The Value of Ocean Decadal Climate Variability Information to United States Agriculture
Abstract
:1. Introduction
2. Methodology
2.1. Estimating Effects of ODCV Phases
2.2. Finding the Value of ODCV Phase Information
- the uninformed (base) case where all phase combinations are possible and occur with a probability reflective of their historical occurrence ;
- the conditional forecast case whereby the expectation of next year’s phase combination is a probability distribution that is conditional on this year’s phase combination and is based on observed historical transitions from year to year between the eight ODCV phase combinations coupled with the econometric climate and yield forecast results; and
- the perfect forecast case where next year’s phase combination and associated climate/yield information is perfectly identified.
3. Results and Discussion: The Value of ODCV Phase Information
3.1. Findings on Adaptation with Conditional Forecasts
3.2. Findings on Adaptation with Perfect Information
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Appendix A. ODCV Effects on Weather
ODCV Phase Combination | Years 1 |
---|---|
PDO−TAG−WPWP− | 1965, 1971, 1972, 1974, 1975, 1989, 1991, 1994, 2008 |
PDO−TAG−WPWP+ | 1959, 1963, 1968, 1973, 1999, 2000, 2009 |
PDO−TAG+WPWP− | 1955, 1966, 1967, 2001 |
PDO−TAG+WPWP+ | 1950, 1951, 1952, 1953, 1954, 1956, 1961, 1962, 1964, 1969, 1970, 1990, 2007, 2010 |
PDO+TAG−WPWP− | 1977, 1984, 1985, 1986, 1993 |
PDO+TAG−WPWP+ | 1988, 1995, 1996, 2002, 2003 |
PDO+TAG+WPWP− | 1976, 1978, 1979, 1980, 1982, 1983, 1987, 1992, 1997, 2006 |
PDO+TAG+WPWP+ | 1957, 1958, 1960, 1981, 1998, 2004, 2005 |
Appendix B. Estimating Climate and ODCV Effects on Crop Yields
References
- Chen, C.C.; McCarl, B.A.; Adams, R.M. Economic implications of potential ENSO frequency and strength shifts. Clim. Chang. 2001, 49, 147–159. [Google Scholar] [CrossRef]
- Hammer, G.L.; Hansen, J.W.; Phillips, J.G.; Mjelde, J.W.; Hill, H.S.J.; Love, H.A.; Potgieter, A. Advances in applications of climate prediction in agriculture. Agric. Syst. 2001, 70, 515–553. [Google Scholar] [CrossRef]
- Mantua, N.J.; Hare, S.R. The pacific decadal oscillation. J. Oceanogr. 2002, 58, 35–44. [Google Scholar] [CrossRef]
- Partin, J.W.; Cobb, K.M.; Adkins, J.F.; Clark, B.; Fernandez, D.P. Millennial-scale trends in West Pacific Warm Pool hydrology since the last glacial maximum. Nature 2007, 449, 452–455. [Google Scholar] [CrossRef] [PubMed]
- Grossman, I.; Klotzbach, P.J. A review of North Atlantic modes of natural variability and their driving mechanisms. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Mantua, N.J.; Hare, S.R.; Zhang, Y.; Wallace, J.M.; Francis, R.C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 1997, 78, 1069–1079. [Google Scholar] [CrossRef]
- Nigam, S.; Barlow, M.; Berbery, E.H. Analysis links Pacific decadal variability to drought and streamflow in United States. EOS Trans. Am. Geophys. Union 1999, 80, 621–625. [Google Scholar] [CrossRef]
- Miller, A.J.; Schneider, N. Interdecadal climate regime dynamics in the North Pacific Ocean: Theories, observations and ecosystem impacts. Prog. Oceanogr. 2000, 47, 355–379. [Google Scholar] [CrossRef]
- Mehta, V.M.; Rosenberg, N.J.; Mendoza, K. Simulated impacts of three decadal climate variability phenomena on dryland corn and wheat yields in the Missouri River Basin. Agric. For. Meteorol. 2012, 152, 109–124. [Google Scholar] [CrossRef]
- Lukas, R.; Lindstrom, E. The mixed layer of the Western Equatorial Pacific Ocean. J. Geophys. Res. Ocean 1991, 96, 3343–3357. [Google Scholar] [CrossRef]
- Huang, B.; Mehta, V.M. Response of the Indo-Pacific Warm Pool to interannual variations in net atmospheric freshwater. J. Geophys. Res. Ocean 2004, 109. [Google Scholar] [CrossRef]
