Horizontal Temperature Fluxes in the Arctic in CMIP5 Model Results Analyzed with Self-Organizing Maps
Abstract
:1. Introduction
2. Method and Data
2.1. CMIP5 Model Data
2.2. Self-Organizing Maps
3. Results
3.1. Historical Patterns
3.2. RCP8.5 Patterns
3.3. Mean Pathway Occurrence Frequencies
3.4. Pathway Occurrence Frequency Trends
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stroeve, J.C.; Serreze, M.C.; Holland, M.M.; Kay, J.E.; Malanik, J.; Barrett, A.P. The Arctic’s rapidly shrinking sea ice cover: A research synthesis. Clim. Chang. 2012, 110, 1005–1027. [Google Scholar] [CrossRef] [Green Version]
- Wendisch, M.; Brückner, M.; Burrows, J.; Crewell, S.; Dethloff, K.; Ebell, K.; Lüpkes, C.; Macke, A.; Notholt, J.; Quaas, J.; et al. Understanding causes and effects of rapid warming in the Arctic. EOS 2017, 98, 22–26. [Google Scholar] [CrossRef]
- Cohen, J.; Zhang, X.; Francis, J.; Jung, T.; Kwok, R.; Overland, J.; Ballinger, T.; Bhatt, U.; Chen, H.; Coumou, D.; et al. Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Clim. Chang. 2020. [Google Scholar] [CrossRef]
- Gillett, N.P.; Zwiers, F.W.; Weaver, A.J.; Stott, P.A. Detection of human influence on sea-level pressure. Nature 2003, 422, 292. [Google Scholar] [CrossRef]
- Screen, J.A.; Deser, C.; Simmonds, I.; Tomas, R. Atmospheric impacts of Arctic sea-ice loss, 1979–2009: Separating forced change from atmospheric internal variability. Clim. Dyn. 2014, 43, 333–344. [Google Scholar] [CrossRef] [Green Version]
- Barnes, E.A.; Polvani, L.M. CMIP5 Projections of Arctic Amplification, of the North American/North Atlantic Circulation, and of Their Relationship. J. Clim. 2015, 28, 5254–5271. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Amer. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Feldl, N.; Bordoni, S. Characterizing the Hadley Circulation Response through Regional Climate Feedbacks. J. Clim. 2016, 29, 613–622. [Google Scholar] [CrossRef]
- Hou, A.Y. Hadley Circulation as a Modulator of the Extratropical Climate. J. Atmos. Sci. 1998, 55, 2437–2457. [Google Scholar] [CrossRef]
- Rind, D. Latitudinal temperature gradients and climate change. J. Geophys. Res. Atmos. 1998, 103, 5943–5971. [Google Scholar] [CrossRef]
- Vallis, G.K.; Zurita-Gotor, P.; Cairns, C.; Kidston, J. Response of the large-scale structure of the atmosphere to global warming. Q. J. R. Meteorol. Soc. 2015, 141, 1479–1501. [Google Scholar] [CrossRef] [Green Version]
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim. Chang. 2011, 109, 33. [Google Scholar] [CrossRef] [Green Version]
- Geoffroy, O.; Saint-Martin, D.; Voldoire, A. Land-sea warming contrast: The role of the horizontal energy transport. Clim. Dyn. 2015, 45, 3493–3511. [Google Scholar] [CrossRef]
- Kjellsson, J. Weakening of the global atmospheric circulation with global warming. Clim. Dyn. 2015, 45, 975–988. [Google Scholar] [CrossRef] [Green Version]
- Cassano, J.J.; Petteri, U.; Amanda, L. Changes in synoptic weather patterns in the polar regions in the twentieth and twenty-first centuries, part 1: Arctic. Int. J. Climatol. 2006, 26, 1027–1049. [Google Scholar] [CrossRef]
