Internal Model Variability of the Regional Coupled System Model GCOAST-AHOI
Abstract
:1. Introduction
2. Models, Experimental Design, and Data
2.1. Models
2.1.1. Atmospheric Model CCLM
2.1.2. Hydrological Discharge Model HD
2.1.3. The Ocean-Sea Ice Model NEMO-LIM3
2.2. Experimental Design
2.3. Observational and Reanalysis Data Sets
3. Results
3.1. Pressure and Wind
3.2. Temperature and Energy
3.2.1. Temperature
3.2.2. Energy Balance
3.3. Clouds, Precipitation, Runoff and Salinity
3.3.1. Clouds
3.3.2. Precipitation, Runoff, and Salinity
4. Discussions and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AHOI | Atmosphere, Hydrology, Ocean and Sea Ice |
ATM | Atmosphere |
CCLM | COSMO-CLM (see below) |
CMEMS | Copernicus Marine Environment Monitoring Service |
CLCH | High cloud cover |
CLCM | Medium cloud cover |
CLCL | Low cloud cover |
CLCT | Total cloud cover |
CORDEX | COordinated Regional climate Downscaling EXperiment |
COSMO-CLM | Consortium for Small-Scale Modelling – Climate version of Local Model |
CPL | Coupling |
ECHAM5 | ECMWF Hamburg model vs. 5 |
ECMWF | European Centre for Medium-Range Weather Forecasts |
EOBSv18.0 | European OBServations vs. 18.0 |
ERA5 | ECMWF Re-Analysis |
ESM | Earth System Model |
EUMETSAT | European Organisation for the Exploitation of Meteorological Satellites |
EURO-CORDEX | CORDEX (see above) for Europe |
FOAM-AMM7 | Forecasting Ocean Assimilation Model 7km Atlantic Margin model |
FRS | Flather Radiation Scheme |
GCM | Global Climate Model |
GCOAST | Geesthacht Coupled cOAstal model SysTem |
HD model | Hydrological Discharge model |
LHFL | Latent heat flux |
LIM3 | Louvain-la-neuve sea-Ice Model vs. 3 |
LWDN | Surface longwave downward radiation (LWDN) |
MCT | Model Coupling Toolkit |
MPI-ESM | Max-Planck-Institute Earth System Model |
MPIOM | Max-Planck-Institute Ocean Model |
MSLP | Mean sea level pressure |
NCEP/NCAR | National Centers for Environmental Prediction/National Center for Atmospheric Research |
NEMO | Nucleus for European Modelling of the Ocean |
NEMO_Nordic | NEMO version set up for Northern Europe |
NoEU | North Europe |
NwgSea | Norwegian Sea |
OASIS | Ocean Atmosphere Sea Ice Soil |
OASIS3 | OASIS coupler vs. 3 |
RCAO4 | The coupled Rossby Centre Atmosphere-Ocean model vs. 4 |
RCM | Regional Climate Model |
RegCM-ES | Regional Climate Model – Earth System |
REGNIE | Regionalisierte Niederschlagshöhen (Regionalized precipitation) |
REMO | REgional MOdel |
ROM | REMO-OASIS-MPIOM |
ROMS | Regional Ocean Modeling System |
RTTOV | Radiative Transfer for the Tiros Operational Vertical Sounder |
SD | Standard Deviation (Spread) |
SHFL | Sensible heat flux |
SN | Spectral Nudging |
SoEU | South Europe |
SUR | Surface |
T_2M | 2-m height air temperature |
TERRA | Soil model of CCLM |
TOA | Top Of the Atmosphere |
TOT_PREC | Total precipitation |
TPXOv8 | A version of global ocean tide models of Oregon State University Tidal Inversion |
T_S | Surface temperature |
TRIMNP | Tidal Residual and Intertidal Mudflat – Nested and Parallel |
U_10M | 10-m height u-wind component |
V_10M | 10-m height v-wind component |
WAM | Wave Model |
References
- Giorgi, F. Regionalization of climate change information for impact assessment and adaptation. WMO Bull. 2008, 57, 86–92. [Google Scholar]
- Tebaldi, C.; Knutti, R. The use of the multi-model ensemble in probabilistic climate projections. Philos. T. Roy. Soc. A 2007, 365, 2053–2075. [Google Scholar] [CrossRef] [PubMed]
- Deser, C.; Phillips, A.; Bourdette, V.; Teng, H. Uncertainty in climate change projections: The role of internal variability. Climate Dyn. 2012, 38, 527–546. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Global Warming of 1.5°C. an Ipcc Special Report on the Impacts of Global Warming of 1.5°C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. in press. 2018. Available online: https://www.ipcc.ch/sr15/ (accessed on 22 February 2020).
