.; Häseler, R.; Kita, K.; et al. Atmospheric OH reactivities in the Pearl River Delta-China in summer 2006: Measurement and model results. Atmos. Chem. Phys. 2010, 10, 11243–11260. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.L.; Wang, C.H.; Lai, C.H.; Chang, C.C.; Liu, Y.; Zhang, Y.; Liu, S.; Shao, M. Characterization of ozone precursors in the Pearl River Delta by time series observation of non-methane hydrocarbons. Atmos. Environ. 2008, 42, 6233–6246. [Google Scholar] [CrossRef]
- Takegawa, N.; Miyakawa, T.; Kondo, Y.; Jimenez, J.L.; Worsnop, D.R.; Fukuda, M. Seasonal and diurnal variations of submicron organic aerosol in Tokyo observed using the Aerodyne Aerosol Mass Spectrometer. J. Geophys. Res. 2006, 111, D11206. [Google Scholar] [CrossRef] [Green Version]
- Chou, C.C.-K.; Tsai, C.-Y.; Shiu, C.-J.; Liu, S.C.; Zhu, T. Measurement of NOy during Campaign of Air Quality Research in Beijing 2006 (CAREBeijing-2006): Implications for the ozone production efficiency of NOx. J. Geophys. Res. 2009, 114, D00G01. [Google Scholar] [CrossRef]
- Lee, B.S.; Wang, J.L. Concentration variation of isoprene and its implications for peak ozone concentration. Atmos. Environ. 2006, 40, 5486–5495. [Google Scholar] [CrossRef]
- Shiu, C.J.; Liu, S.C.; Chang, C.C.; Chen, J.P.; Chou, C.C.K.; Lin, C.Y.; Young, C.Y. Photochemical production of ozone and control strategy for Southern Taiwan. Atmos. Environ. 2007, 41, 9324–9340. [Google Scholar] [CrossRef]
- Monod, A.; Sive, B.C.; Avino, P.; Chen, T.; Blake, D.R.; Rowland, F.S. Monoaromatic compounds in ambient air of various cities: A focus on correlations between the xylenes and ethylbenzene. Atmos. Environ. 2001, 35, 135–149. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, R.; Arey, J. Atmospheric degradation of volatile organic compounds. Chem. Rev. 2003, 103, 4605–4638. [Google Scholar] [CrossRef]
- Nelson, P.F.; Quigley, S.M. The m,p-xylenes: Ethylbenzene ratio. A technique for estimating hydrocarbon age in ambient atmospheres. Atmos. Environ. 1983, 17, 659–662. [Google Scholar] [CrossRef]
- Rappenglück, B.; Fabian, P.; Kalabokas, P.; Viras, L.G.; Ziomas, I.C. Quasi-continuous measurements of non-methane hydrocarbons (NMHC) in the greater Athens area during MECAPHOT-TRACE. Atmos. Environ. 1998, 32, 2103–2121. [Google Scholar] [CrossRef]
- Chang, C.C.; Wang, J.L.; Liu, S.C.; Lung, S.C. Assessment of vehicular and non-vehicular contributions to hydrocarbons using exclusive vehicular indicators. Atmos. Environ. 2006, 40, 6349–6361. [Google Scholar] [CrossRef]
- Bowman, F.; Seinfeld, J. Ozone Productivity of Atmospheric Organics. J. Geophys. Res. 1994, 99, 5309–5324. [Google Scholar] [CrossRef]
- Jeffries, H.E. Photochemical Air Pollution. In Composition, Chemistry, and Climate of the Atmosphere; Singh, H.B., Ed.; Van Nostrand Reinhold: New York, NY, USA, 1995; Section 9.4.1. [Google Scholar]
- Reimann, S.; Pierluigi, C.; Hofer, P. The anthropogenic fraction contribution to isoprene concentrations in a rural atmosphere. Atmos. Environ. 2000, 34, 109–115. [Google Scholar] [CrossRef]
- Borbon, A.; Fontaine, H.; Veillerot, M.; Locoge, N.; Galloo, J.C.; Guillermo, R. An investigation into the traffic-related fraction of isoprene at an urban location. Atmos. Environ. 2001, 35, 3749–3760. [Google Scholar] [CrossRef]
- Guenther, A.; Zimmerman, P.; Harley, P.; Monson, R.; Fall, R. Isoprene and monoterpene emission rate variability: Model evaluation and sensitivity analysis. J. Geophys. Res. 1993, 98, 12609–12617. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, R.A.; Khalil, M.A.K. Isoprene over the Amazon Basin. J. Geophys. Res. 1988, 93, 1417–1421. [Google Scholar] [CrossRef]
- Liu, S.C. Possible effects on tropospheric O3 and OH due to NO emission. Geophys. Res. Lett. 1977, 4, 325–328. [Google Scholar] [CrossRef]
- Levy, H., II; Mahlman, J.D.; Moxim, W.J.; Liu, S.C. Tropospheric ozone: The role of transport. J. Geophys. Res. 1985, 90, 3753–3772. [Google Scholar] [CrossRef] [Green Version]
- Sillman, S. The relation between ozone, NOx, and hydrocarbons in urban and polluted rural environments. Atmos. Environ. 1999, 33, 1821–1845. [Google Scholar] [CrossRef]
- Kleinman, L.I.; Daum, P.H.; Lee, Y.-N.; Nunnermacker, L.J.; Springston, S.R.; Weinstein-Lloyd, J.; Rudolph, J. Ozone production efficiency in an urban area. J. Geophys. Res. 2002, 107, 4733. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Zhang, Y.H.; Fu, J.S.; Zheng, S.Q.; Wang, W. Process analysis of typical summertime ozone episodes over the Beijing area. Sci. Total Environ. 2008, 399, 147–157. [Google Scholar] [CrossRef]
- Lai, C.H.; Chang, C.C.; Shao, M.; Zhang, Y.; Wang, J.L. Emissions of Liquefied Petroleum Gas (LPG) from Motor Vehicles. Atmos. Environ. 2009, 43, 1456–1463. [Google Scholar] [CrossRef]
- Shao, M.; Lu, S.; Liu, Y.; Xie, X.; Chang, C.C.; Huang, S.; Chen, Z. Volatile organic compounds measured in summer in Beijing and their role in ground-level ozone formation. J. Geophys. Res. 2009, 114, D00G06. [Google Scholar] [CrossRef]
- Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 2000, 34, 2063–3101. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.-C.; Yak, H.-K.; Wang, J.-L. Consumption of Hydrocarbons and Its Relationship with Ozone Formation in Two Chinese Megacities. Atmosphere 2020, 11, 326. https://doi.org/10.3390/atmos11040326
Chang C-C, Yak H-K, Wang J-L. Consumption of Hydrocarbons and Its Relationship with Ozone Formation in Two Chinese Megacities. Atmosphere. 2020; 11(4):326. https://doi.org/10.3390/atmos11040326
Chicago/Turabian StyleChang, Chih-Chung, Hwa-Kwang Yak, and Jia-Lin Wang. 2020. "Consumption of Hydrocarbons and Its Relationship with Ozone Formation in Two Chinese Megacities" Atmosphere 11, no. 4: 326. https://doi.org/10.3390/atmos11040326
APA StyleChang, C. -C., Yak, H. -K., & Wang, J. -L. (2020). Consumption of Hydrocarbons and Its Relationship with Ozone Formation in Two Chinese Megacities. Atmosphere, 11(4), 326. https://doi.org/10.3390/atmos11040326