- Liu, Y.; Weisberg, R.H.; Mooers, C.N.K. Performance evaluation of the self-organizing map for feature extraction. J. Geophys. Res. Oceans 2006, 111, C05018. [Google Scholar] [CrossRef]
- Skific, N.; Francis, J.A.; Cassano, J.J. Attribution of projected changes in atmospheric moisture transport in the Arctic: A self-organizing map perspective. J. Clim. 2009, 22, 4135–4153. [Google Scholar] [CrossRef]
- Liu, Y.; Weisberg, R.H. A Review of Self-Organizing Map Applications in Meteorology And Oceanography; InTech: London, UK, 2011; Chapter 13. [Google Scholar] [CrossRef] [Green Version]
- Lynch, A.H.; Serreze, M.C.; Cassano, E.N.; Crawford, A.D.; Stroeve, J. Linkages between Arctic summer circulation regimes and regional sea ice anomalies. J. Geophys. Res. Atmos. 2016, 121, 7868–7880. [Google Scholar] [CrossRef] [Green Version]
- Mewes, D.; Jacobi, C. Heat transport pathways into the Arctic and their connections to surface air temperatures. Atmos. Chem. Phys. 2019, 19, 3927–3937. [Google Scholar] [CrossRef] [Green Version]
- Rinke, A.; Knudsen, E.M.; Mewes, D.; Dorn, W.; Handorf, D.; Dethloff, K.; Moore, J.C. Arctic Summer Sea Ice Melt and Related Atmospheric Conditions in Coupled Regional Climate Model Simulations and Observations. J. Geophys. Res. Atmos. 2019, 124, 6027–6039. [Google Scholar] [CrossRef]
- Kohonen, T. The self-organizing map. Neurocomputing 1998, 21, 1–6. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Yukimoto, S.; Adachi, Y.; Hosaka, M.; Sakami, T.; Yoshimura, H.; Hirabara, M.; Tanaka, T.Y.; Shindo, E.; Tsujino, H.; Deushi, M.; et al. A new global climate model of the Meteorological Research Institute: MRI-CGCM3—Model description and basic performance—. J. Meteorol. Soc. Japan. Ser. II 2012, 90, 23–64. [Google Scholar] [CrossRef] [Green Version]
- Collins, W.D.; Bitz, C.M.; Blackmon, M.L.; Bonan, G.B.; Bretherton, C.S.; Carton, J.A.; Chang, P.; Doney, S.C.; Hack, J.J.; Henderson, T.B.; et al. The Community Climate System Model Version 3 (CCSM3). J. Clim. 2006, 19, 2122–2143. [Google Scholar] [CrossRef]
- Vichi, M.; Manzini, E.; Fogli, P.G.; Alessandri, A.; Patara, L.; Scoccimarro, E.; Masina, S.; Navarra, A. Global and regional ocean carbon uptake and climate change: Sensitivity to a substantial mitigation scenario. Clim. Dyn. 2011, 37, 1929–1947. [Google Scholar] [CrossRef]
- Davini, P.; Cagnazzo, C.; Fogli, P.G.; Manzini, E.; Gualdi, S.; Navarra, A. European blocking and Atlantic jet stream variability in the NCEP/NCAR reanalysis and the CMCC-CMS climate model. Clim. Dyn. 2014, 43, 71–85. [Google Scholar] [CrossRef]
- Watanabe, S.; Hajima, T.; Sudo, K.; Nagashima, T.; Takemura, T.; Okajima, H.; Nozawa, T.; Kawase, H.; Abe, M.; Yokohata, T.; et al. MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 2011, 4, 845. [Google Scholar] [CrossRef] [Green Version]
- Collins, W.J.; Bellouin, N.; Doutriaux-Boucher, M.; Gedney, N.; Halloran, P.; Hinton, T.; Hughes, J.; Jones, C.D.; Joshi, M.; Liddicoat, S.; et al. Development and evaluation of an Earth-System model–HadGEM2. Geosci. Model Dev. 2011, 4, 1051–1075. [Google Scholar] [CrossRef] [Green Version]