- Hasselmann, K. Stochastic climate models part I. Theory. Tellus 1976, 28, 473–485. [Google Scholar] [CrossRef] [Green Version]
- Libardoni, A.G.; Forest, C.E.; Sokolov, A.P.; Monier, E. Underestimating Internal Variability Leads to Narrow Estimates of Climate System Properties. Geophys. Res. Lett. 2019, 46, 10000–10007. [Google Scholar] [CrossRef] [Green Version]
- Sieck, K. Internal Variability in the Regional Climate Model REMO. Ph.D. Thesis, Hamburg University, Hamburg, Germany, 2013. [Google Scholar]
- Feser, F.; Barcikowska, M. The influence of spectral nudging on typhoon formation in regional climate models. Environ. Res. Lett. 2012, 7, 014024. [Google Scholar] [CrossRef]
- Sieck, K.; Jacob, D. Influence of the boundary forcing on the internal variability of a regional climate model. Amer. J. Clim. Chang. 2016, 5, 373–382. [Google Scholar] [CrossRef] [Green Version]
- Weisse, R.; Feser, F. Evaluation of a method to reduce uncertainty in wind hindcasts performed with regional atmosphere models. Coastal Eng. 2003, 48, 211–225. [Google Scholar] [CrossRef]
- Laprise, R.; Kornic, D.; Rapaic, M.; Šeparovic, L.; Leduc, M.; Nikiema, O.; Luca, A.D.; Diaconescu, E.; Alexandru, A.; Lucas-Picher, P.; et al. Considerations of domain size and large-scale driving for nested regional climate models: Impact on internal variability and ability at developing small-scale details. Clim. Chang. 2012, 181–199. [Google Scholar] [CrossRef]
- Giorgi, F.; Bi, X. A study of internal variability of a regional climate model. J. Geophys. Res. Atmos. 2000, 105, 29503–29521. [Google Scholar] [CrossRef]
- Sanchez-Gomez, E.; Somot, S. Impact of the internal variability on the cyclone tracks simulated by a regional climate model over the Med-CORDEX domain. Climate Dynamics 2018, 51, 1005–1021. [Google Scholar] [CrossRef] [Green Version]
- Déqué, M.; Rowell, D.P.; Luthi, D.; Giorgi, F.; Christensen, J.H.; Rockel, B.; Jacob, D.; Kjellstrom, E.; de Castro, M.; van den Hurk, B. An intercomparison of regional climate simulations for Europe: Assessing uncertainties in model projections. Clim. Chang. 2007, 81, 53–70. [Google Scholar] [CrossRef]
- Braun, M.; Caya, D.; Frigon, A.; Slivitzky, M. Internal variability of the Canadian RCM’s hydrological variables at the basin scale in Quebec and Labrador. J. Hydrometeorol. 2012, 13, 443–462. [Google Scholar] [CrossRef]
- Giorgi, F. Thirty Years of Regional Climate Modeling: Where Are We and Where Are We Going next? J. Geophys. Res. Atmos. 2019. [Google Scholar] [CrossRef] [Green Version]
- Christensen, O.B.; Gaertner, M.A.; Prego, J.A.; Polcher, J. Internal variability of regional climate models. Climate Dyn. 2001, 17, 875–887. [Google Scholar] [CrossRef]
- Caya, D.; Biner, S. Internal variability of RCM simulations over an annual cycle. Climate Dyn. 2004, 22, 33–46. [Google Scholar] [CrossRef]
- Rinke, A.; Dethloff, K. On the sensitivity of a regional Arctic climate model to initial and boundary conditions. Climate Res. 2000, 14, 101–113. [Google Scholar] [CrossRef] [Green Version]
- Lucas-Picher, P.; Caya, D.; de Elía, R.; Laprise, R. Investigation of regional climate models’ internal variability with a ten-member ensemble of 10-year simulations over a large domain. Climate Dyn. 2008, 31, 927–940. [Google Scholar] [CrossRef]
- Alexandru, A.; de Elía, R.; Laprise, R. Internal variability in regional climate downscaling at the seasonal scale. Mon. Weather Rev. 2007, 135, 3221–3238. [Google Scholar] [CrossRef] [Green Version]