- Good, P.; Lowe, J.A.; Rowell, D.P. Understanding uncertainty in future projections for the Tropical Atlantic: Relationships with the unforced climate. Clim. Dyn. 2009, 32, 205–218. [Google Scholar] [CrossRef]
- Murphy, J.; Kattsov, V.; Keenlyside, N.; Kimoto, M.; Meehl, G.; Mehta, V.M.; Pohlmann, H.; Scaife, A.; Smith, D. Towards prediction of decadal climate variability and change. Procedia Environ. Sci. 2010, 1, 287–304. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, M.A.; Huang, P.; McCarl, B.A.; Mehta, V.M. Value of decadal climate variability information for agriculture in the Missouri River Basin. Clim. Chang. 2016, 139, 517–533. [Google Scholar] [CrossRef]
- Ding, J. Three Essays on Climate Variability, Water and Agricultural Production. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2014. [Google Scholar]
- Jithitikulchai, T.; McCarl, B.A.; Wu, X.M. Decadal climate variability impacts on climate and crop yields. J. Agric. Appl. Econ. 2019, 51, 104–125. [Google Scholar] [CrossRef] [Green Version]
- Vallorani, R.; Bartolini, G.; Betti, G.; Crisci, A.; Gozzini, B.; Grifoni, D.; Iannuccilli, M.; Messeri, A.; Messeri, G.; Morabito, M.; et al. Circulation type classifications for temperature and precipitation stratification in Italy. Int. J. Climatol. 2018, 38, 915–931. [Google Scholar] [CrossRef]
- Solow, A.R.; Adams, R.M.; Bryant, K.J.; Legler, D.M.; O’Brien, J.J.; McCarl, B.A.; Nayda, W.I.; Weiher, R.F. The value of improved ENSO prediction to US agriculture. Clim. Chang. 1998, 39, 47–60. [Google Scholar] [CrossRef]
- Mjelde, J.W.; Hill, H.S.J. The effect of the use of improved climate forecasts on variable costs, input usage, and production. Agric. Syst. 1999, 60, 213–225. [Google Scholar] [CrossRef]
- Chen, C.C.; McCarl, B.A. The value of ENSO information to agriculture: Consideration of event strength and trade. J. Agric. Resour. Econ. 2000, 25, 368–385. [Google Scholar]
- Hill, H.S.J.; Mjelde, J.W.; Rosenthal, W.; Love, H.A.; Fuller, S.W. Comparing the value of Southern Oscillation index-based climate forecast methods for Canadian and US wheat producers. Agric. For. Meteorol. 2000, 100, 261–272. [Google Scholar] [CrossRef]
- Chen, C.C.; McCarl, B.A.; Hill, H.S.J. Agricultural value of ENSO information under alternative phase definition. Clim. Chang. 2002, 54, 305–325. [Google Scholar] [CrossRef]
- Letson, D.; Podestá, G.P.; Messina, C.D.; Ferreyra, R.A. The uncertain value of perfect ENSO phase forecasts: Stochastic agricultural prices and intra-phase climatic variations. Clim. Chang. 2005, 69, 163–196. [Google Scholar] [CrossRef]
- Kim, M.K.; McCarl, B.A. The agricultural value of information on the North Atlantic Oscillation: Yield and economic effects. Clim. Chang. 2005, 71, 117–139. [Google Scholar] [CrossRef]
- Tack, J.B.; Harri, A.; Coble, K.C. More than mean effects: Modeling the effects of climate on the higher order moments of crop yields. Am. J. Agric. Econ. 2012, 94, 1037–1054. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D.B.; Asseng, S. Comparing estimates of climate change impacts from process-based and statistical crop models. Environ. Res. Lett. 2017, 12, 015001. [Google Scholar] [CrossRef]
- Attavanich, W.; McCarl, B.A. How is CO2 affecting yields and technological progress? A statistical analysis. Clim. Chang. 2014, 124, 747–762. [Google Scholar] [CrossRef]
- Tack, J.B.; Ubilava, D. Climate and agricultural risk: Measuring the effect of ENSO on US crop insurance. Agric. Econ. 2015, 46, 245–257. [Google Scholar] [CrossRef]
- USDA/NASS QuickStats Ad-Hoc Query Tool. Available online: https://quickstats.nass.usda.gov/ (accessed on 1 May 2017).