- Stevens, B.; Giorgetta, M.; Esch, M.; Mauritsen, T.; Crueger, T.; Rast, S.; Salzmann, M.; Schmidt, H.; Bader, J.; Block, K.; et al. Atmospheric component of the MPI-M Earth System Model: ECHAM6. J. Adv. Model. Earth Syst. 2013, 5, 146–172. [Google Scholar] [CrossRef]
- Charlton-Perez, A.J.; Baldwin, M.P.; Birner, T.; Black, R.X.; Butler, A.H.; Calvo, N.; Davis, N.A.; Gerber, E.P.; Gillett, N.; Hardiman, S.; et al. On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J. Geophys. Res. Atmos. 2013, 118, 2494–2505. [Google Scholar] [CrossRef]
- Romanowsky, E.; Handorf, D.; Jaiser, R.; Wohltmann, I.; Dorn, W.; Ukita, J.; Cohen, J.; Dethloff, K.; Rex, M. The role of stratospheric ozone for Arctic-midlatitude linkages. Sci. Rep. 2019, 9, 7962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samtleben, N.; Jacobi, C.; Pišoft, P.; Šácha, P.; Kuchař, A. Effect of latitudinally displaced gravity wave forcing in the lower stratosphere on the polar vortex stability. Ann. Geophys. 2019, 37, 507–523. [Google Scholar] [CrossRef] [Green Version]
- Sorokina, S.A.; Esau, I.N. Meridional energy flux in the Arctic from data of the radiosonde archive IGRA. Izv. Atmos. Ocean. Phys. 2011, 47, 572. [Google Scholar] [CrossRef] [Green Version]
- Tebaldi, C.; Knutti, R. The use of the multi-model ensemble in probabilistic climate projections. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 2053–2075. [Google Scholar] [CrossRef] [PubMed]
- Reusch, D.B.; Alley, R.B.; Hewitson, B.C. Relative Performance of Self-Organizing Maps and Principal Component Analysis in Pattern Extraction from Synthetic Climatological Data. Polar Geogr. 2005, 29, 188–212. [Google Scholar] [CrossRef]
- Wittek, P.; Gao, S.C.; Lim, I.S.; Zhao, L. Somoclu: An efficient distributed library for self-organizing maps. J. Stat. Softw. 2017, 78, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Mewes, D.; Jacobi, C. Analyzing Arctic surface temperatures with Self-Organiying Maps: Influence of the maps size Wiss. Mitteilungen Aus Dem Inst. FüR Meteorol. Der Univ. Leipz. 2018, 23, 45–52. [Google Scholar]
- Mattingly, K.S.; Ramseyer, C.A.; Rosen, J.J.; Mote, T.L.; Muthyala, R. Increasing water vapor transport to the Greenland Ice Sheet revealed using self-organizing maps. Geophys. Res. Lett. 2016, 43, 9250–9258. [Google Scholar] [CrossRef]
- Higgins, E.M.; Cassano, J.J. Impacts of reduced sea ice on winter Arctic atmospheric circulation, precipitation, and temperature. J. Geophys. Res. Atmos. 2009, 114, D16107. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, A.; Hirschberg, J. V-measure: A conditional entropy-based external cluster evaluation measure. In Proceedings of the 2007 Joint Conference on Empirical Methods In Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), Prague, Czech Republic, 28–30 June 2007; pp. 410–420. [Google Scholar] [CrossRef]
- Overland, J.E.; Wood, K.R.; Wang, M. Warm Arctic—Cold continents: Climate impacts of the newly open Arctic Sea. Polar Res. 2011, 30, 15787. [Google Scholar] [CrossRef]