- Meier, H.; Döscher, R. Simulated water and heat cycles of the Baltic Sea using a 3D coupled atmosphere-ice-ocean model. Boreal Environ. Res. 2002, 50, 2637–2659. [Google Scholar] [CrossRef] [Green Version]
- Dubois, C.; Somot, S.; Calmanti, S.; Carillo, A.; Déqué, M.; Dell’Aquilla, A.; Elizalde, A.; Gualdi, S.; Jacob, D.; L’Hévéder, B.; et al. Future projections of the surface heat and water budgets of the Mediterranean Sea in an ensemble of coupled atmosphere-ocean regional climate models. Climate Dyn. 2012, 39, 1859–1884. [Google Scholar] [CrossRef]
- Mathis, M.; Elizalde, A.; Mikolajewicz, U. Which complexity of regional climate system models is essential for downscaling anthropogenic climate change in the Northwest European shelf? Climate Dyn. 2017, 7, 327–334. [Google Scholar] [CrossRef] [Green Version]
- Bülow, K.; Dietrich, C.; Elizalde, A.; Gröger, M.; Heinrich, H.; Hüttl-Kabos, S.; Klein, B.; Mayer, B.; Meier, H.; Mikolajewicz, U.; et al. Comparison of Three Regional Coupled Ocean Atmosphere Models for the North Sea under Today’s and Future Climate Conditions; KLIWAS Schriftenreihe KLIWAS-27/2014; Bundesanstalt für Gewasserkunde: Koblenz, Germany, 2014. [Google Scholar]
- Dieterich, C.; Wang, S.; Schimanke, S.; Gröger, M.; Klein, B.; Hordoir, R.; Samuelsson, P.; Liu, Y.; Axell, L.; Höglund, A.; et al. Surface heat budget over the North Sea in climate change simulations. Atmosphere 2019, 10, 272. [Google Scholar] [CrossRef] [Green Version]
- Schrum, C.; Hübner, U.; Jacob, D.; Podzun, R. A coupled atmosphere/ice/ocean model for the North Sea and the Baltic Sea. Climate Dyn. 2003, 21, 131–151. [Google Scholar] [CrossRef]
- Van Pham, T.; Brauch, J.; Früh, B.; Ahrens, B. Simulation of snowbands in the Baltic Sea area with the coupled atmosphere-ocean-ice model COSMO-CLM/NEMO. Meteorol. Z. 2017, 26, 71–82. [Google Scholar] [CrossRef]
- Ho-Hagemann, H.T.M.; Hagemann, S.; Rockel, B. On the role of soil moisture in the generation of heavy rainfall during the Oder flood event in July 1997. Tellus A 2015, 67, 28661. [Google Scholar] [CrossRef] [Green Version]
- Ho-Hagemann, H.T.M.; Gröger, M.; Rockel, B.; Zahn, M.; Geyer, B.; Meier, H.E.M. Effects of air-sea coupling over the North Sea and the Baltic Sea on simulated summer precipitation over Central Europe. Climate Dyn. 2017, 1–26. [Google Scholar] [CrossRef]
- Jeworrek, J.; Wu, L.; Dieterich, C.; Rutgersson, A. Characteristics of convective snow bands along the Swedish east coast. Earth Syst. Dyn. 2017, 8, 163–175. [Google Scholar] [CrossRef] [Green Version]
- Staneva, J.; Schrum, C.; Behrens, A.; Grayek, S.; Ho-Hagemann, H.; Alari, V.; Breivik, Ø.; Bidlot, J.R. A North Sea - Baltic Sea regional coupled models: Atmosphere, wind, waves and ocean. In Proceedings of the Operational Oceanography Serving Sustainable Marine Development, Eight EuroGOOS International Conference, Bergen, Norway, 3–5 October 2017; Buch, E., Fernández, V., Eparkhina, D., Gorringe, P., Nolan, G., Eds.; p. 516, ISBN 978-2-9601883-3-2. [Google Scholar]
- Pein, J.; Eisele, A.; Hofmeister, R.; Sanders, T.; Daewel, U.; Stanev, E.V.; van Beusekom, J.; Staneva, J.; Schrum, C. Nitrogen cycling in the Elbe estuary from a joint 3D-modelling and observational perspective. Biogeosciences Discuss. 2019. [Google Scholar] [CrossRef]