- NOAA Data Access. Available online: https://www.ncdc.noaa.gov/data-access (accessed on 27 June 2018).
- Baron, R.M.; Kenny, D.A. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Personal. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- Huang, P.; McCarl, B.A. Estimating decadal climate variability effects on crop yields: A bayesian hierarchical approach. In Proceedings of the Agricultural & Applied Economics Association’s 2014 AAEA Annual Meeting, Minneapolis, MN, USA, 27–29 July 2014. [Google Scholar]
- Adams, R.M.; Bryant, K.J.; McCarl, B.A.; Legler, D.M.; O’Brien, J.J.; Solow, A.R.; Weiher, R.F. Value of improved long-range weather information. Contemp. Econ. Policy 1995, 13, 10–19. [Google Scholar] [CrossRef]
- Beach, R.H.; Adams, D.; Alig, R.; Baker, J.; Latta, G.S.; McCarl, B.A.; Murray, B.C.; Rose, S.K.; White, E. Model Documentation for the Forest and Agricultural Sector Optimization Model with Greenhouse Gases (FASOMGHG); RTI International: Research Triangle Park, NC, USA; Available online: http://www.cof.orst.edu/cof/fr/research/tamm/FASOMGHG_Model_Documentation_Aug2010.pdf (accessed on 2 June 2016).
- Lambert, D.K.; McCarl, B.A.; He, Q.; Kaylen, M.S.; Rosenthal, W.; Chang, C.C.; Nayda, W.I. Uncertain yields in sectoral welfare analysis: An application to global warming. J. Agric. Appl. Econ. 1995, 27, 423–436. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, M.A. Decadal Climate Variability: Economic Implications in Agriculture and Water in the Missouri River Basin. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2013. [Google Scholar]
- Lyon, D.J. How do plant populations affect yield. In Press Release from Panhandle Research and Extension Center; Agricultural Research Division of IANR: Lincoln, Nebraska, 2009; Volume 19. [Google Scholar]
- Mendelsohn, R.O.; Nordhaus, W.D.; Shaw, D. The impact of global warming on agriculture: A Ricardian analysis. Am. Econ. Rev. 1994, 84, 753–771. [Google Scholar]
- Schlenker, W.; Roberts, M.J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl. Acad. Sci. USA 2009, 106, 15594–15598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, P. Three Essays on Economic and Societal Implication of Decadal Climate Variability and Fishery Management. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2015. [Google Scholar]
Phase Combination | Frequency |
---|---|
PDO−TAG−WPWP− | 0.148 |
PDO−TAG−WPWP+ | 0.115 |
PDO−TAG+WPWP− | 0.064 |
PDO−TAG+WPWP+ | 0.230 |