- Nygård, T.; Graversen, R.G.; Uotila, P.; Naakka, T.; Vihma, T. Strong dependence of wintertime Arctic moisture and cloud distributions on atmospheric large-scale circulation. J. Clim. 2019, 32, 8771–8790. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, K.Y. Relative role of horizontal and vertical processes in the physical mechanism of wintertime Arctic amplification. Clim. Dyn. 2019, 52, 6097–6107. [Google Scholar] [CrossRef] [Green Version]
- Scoccimarro, E.; Gualdi, S.; Bellucci, A.; Zampieri, M.; Navarra, A. Heavy Precipitation Events in a Warmer Climate: Results from CMIP5 Models. J. Clim. 2013, 26, 7902–7911. [Google Scholar] [CrossRef]
- Zappa, G.; Shaffrey, L.C.; Hodges, K.I. The Ability of CMIP5 Models to Simulate North Atlantic Extratropical Cyclones. J. Clim. 2013, 26, 5379–5396. [Google Scholar] [CrossRef]
- Vihma, T.; Graversen, R.; Chen, L.; Handorf, D.; Skific, N.; Francis, J.A.; Tyrrell, N.; Hall, R.; Hanna, E.; Uotila, P.; et al. Effects of the tropospheric large-scale circulation on European winter temperatures during the period of amplified Arctic warming. Int. J. Climatol. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furtado, J.C.; Cohen, J.L.; Butler, A.H.; Riddle, E.E.; Kumar, A. Eurasian snow cover variability and links to winter climate in the CMIP5 models. Clim. Dyn. 2015, 45, 2591–2605. [Google Scholar] [CrossRef]
- Baldwin, M.P.; Dunkerton, T.J. Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res. Atmos. 1999, 104, 30937–30946. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Hanna, E.; Cropper, T.E.; Jones, P.D.; Scaife, A.A.; Allan, R. Recent seasonal asymmetric changes in the NAO (a marked summer decline and increased winter variability) and associated changes in the AO and Greenland Blocking Index. Int. J. Climatol. 2015, 35, 2540–2554. [Google Scholar] [CrossRef]
- Belleflamme, A.; Fettweis, X.; Lang, C.; Erpicum, M. Current and future atmospheric circulation at 500 hPa over Greenland simulated by the CMIP3 and CMIP5 global models. Clim. Dyn. 2013, 41, 2061–2080. [Google Scholar] [CrossRef]
- García-Serrano, J.; Frankignoul, C.; King, M.P.; Arribas, A.; Gao, Y.; Guemas, V.; Matei, D.; Msadek, R.; Park, W.; Sanchez-Gomez, E. Multi-model assessment of linkages between eastern Arctic sea-ice variability and the Euro-Atlantic atmospheric circulation in current climate. Clim. Dyn. 2017, 49, 2407–2429. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Overland, J.E. A sea ice free summer Arctic within 30 years: An update from CMIP5 models. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Stroeve, J.C.; Kattsov, V.; Barrett, A.; Serreze, M.; Pavlova, T.; Holland, M.; Meier, W.N. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Deser, C.; Tomas, R.A. Mechanisms of Stratospheric and Tropospheric Circulation Response to Projected Arctic Sea Ice Loss. J. Clim. 2015, 28, 7824–7845. [Google Scholar] [CrossRef]
- Yu, L.; Zhong, S.; Zhou, M.; Lenschow, D.H.; Sun, B. Revisiting the Linkages between the Variability of Atmospheric Circulations and Arctic Melt-Season Sea Ice Cover at Multiple Time Scales. J. Clim. 2019, 32, 1461–1482. [Google Scholar] [CrossRef]
- Chylek, P.; Klett, J.D.; Dubey, M.K.; Hengartner, N. The role of Atlantic Multi-decadal Oscillation in the global mean temperature variability. Clim. Dyn. 2016, 47, 3271–3279. [Google Scholar] [CrossRef] [Green Version]