- Valcke, S.; Craig, T.; Coquart, L. OASIS3-MCT User Guide; OASIS3-MCT 3.0. Technical Report TR/CMGC/15/38; CERFACS/CNRS SUC URA No 1875; CERFACS: Toulouse, France, 2015. [Google Scholar]
- Rockel, B.; Will, A.; Hense, A. The regional climate model COSMO-CLM (CCLM). Meteorol. Z. 2008, 17, 347–348. [Google Scholar] [CrossRef]
- Tiedtke, M. A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Weather Rev. 1989, 117, 1779–1800. [Google Scholar] [CrossRef] [Green Version]
- Schrodin, R.; Heise, E. The multi-layer-version of the DWD soil model TERRA/LM. Consort. Small-Scale Model. (COSMO) Tech. Rep. 2001, 2, 16. [Google Scholar]
- Ritter, B.; Geleyn, J.F. A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon. Wea. Rev. 1992, 120, 303–325. [Google Scholar] [CrossRef] [Green Version]
- Schultze, M.; Rockel, B. Direct and semi-direct effects of aerosol climatologies on long-term climate simulations over Europe. Climate Dyn. 2017, 50, 3331–3354. [Google Scholar] [CrossRef]
- Tanre, D.; Geleyn, J.F.; Slingo, J. First Results of the Introduction of An Advanced Aerosol-Radiation Interaction in the ECMWF Low Resolution Global Model; Meetings of Experts on Aerosols and their Climatic Effects, WMO and IAMAP: Williamsburg, VA, USA, 1984; pp. 133–177. [Google Scholar]
- Tegen, I.; Hollrig, P.; Chin, M.; Fung, I.; Jacob, D.; Penner, J. Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results. J. Geophys. Res. Atmos. 1997, 102, 23895–23915. [Google Scholar] [CrossRef]
- Kinne, S.; O’Donnel, D.; Stier, P.; Kloster, S.; Zhang, K.; Schmidt, H.; Rast, S.; Giorgetta, M.; Eck, T.F.; Stevens, B. MAC-v1: A new global aerosol climatology for climate studies. J. Adv. Model. Earth Syst. 2013, 5, 704–740. [Google Scholar] [CrossRef]
- Doms, G.; Forstner, J.; Heise, E.; Herzog, H.J.; Mrionow, D.; Raschendorfer, M.; Reinhart, T.; Ritter, B.; Schrodin, R.; Schulz, J.P.; et al. A description of the Nonhydrostatic Regional COSMO Model. Part II: Physical Parameterization. Technical Report, Deutscher Wetterdienst. 2011. Available online: http://www.cosmo-model.org/content/model/documentation/core/cosmoPhysParamtr.pdf (accessed on 9 April 2014).
- Von Storch, H.; Langenberg, H.; Feser, F. A spectral nudging technique for dynamical downscaling purposes. Mon. Weather Rev. 2000, 128, 3664–3673. [Google Scholar] [CrossRef]
- Biner, S.; Caya, D.; Laprise, R.; Spacek, L. Nesting of RCMs by Imposing Large Scales. Research Activities in Atmospheric and Oceanic Modelling; Technical report, WMO/TD-987 30, 7.3–7.4; World Meteorological Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Von Storch, H.; Cavicchia, L.; Feser, F.; Li, D. The concept of large-scale conditioning of climate model simulations of atmospheric coastal dynamics: Current state and perspectives. Atmosphere 2018, 9, 337. [Google Scholar] [CrossRef] [Green Version]
- Will, A.; Akhtar, N.; Brauch, J.; Breil, M.; Davin, E.; Ho-Hagemann, H.T.M.; Maisonnave, E.; Thürkow, M.; Weiher, S. The COSMO-CLM 4.8 regional climate model coupled to regional ocean, land surface and global earth system models using OASIS3-MCT: Description and performance. Geosci. Model Dev. 2017, 10, 1549–1586. [Google Scholar] [CrossRef] [Green Version]
- Ho-Hagemann, H.T.M.; Rockel, B. Einfluss von Atmosphäre-Ozean Wechselwirkungen auf Starkniederschläge über Europa; Warnsignal Klima: Hamburg, Germany, 2018; Chapter 4; pp. 161–168. [Google Scholar] [CrossRef]