PDO+TAG−WPWP− | 0.082 |
PDO+TAG−WPWP+ | 0.082 |
PDO+TAG+WPWP− | 0.164 |
PDO+TAG+WPWP+ | 0.115 |
This Year’s ODCV Phase Combinations | Next Year’s ODCV Phase Combination | |||||||
---|---|---|---|---|---|---|---|---|
PDO− TAG− WPWP− | PDO− TAG− WPWP+ | PDO− TAG+ WPWP− | PDO− TAG+ WPWP+ | PDO+ TAG− WPWP− | PDO+ TAG− WPWP+ | PDO+ TAG+ WPWP− | PDO+ TAG+ WPWP+ | |
PDO−TAG−WPWP− | 0.20 | 0.30 | 0.10 | 0.10 | 0 | 0.10 | 0.20 | 0 |
PDO−TAG−WPWP+ | 0.25 | 0.13 | 0.12 | 0.38 | 0 | 0 | 0 | 0.12 |
PDO−TAG+WPWP− | 0 | 0.25 | 0.25 | 0.25 | 0 | 0.25 | 0 | 0 |
PDO−TAG+WPWP+ | 0.25 | 0.08 | 0.08 | 0.58 | 0 | 0 | 0 | 0.08 |
PDO+TAG−WPWP− | 0.20 | 0 | 0 | 0 | 0.40 | 0 | 0.40 | 0 |
PDO+TAG−WPWP+ | 0.20 | 0 | 0 | 0 | 0 | 0.40 | 0.20 | 0.20 |
PDO+TAG+WPWP− | 0 | 0 | 0 | 0.10 | 0.30 | 0.10 | 0.30 | 0.20 |
PDO+TAG+WPWP+ | 0 | 0.29 | 0 | 0.14 | 0 | 0 | 0.29 | 0.29 |
Crop | PDO− TAG− WPWP− | PDO− TAG− WPWP+ | PDO− TAG+ WPWP− | PDO− TAG+ WPWP+ | PDO+ TAG− WPWP− | PDO+ TAG− WPWP+ | PDO+ TAG+ WPWP− |
---|---|---|---|---|---|---|---|
Corn | −3.47 | 2.94 | 1.84 | 1.07 | 5.89 | 47.48 | −6.97 |
Cotton | −14.30 | 1.08 | −4.94 | 6.43 | 9.18 | 68.15 | −13.38 |
Hay | 2.00 | −1.47 | −1.02 | −4.80 | −2.89 | −5.20 | −1.65 |
Sorghum | −2.08 | −1.90 | −2.67 | 19.46 | −5.59 | −9.65 | −8.57 |
Soybeans | −10.24 | 0.95 | −3.46 | 3.49 | 9.57 | 73.22 | −13.75 |
Spring Wheat | 6.30 | −8.63 | −3.85 | −11.10 | −13.68 | −57.74 | 6.21 |
Winter Wheat | −5.14 | −5.58 | −7.79 | −5.85 | −11.52 | −9.25 | −2.79 |
Region | PDO− TAG− WPWP− | PDO− TAG− WPWP+ | PDO− TAG+ WPWP− | PDO− TAG+ WPWP+ | PDO+ TAG− WPWP− | PDO+ TAG− WPWP+ | PDO+ TAG+ WPWP− | |
---|---|---|---|---|---|---|---|---|
Corn Belt (CB) | Avg. | −18.92 | 17.39 | 1.69 | 18.3 | 11.43 | 26.21 | −21.46 |
Large Inc | 10.29 | 112.89 | 40.86 | 116.76 | 93.87 | 9.03 | 4.97 | |
Large Dec | −75.07 | −6.77 | −19.95 | −11.33 | −33.29 | −64.11 | −70.78 | |
Northern Plains (NP) | Avg. | −17.33 | −4.23 | −15.26 | −9.16 | −0.29 | −33.31 | −18.21 |
Large Inc | 0.8 | 0.01 | -- | 0.52 | 14.52 | -- | -- | |
Large Dec | −35.35 | −10.03 | −31.57 | −28.44 | −30.33 | −47.69 | −28.94 | |
Lake States (LS) | Avg. | −2.11 | 13.56 | 6.41 | 4.82 | 17.86 | −8.16 | 1.23 |
Large Inc | 43.95 | 26.81 | 28.52 | 11.21 | 53.99 | 28.99 | 25.52 | |
Large Dec | −53.89 | −10.21 | −16.23 | −5.27 | -- | −32.87 | −15.83 | |
Northeast (NE) | Avg. | −3.51 | 2.71 | −2.72 | −3.09 | −4.85 | −13.44 | −11.96 |
Large Inc | 3.9 | 10.72 | 19.23 | -- | 3.1 | 5.75 | 1.68 | |