CMIP5 Model ID | Institution | Horizontal Res. () | Latitude Res. (km) | Longitude Res. (km) | |
---|---|---|---|---|---|
MRI-CGCM3 | MRI, Japan | Yukimoto et al. [24] | 1.1×1.1 | 120 | 120 |
GFDL-CM3 | NOAA GDFL, USA | Collins et al. [25] | 2.5×2.0 | 275 | 220 |
CMCC-CESM | CMCC, Italy | Vichi et al. [26] | 3.7×3.7 | 410 | 410 |
CMCC-CMS | CMCC, Italy | Davini et al. [27] | 1.9×1.9 | 210 | 210 |
MIROC-ESM | JAMSTEC, Japan | Watanabe et al. [28] | 2.8×2.8 | 310 | 310 |
HadGEM2-CC | MOHC, UK | Collins et al. [29] | 1.9×1.2 | 210 | 130 |
MPI-ESM-LR | MPI-M, Germany | Stevens et al. [30] | 1.9×1.9 | 210 | 210 |
MPI-ESM-MR | MPI-M, Germany | Stevens et al. [30] | 1.9×1.9 | 210 | 210 |
Pathway | MRI-CGCM3 | GFDL-CM3 | CMCC-CESM | CMCC-CMS | MIROC-ESM | HadGEM2-CC | MPI-ESM-LR | MPI-ESM-MR | Mean |
---|---|---|---|---|---|---|---|---|---|
historical | |||||||||
Atlantic | 23.27 | 30.76 | 26.32 | 17.00 | 8.73 | 24.95 | 24.68 | 17.88 | 21.70 |
Continental | 43.25 | 25.99 | 25.62 | 43.09 | 41.97 | 33.16 | 44.84 | 38.91 | 37.11 |
Pacific | 24.98 | 26.86 | 15.79 | 31.68 | 24.29 | 7.63 | 21.86 | 35.09 | 23.52 |
Misc. | 8.49 | 16.38 | 32.27 | 8.23 | 25.01 | 34.27 | 8.62 | 8.13 | 17.68 |
RCP8.5 based on historical minus historical | |||||||||
Atlantic | −2.86 | −5.40 | −1.36 | −1.11 | −1.37 | 0.04 | −0.32 | −0.60 | −1.62 |
Continental | −4.62 | 0.54 | 0.82 | 6.17 | 3.94 | 1.46 | 1.49 | −3.25 | 0.82 |
Pacific | 5.94 | 3.70 | 0.79 | −3.60 | −6.43 | 0.50 | −0.36 | 0.68 | 0.15 |
Misc. | 1.54 | 1.15 | −0.25 | −1.47 | 3.85 | −2.00 | −0.80 | 3.17 | 0.65 |
RCP8.5 minus historical | |||||||||
Atlantic | 7.39 | −4.57 | 7.31 | −0.85 | 16.54 | 1.09 | 1.27 | 8.07 | 4.53 |
Continental | −22.88 | 13.33 | 2.12 | 8.10 | −14.61 | −8.43 | −20.46 | −14.53 | −7.17 |
Pacific | 7.61 | −1.46 | 16.59 | −15.47 | −9.15 | 17.84 | 10.09 | −3.14 | 2.86 |
Misc. | 7.89 | −7.30 | −26.02 | 8.22 | 7.22 | −10.50 | 9.11 | 9.61 | −0.22 |
Model | V-measure | Homogeneity | Completeness |
---|---|---|---|
MRI-CGCM3 | 0.43 | 0.43 | 0.42 |
GFDL-CM3 | 0.40 | 0.41 | 0.40 |
CMCC-CESM | 0.40 | 0.40 | 0.40 |
CMCC-CMS | 0.39 | 0.39 | 0.39 |
MIROC-ESM | 0.37 | 0.37 | 0.36 |
HadGEM2-CC | 0.38 | 0.38 | 0.38 |
MPI-ESM-LR | 0.48 | 0.48 | 0.48 |
MPI-ESM-MR | 0.42 | 0.42 | 0.41 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mewes, D.; Jacobi, C. Horizontal Temperature Fluxes in the Arctic in CMIP5 Model Results Analyzed with Self-Organizing Maps. Atmosphere 2020, 11, 251. https://doi.org/10.3390/atmos11030251
Mewes D, Jacobi C. Horizontal Temperature Fluxes in the Arctic in CMIP5 Model Results Analyzed with Self-Organizing Maps. Atmosphere. 2020; 11(3):251. https://doi.org/10.3390/atmos11030251
Chicago/Turabian StyleMewes, Daniel, and Christoph Jacobi. 2020. "Horizontal Temperature Fluxes in the Arctic in CMIP5 Model Results Analyzed with Self-Organizing Maps" Atmosphere 11, no. 3: 251. https://doi.org/10.3390/atmos11030251
APA StyleMewes, D., & Jacobi, C. (2020). Horizontal Temperature Fluxes in the Arctic in CMIP5 Model Results Analyzed with Self-Organizing Maps. Atmosphere, 11(3), 251. https://doi.org/10.3390/atmos11030251