- Wahle, K.; Staneva, J.; Koch, W.; Fenoglio-Marc, L.; Ho-Hagemann, H.T.M.; Stanev, E.V. An atmosphere-wave regional coupled model: Improving predictions of wave heights and surface winds in the southern North Sea. Ocean Sci. 2017, 13, 289–301. [Google Scholar] [CrossRef] [Green Version]
- Staneva, J.; Wahle, K.; Günther, H.; Stanev, E. Coupling of wave and circulation models in coastal-ocean predicting systems: A case study for the German Bight. Ocean Sci. 2016, 12, 797–806. [Google Scholar] [CrossRef] [Green Version]
- Staneva, J.; Alari, V.; Breivik, Ø.; Bidlot, J.R.; Mogensen, K. Effects of wave-induced forcing on a circulation model of the North Sea. Ocean Dyn. 2017, 67, 81–101. [Google Scholar] [CrossRef]
- Hagemann, S.; Dümenil, L. A parametrization of the lateral waterflow for the global scale. Climate Dyn. 1998, 14, 17–31. [Google Scholar] [CrossRef]
- Giorgetta, M.A.; Jungclaus, J.; Reick, C.H.; Legutke, S.; Bader, J.; Böttinger, M.; Brovkin, V.; Crueger, T.; Esch, M.; Fieg, K.; et al. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst. 2013, 5, 572–597. [Google Scholar] [CrossRef]
- Roeckner, E.; Bäuml, G.; Bonaventura, L.; Brokopf, R.; Esch, M.; Giorgetta, M.; Hagemann, S.; Kirchner, I.; Kornblueh, L.; Manzini, E.; et al. The Atmospheric General Circulation Model ECHAM 5. Part I: Model Description; Technical report, Max Planck Institute for Meteor. Rep. 349; MPI for Meteorology: Hamburg, Germany, 2003. [Google Scholar]
- Jungclaus, J.H.; Keenlyside, N.; Botzet, M.; Haak, H.; Luo, J.J.; Latif, M.; Marotzke, J.; Mikolajewicz, U.; Roeckner, E. Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J. Climate 2006, 19, 3952. [Google Scholar] [CrossRef] [Green Version]
- Sein, D.V.; Mikolajewicz, U.; Gröger, M.; Fast, I.; Cabos, W.; Pinto, J.G.; Hagemann, S.; Semmler, T.; Izquierdo, A.; Jacob, D. Regionally coupled atmosphere-ocean-sea ice-marine biogeochemistry model ROM: 1. Description and validation. J. Adv. Model. Earth Syst. 2015, 7, 268–304. [Google Scholar] [CrossRef]
- Sitz, L.E.; Sante, F.D.; Farneti, R.; Fuentes-Franco, R.; Coppola, E.; Mariotti, L.; Reale, M.; Sannino, G.; Barreiro, M.; Nogherotto, R.; et al. Description and evaluation of the Earth system regional climate model (Reg CM-ES). J. Adv. Model. Earth Syst. 2017, 9, 1863–1886. [Google Scholar] [CrossRef]
- Elizalde, A. The Water Cycle in the Mediterranean Region and the Impacts of Climate Change. Ph.D. Thesis, Max Planck Institute for Meteorology, Hamburg, Germany, 2011. [Google Scholar] [CrossRef]
- Hagemann, S.; Stacke, T.; Ho-Hagemann, H.T.M. High resolution discharge simulations over Europe and the Baltic Sea catchment. Front. Earth Sci. 2020, 8. [Google Scholar] [CrossRef]
- Madec, G. NEMO Ocean Engine. Available online: https://www.nemo-ocean.eu/wp-content/uploads/NEMO_book.pdf (accessed on 10 January 2020).
- Umlauf, L.; Burchard, H. A generic length-scale equation for geophysical turbulence models. J. Mar. Res. 2003, 61, 235–265. [Google Scholar] [CrossRef]
- Canuto, V.M.; Howard, A.; Cheng, Y.; Dubovikov, M. Ocean turbulence. Part I: One-point closure model-Momentum and heat vertical diffusivities. J. Phys. Oceanogr. 2001, 31, 1413–1426. [Google Scholar] [CrossRef]
- Large, W.G.; Yeager, S. Diurnal to Decadal Global Forcing for Ocean and Sea-Ice Models: The Data Sets and Flux Climatologies. Available online: https://opensky.ucar.edu/islandora/object/technotes:434 (accessed on 10 January 2020).