Large Dec | −20.32 | −2.15 | −28.6 | −3.92 | −20.11 | −46.69 | −46.14 | |
Pacific Northwest (PNW) | Avg. | −4.35 | −5.32 | −17.47 | 0.88 | −9.88 | 4.34 | 4.12 |
Large Inc | 9.25 | 3.53 | 3.97 | 8.46 | 5.0 | 15.43 | 9.1 | |
Large Dec | −14.86 | −12.37 | −37.43 | −10.96 | −37.49 | −7.79 | -- | |
Pacific Southwest (PSW) | Avg. | 68.112 | 65.29 | 51.22 | 33.84 | 20.93 | 0.3 | 28.41 |
Large Inc | 150.07 | 88.3 | 147.6 | 96.9 | 53.52 | 54 | 89.81 | |
Large Dec | −7.47 | −7.6 | -- | −13.9 | −2.9 | −61.54 | −11.25 | |
Rocky Mountains (RM) | Avg. | 20.08 | 7.31 | −3.41 | 4.52 | 11.92 | 0.48 | 11.78 |
Large Inc | 48.08 | 26.61 | 3.05 | 29.47 | 24.45 | 7.66 | 28.21 | |
Large Dec | -- | −6.63 | −10.91 | −2.9 | -- | −8.03 | -- | |
South Central (SC) | Avg. | 10.88 | 2.51 | 6.48 | −0.93 | 0.59 | 1.43 | 1.46 |
Large Inc | 28.42 | 17.99 | 22.4 | 86.52 | 52.1 | 7.87 | 8.49 | |
Large Dec | −2.89 | −13.33 | −2.34 | −35.89 | −23.11 | −5.13 | −4.48 | |
Southeast (SE) | Avg. | 17.47 | 5.94 | 0.97 | −5.72 | −16.21 | 1.88 | −1.7 |
Large Inc | 29.43 | 26.9 | 24.7 | 23.98 | 11.43 | 6.22 | 8.58 | |
Large Dec | -- | −4.55 | −14.22 | −35.52 | −44.32 | −5.56 | −14.7 | |
Southwest (SW) | Avg. | −6.84 | −0.19 | 0.3 | 4.64 | 2.27 | −15.65 | −10.17 |
Large Inc | 15.34 | 9.2 | 19.7 | 26.01 | 15.59 | 39.5 | 17.07 | |
Large Dec | −20.94 | −10.57 | −29.63 | −22.49 | −25.24 | −46.01 | −36.16 |
Region | Crop | Acres | Associated Phase Combination | |
---|---|---|---|---|
Corn Belt | Largest Increase | Soybeans | +1,898,380 | PDO−TAG+WPWP− |
Largest Decrease | Corn | −3,062,760 | PDO−TAG+WPWP− | |
Northern Plains | Largest Increase | Sorghum | +463,727 | PDO+TAG−WPWP+ |
Largest Decrease | Corn | −330,174 | PDO+TAG−WPWP+ | |
Lake States | Largest Increase | Soybeans | +536,357 | PDO−TAG−WPWP+ |
Largest Decrease | Corn | −760,309 | PDO−TAG−WPWP+ | |
Northeast | Largest Increase | Hay | +123,480 | PDO+TAG−WPWP+ |
Largest Decrease | Hay | −119,949 | PDO−TAG+WPWP− | |
Pacific Northwest | Largest Increase | Winter Wheat | +45,038 | PDO−TAG−WPWP+ |
Largest Decrease | Winter Wheat | −48,846 | PDO+TAG+WPWP+ | |
Pacific Southwest | Largest Increase | Cotton | +488 | PDO+TAG−WPWP+ |
Largest Decrease | Hay | −2115 | PDO−TAG+WPWP− | |
Rocky Mountain | Largest Increase | Winter Wheat | +285,184 | PDO−TAG−WPWP− |
Largest Decrease | Winter Wheat | −245,754 | PDO+TAG+WPWP+ | |
South Central | Largest Increase | Sorghum | +633,398 | PDO+TAG+WPWP+ |