- Alari, V.; Staneva, J.; Breivik, Ø.; Bidlot, J.R.; Mogensen, K.; Janssen, P. Surface wave effects on water temperature in the Baltic Sea: Simulations with the coupled NEMO-WAM model. Ocean Dyn. 2016, 66, 917. [Google Scholar] [CrossRef]
- Pätsch, J.; Burchard, H.; Dieterich, C.; Gräwe, U.; Gröger, M.; Mathis, M.; Kapitza, H.; Bersch, M.; Moll, A.; Pohlmann, T.; et al. An evaluation of the North Sea circulation in global and regional models relevant for ecosystem simulations. Ocean Modell. 2017, 116, 70–95. [Google Scholar] [CrossRef]
- Gröger, M.; Dieterich, C.; Meier, M.H.E.; Schimanke, S. Thermal air-sea coupling in hindcast simulations for the North Sea and Baltic Sea on the NW European shelf. Tellus A 2015, 67, 26911. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Dieterich, C.; Döscher, R.; Höglund, A.; Hordoir, R.; Meier, H.E.M.; Samuelsson, P.; Schimanke, S. Development and evaluation of a new regional coupled atmosphere-ocean model in the North Sea and Baltic Sea. Tellus A 2015, 67, 24284. [Google Scholar] [CrossRef]
- Van Pham, T.; Brauch, J.; Dieterich, C.; Früh, B.; Ahrens, B. New coupled atmosphere-ocean-ice system COSMO-CLM/NEMO: Assessing air temperature sensitivity over the North and Baltic Seas. Oceanologia 2014, 56, 167–189. [Google Scholar] [CrossRef] [Green Version]
- Mikolajewicz, U.; Sein, D.V.; Jacob, D.; Königk, T.; Podzun, R.; Semmler, T. Simulating Arctic sea ice variability with a coupled regional atmosphere-ocean-sea ice model. Meteorol. Z. 2005, 14, 793–800. [Google Scholar] [CrossRef] [Green Version]
- Sein, D.V.; Koldunov, N.V.; Pinto, J.G.; Cabos, W. Sensitivity of simulated regional Arctic climate to the choice of coupled model domain. Tellus A 2014, 66, 23966. [Google Scholar] [CrossRef] [Green Version]
- Šeparovic, L.; de Elía, R.; Laprise, R. Impact of spectral nudging and domain size in studies of RCM response to parameter modification. Climate Dyn. 2012, 38, 1325–1343. [Google Scholar] [CrossRef] [Green Version]
- Alexandru, A.; de Elía, R.; Laprise, R.; Separovic, L.; Biner, S. Sensitivity study of regional climate model simulations to large-scale nudging parameters. Mon. Weather Rev. 2009, 137, 1666–1686. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Dee, D. ERA5 reanalysis is in production. ECMWF Newsl. 2016, 147. [Google Scholar]
- O’Dea, E.J.; Arnold, A.K.; Edwards, K.P.; Furner, R.; Hyder, P.; Martin, M.J.; Siddorn, J.R.; Storkey, D.; While, J.; Holt, J.T.; et al. An operational ocean forecast system incorporating NEMO and SST data assimilation for the tidally driven European North-West shelf. J. Oper. Oceanogr. 2012, 5, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Flather, R.A. A storm surge prediction model for the northern Bay of Bengal with application to the cyclone disaster in April 1991. J. Phys. Oceanogr. 1994, 24, 172–190. [Google Scholar] [CrossRef] [Green Version]
- Andersson, A.; Graw, K.; Schröder, M.; Fennig, K.; Liman, J.; Bakan, S.; Hollmann, R.; Klepp, C. Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data - HOAPS 4.0. 2017. Available online: https://icdc.cen.uni-hamburg.de/1/daten/atmosphere/hoaps/ (accessed on 10 January 2020).
- Rauthe, M.; Steiner, H.; Riediger, U.; Mazurkiewicz, A.; Gratzki, A. A central European precipitation climatology - Part I: Generation and validation of a high-resolution gridded daily data set (HYRAS). Meteorol. Z. 2013, 22, 235–256. [Google Scholar] [CrossRef]
- Cornes, R.C.; van der Schrier, G.; van den Besselaar, E.J.M.; Jones, P.D. An ensemble version of the E-OBS temperature and precipitation data sets. J. Geophys. Res. Atmos. 2018, 123, 9391–9409. [Google Scholar] [CrossRef] [Green Version]
- Haeseler, S.; Lefebvre, C. Heavy Storm Christian on 28 October 2013; Technical report; Deutscher Wetterdienst: Offenbach, Germany, 2013.