Largest Decrease | Soybeans | −446,008 | PDO+TAG−WPWP− | |
Southeast | Largest Increase | Cotton | +275,704 | PDO−TAG+WPWP− |
Largest Decrease | Soybeans | −103,574 | PDO−TAG−WPWP+ | |
Southwest | Largest Increase | Sorghum | +692,791 | PDO−TAG+WPWP− |
Largest Decrease | Hay | −518,744 | PDO−TAG−WPWP+ |
Region | Crop | Acres | Associated Phase Combination | |
---|---|---|---|---|
Corn Belt | Largest Increase | Soybeans | +1,898,380 | PDO−TAG−WPWP+ |
Largest Decrease | Corn | −3,062,760 | PDO−TAG−WPWP+ | |
Northern Plains | Largest Increase | Sorghum | +2,310,197 | PDO−TAG+WPWP+ |
Largest Decrease | Corn | −1,649,292 | PDO−TAG+WPWP+ | |
Lake States | Largest Increase | Soybeans | +616,836 | PDO−TAG−WPWP− |
Largest Decrease | Corn | −882,351 | PDO−TAG−WPWP− | |
Northeast | Largest Increase | Hay | +140,865 | PDO+TAG−WPWP+ |
Largest Decrease | Hay | −119,949 | PDO−TAG−WPWP+ | |
Pacific Northwest | Largest Increase | Winter Wheat | +99,420 | PDO−TAG−WPWP− |
Largest Decrease | Hay | −110,076 | PDO+TAG−WPWP+ | |
Pacific Southwest | Largest Increase | Cotton | +167,175 | PDO−TAG−WPWP− |
Largest Decrease | Hay | −70,403 | PDO−TAG−WPWP− | |
Rocky Mountain | Largest Increase | Winter Wheat | +665,210 | PDO+TAG−WPWP− |
Largest Decrease | Hay | −538,082 | PDO−TAG+WPWP+ | |
South Central | Largest Increase | Cotton | +579,212 | PDO−TAG+WPWP+ |
Largest Decrease | Soybeans | −715,284 | PDO−TAG+WPWP+ | |
Southeast | Largest Increase | Cotton | +1,411,396 | PDO+TAG−WPWP− |
Largest Decrease | Corn | −1,244,977 | PDO+TAG−WPWP− | |
Southwest | Largest Increase | Sorghum | +1,024,023 | PDO−TAG+WPWP+ |
Largest Decrease | Hay | −1,055,953 | PDO−TAG+WPWP+ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rhodes, L.A.; McCarl, B.A. The Value of Ocean Decadal Climate Variability Information to United States Agriculture. Atmosphere 2020, 11, 318. https://doi.org/10.3390/atmos11040318
Rhodes LA, McCarl BA. The Value of Ocean Decadal Climate Variability Information to United States Agriculture. Atmosphere. 2020; 11(4):318. https://doi.org/10.3390/atmos11040318
Chicago/Turabian StyleRhodes, Lauren A., and Bruce A. McCarl. 2020. "The Value of Ocean Decadal Climate Variability Information to United States Agriculture" Atmosphere 11, no. 4: 318. https://doi.org/10.3390/atmos11040318
APA StyleRhodes, L. A., & McCarl, B. A. (2020). The Value of Ocean Decadal Climate Variability Information to United States Agriculture. Atmosphere, 11(4), 318. https://doi.org/10.3390/atmos11040318