- Petoukhov, V.; Rahmstorf, S.; Petri, S.; Schellnhuber, H.J. Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes. Proc. Natl. Acad. Sci. USA 2013, 110, 5336–5341. [Google Scholar] [CrossRef] [Green Version]
- Bony, S.; Dufresne, J.L. Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Von Storch, H.; Feser, F.; Haeseler, S.; Lefebvre, C.; Stendel, M. A violent mid-latitude storm in Northern Germany and Denmark, 28 October 2013. In Explaining Extremes of 2013 from a Climate Perspective; Herring, S.C., Hoerling, M.P., Peterson, T.C., Stott, P.A., Eds.; Bulletin of the American Meteorological Society: Boston, MA, USA, 2014; Volume 95, pp. S76–S78. [Google Scholar]
- Greenwald, T.J.; Bennartz, R.; Lebsock, M.; Teixeira, J. An uncertainty data set for passive microwave satellite observations of warm cloud liquid water path. J. Geophys. Res. Atmos. 2018, 123, 3668–3687. [Google Scholar] [CrossRef]
- Böhme, T.; Stapelberg, S.; Akkermans, T.; Crewell, S.; Fischer, J.; Reinhardt, T.; Seifert, A.; Selbach, C.; Van Lipzig, N. Long-term evaluation of COSMO forecasting using combined observational data of the GOP period. Meteorol. Z. 2011, 20, 119–132. [Google Scholar] [CrossRef]
- Saunders, R.; Hocking, J.; Turner, E.; Rayer, P.; Rundle, D.; Brunel, P.; Vidot, J.; Roquet, P.; Matricardi, M.; Geer, A.; et al. An update on the RTTOV fast radiative transfer model (currently at version 12). Geosci. Model Dev. 2018, 11, 2717–2737. [Google Scholar] [CrossRef] [Green Version]
- Schrum, C. Regional climate modeling and air-sea coupling. In Climate Science: Oxford Research Encyclopedias; Oxford University Press: Oxford, UK, 2017. [Google Scholar] [CrossRef]
- O’Gorman, P.A.; Dwyer, J.G. Using machine learning to parameterize moist convection: Potential for modeling of climate, climate change, and extreme events. J. Adv. Model. Earth Syst. 2018, 10, 2548–2563. [Google Scholar] [CrossRef] [Green Version]
Experiments | Features | Start/Restart | At 01 Sep | Stop |
---|---|---|---|---|
CCLM_res (RES) | Stand-alone CCLM, no SN | S: 01 Aug | 01; 02; 03; 04; 05 Sep | |
CCLM_sn (REF) | Stand-alone CCLM, with SN | S: 01 Sep | Cold start | 31 Dec |
CCLM0 | Stand-alone CCLM (CCLM_ctr), no SN | S: 01 Sep | Cold start | 31 Dec |
CCLM1 | - | R: 01 Sep | 01 Sep of RES | 31 Dec |
CCLM2 | - | R: 01 Sep | 02 Sep of RES | 31 Dec |
CCLM3 | - | R: 01 Sep | 03 Sep of RES | 31 Dec |
CCLM4 | - | R: 01 Sep | 04 Sep of RES | 31 Dec |
CCLM5 | - | R: 01 Sep | 05 Sep of RES | 31 Dec |
ens.CCLM | Ensemble mean of six stand-alone CCLM_ctr experiments | |||
CPL0 | AHOI Coupled CPL, no SN | S: 01 Sep | Cold start | 31 Dec |
CPL1 | - | R: 01 Sep | 01 Sep of RES | 31 Dec |
CPL2 | - | R: 01 Sep | 02 Sep of RES | 31 Dec |
CPL3 | - | R: 01 Sep | 03 Sep of RES | 31 Dec |
CPL4 | - | R: 01 Sep | 04 Sep of RES | 31 Dec |
CPL5 | - | R: 01 Sep | 05 Sep of RES | 31 Dec |
ens.CPL | Ensemble mean of six AHOI coupled experiments |
Locations | CCLM_ctr | AHOI | ||||
---|---|---|---|---|---|---|
Components | Mean | Range | SD | Mean | Range | SD |
TOA | ||||||
Solar down | 70.8 | 0.0 | 0.0 | 70.8 | 0.0 | 0.0 |
Solar up | 32.9 | 12.4 | 5.3 | 29.9 | 2.5 | 0.9 |
Solar net | 38.0 | 12.4 | 5.3 | 41.0 | 2.5 | 0.9 |
Thermal up | −199.6 | 21.9 | 7.9 | −193.5 | 16.1 | 6.4 |
Atmosphere | ||||||
Solar net | 21.0 | 24.8 | 10.8 | 26.8 | 4.8 | 1.7 |
Thermal net | −155.9 | 26.0 | 11.0 | −158.8 | 11.9 | 4.4 |
Surface | ||||||
Solar down | 19.0 | 14.8 | 6.5 | 15.6 | 2.6 | 1.0 |
Solar up | 2.0 | 2.4 | 1.0 | 1.4 | 0.3 | 0.1 |
Solar net | 17.0 | 12.4 | 5.5 | 14.2 | 2.3 | 0.8 |
Thermal down | 308.9 | 44.3 | 17.9 | 319.7 | 14.6 | 5.7 |
Thermal up | 352.7 | 0.2 | 0.1 | 354.4 | 0.4 | 0.1 |
Thermal net | −43.8 | 44.1 | 17.8 | −34.7 | 14.3 | 5.6 |
Net radiation | −26.7 | 31.7 | 12.4 | −20.6 | 12.4 | 4.8 |
Latent heat | −72.3 | 56.3 | 20.0 | −73.7 | 55.1 | 21.5 |
Sensible heat | −23.5 | 24.7 | 9.6 | −31.8 | 37.7 | 13.9 |
Correlation Pair | CCLM_ctr | AHOI | |||
---|---|---|---|---|---|
Variable 1 | Variable 2 | rCor | Lag (Days) | rCor | Lag (Days) |
MSLP (A) | U_10M (A) | 0.8 | 0 | 0.8 | 0 |
MSLP (A) | V_10M (A) | 0.6 | 0 | 0.7 | 0 |
MSLP (A) | T_S (L) | 0.6 | 0 | 0.6 | 0 |
MSLP (A) | CLCT (A) | 0.7 | 0 | 0.7 | 0 |
MSLP (A) | CLCL (A) | 0.7 | 0 | 0.8 | 0 |
MSLP (A) | CLCM (A) | 0.7 | 0 | 0.7 | 0 |
MSLP (A) | CLCH (A) | 0.6 | 0 | 0.7 | 0 |
MSLP (A) | TOT_PREC (L) | 0.6 | 0 | 0.6 | 1 |
T_S (L) | U_10M (A) | 0.5 | 0 | 0.5 | 4 |
T_S (L) | V_10M (A) | 0.5 | 0 | 0.6 | 1 |
T_S (L) | CLCT (A) | 0.7 | 0 | 0.7 | 0 |
T_S (L) | CLCL (A) | 0.6 | 0 | 0.6 | 4 |
T_S (L) | CLCM (A) | 0.7 | 0 | 0.7 | 0 |
T_S (L) | CLCH (A) | 0.7 | 0 | 0.7 | 0 |
T_S (L) | TOT_PREC (L) | 0.5 | 4 | 0.5 | 4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho-Hagemann, H.T.M.; Hagemann, S.; Grayek, S.; Petrik, R.; Rockel, B.; Staneva, J.; Feser, F.; Schrum, C. Internal Model Variability of the Regional Coupled System Model GCOAST-AHOI. Atmosphere 2020, 11, 227. https://doi.org/10.3390/atmos11030227
Ho-Hagemann HTM, Hagemann S, Grayek S, Petrik R, Rockel B, Staneva J, Feser F, Schrum C. Internal Model Variability of the Regional Coupled System Model GCOAST-AHOI. Atmosphere. 2020; 11(3):227. https://doi.org/10.3390/atmos11030227
Chicago/Turabian StyleHo-Hagemann, Ha Thi Minh, Stefan Hagemann, Sebastian Grayek, Ronny Petrik, Burkhardt Rockel, Joanna Staneva, Frauke Feser, and Corinna Schrum. 2020. "Internal Model Variability of the Regional Coupled System Model GCOAST-AHOI" Atmosphere 11, no. 3: 227. https://doi.org/10.3390/atmos11030227
APA StyleHo-Hagemann, H. T. M., Hagemann, S., Grayek, S., Petrik, R., Rockel, B., Staneva, J., Feser, F., & Schrum, C. (2020). Internal Model Variability of the Regional Coupled System Model GCOAST-AHOI. Atmosphere, 11(3), 227. https://doi.org/10.3390/atmos11030227