Increases in Biogenic Volatile Organic Compound Concentrations Observed after Rains at Six Forest Sites in Non-Summer Periods
Abstract
:1. Introduction
2. Site and Method
2.1. Site
2.2. Method
2.2.1. Sampling
2.2.2. ATD-GC–MS Analysis
3. Results and Discussions
3.1. Isoprene Concentration
3.2. Monoterpene Concentration
3.3. Temporal Increases in BVOC Concentrations
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Information of the Network Monitoring
OKI | Ta | MT | ISO | KHW | Ta | MT | ISO | YMS | Ta | MT | ISO | FJY | Ta | MT | ISO | API | Ta | MT | ISO | SAP | Ta | MT | ISO |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2016/7/9 | 27.4 | 4.02 | 0.38 | 2016/7/21 | 28.0 | 4.42 | 0.43 | 2016/6/2 | 26.5 | 1.09 | 0.40 | 2015/12/17 | 4.1 | 0.23 | 0.01 | 2016/5/18 | 16.6 | 0.61 | 0.06 | 2016/5/2 | 12.6 | 0.42 | 0.07 |
2016/9/5 | 27.6 | 4.57 | 0.14 | 2016/10/4 | 26.0 | 3.77 | 0.10 | 2016/7/6 | 32.0 | 0.73 | 0.95 | 2016/1/22 | 1.4 | 0.26 | 0.01 | 2016/7/4 | 19.7 | 0.49 | 0.17 | 2016/6/21 | 17.2 | 1.43 | 0.21 |
2016/11/3 | 20.0 | 0.90 | 0.02 | 2016/10/20 | 24.0 | 2.12 | 0.12 | 2016/11/4 | 16.0 | 0.33 | 0.19 | 2016/2/15 | 3.7 | 0.40 | 0.09 | 2016/9/26 | 16.8 | 0.48 | 0.09 | 2016/10/18 | 12.9 | 0.14 | 0.03 |
2017/1/9 | 16.6 | 0.22 | 0.03 | 2016/11/16 | 15.0 | 1.73 | 0.05 | 2016/11/25 | 11.5 | 0.57 | 0.09 | 2016/3/16 | 5.4 | 0.45 | 0.00 | 2016/10/21 | 4.9 | 0.40 | 0.03 | 2016/11/15 | 6.8 | 0.12 | 0.03 |
2017/3/30 | 22.2 | 0.52 | 0.21 | 2016/12/21 | 14.7 | 1.73 | 0.03 | 2017/1/26 | 7.6 | 0.47 | 0.04 | 2016/4/13 | 9.4 | 1.03 | 0.00 | 2017/3/1 | 0.2 | 0.60 | 0.02 | 2017/1/12 | 3.4 | 0.56 | 0.01 |
2017/5/19 | 24.0 | 1.79 | 0.24 | 2017/2/8 | 7.0 | 0.54 | 0.03 | 2017/3/23 | 8.0 | 1.28 | 0.65 | 2016/5/19 | 17.5 | 2.44 | 0.04 | 2017/6/30 | 23.0 | 0.42 | 0.25 | 2017/3/7 | −1.0 | 0.19 | 0.02 |
2017/6/27 | 27.2 | 1.20 | 0.08 | 2017/3/24 | 9.1 | 2.58 | 0.49 | 2017/4/27 | 16.8 | 0.44 | 0.35 | 2016/6/23 | 17.8 | 1.81 | 0.16 | 2017/7/26 | 20.2 | 1.49 | 0.16 | 2017/4/27 | 11.2 | 0.61 | 0.30 |
2017/7/19 | 30.5 | 4.73 | 0.29 | 2017/5/23 | 24.0 | 1.55 | 0.09 | 2017/6/15 | 26.7 | 0.47 | 0.61 | 2016/7/28 | 22.7 | 3.25 | 0.27 | 2017/8/30 | 16.7 | 0.36 | 0.06 | 2017/6/6 | 9.0 | 0.65 | 0.13 |
2017/8/29 | 30.9 | 7.66 | 0.23 | 2017/6/14 | 23.5 | 1.97 | 0.11 | 2017/7/7 | 30.8 | 1.21 | 1.02 | 2016/9/29 | 23.2 | 2.13 | 0.22 | 2017/10/2 | 16.4 | 0.36 | 0.01 | 2017/6/27 | 17.1 | 1.47 | 0.13 |
2017/9/21 | 29.9 | 5.65 | 0.20 | 2017/6/27 | 23.0 | 1.63 | 0.12 | 2017/7/20 | 31.9 | 1.25 | 1.20 | 2016/11/1 | 6.7 | 0.88 | 0.04 | 2017/10/25 | 9.8 | 0.60 | 0.01 | 2017/7/11 | 26.0 | 2.79 | 0.29 |
2017/11/5 | 22.0 | 0.94 | 0.07 | 2017/8/8 | 28.5 | 9.02 | 0.21 | 2017/9/11 | 25.2 | 0.91 | 0.06 | 2016/12/16 | 2.0 | 2.49 | 0.03 | 2018/3/30 | 2.2 | 0.09 | 0.02 | 2017/8/31 | 18.7 | 1.64 | 0.19 |
2017/12/29 | 15.3 | 0.20 | 0.01 | 2017/8/24 | 28.0 | 4.95 | 0.12 | 2017/10/5 | 21.5 | 0.56 | 0.07 | 2017/1/17 | 1.9 | 0.55 | 0.02 | 2018/4/26 | 8.0 | 0.07 | 0.01 | 2017/9/13 | 19.7 | 1.27 | 0.09 |
2018/1/27 | 13.7 | 0.19 | 0.01 | 2017/9/6 | 25.0 | 1.74 | 0.03 | 2017/10/27 | 21.7 | 0.40 | 0.05 | 2017/2/23 | 14.3 | 1.27 | 0.03 | 2018/5/16 | 12.9 | 0.12 | 0.01 | 2017/10/5 | 10.1 | 0.50 | 0.03 |
2018/2/23 | 14.0 | 0.17 | 0.02 | 2017/9/20 | 22.5 | 1.69 | 0.03 | 2017/11/9 | 15.9 | 0.24 | 0.01 | 2017/5/23 | 21.0 | 1.51 | 0.07 | 2018/6/11 | 13.9 | 0.33 | 0.09 | 2017/10/17 | 11.7 | 0.34 | 0.01 |
2018/3/30 | 21.3 | 0.34 | 0.14 | 2017/10/4 | 21.0 | 2.97 | 0.02 | 2017/11/24 | 9.8 | 0.24 | 0.01 | 2017/7/20 | 26.0 | 1.26 | 0.17 | 2018/7/11 | 18.4 | 0.35 | 0.03 | 2017/11/13 | 10.8 | 0.31 | 0.01 |
2018/4/30 | 23.1 | 0.47 | 0.04 | 2017/10/20 | 18.5 | 2.36 | 0.02 | 2017/12/27 | 4.3 | 0.07 | 0.00 | 2017/8/23 | 17.5 | 1.79 | 0.12 | 2018/8/23 | 28.4 | 0.88 | 0.26 | 2017/11/26 | 11.6 | 0.64 | 0.01 |
2018/5/20 | 26.7 | 2.52 | 0.20 | 2017/11/16 | 10.5 | 16.46 | 0.01 | 2018/1/25 | 0.8 | 0.05 | 0.00 | 2017/10/24 | 10.0 | 1.54 | 0.02 | 2018/9/19 | 15.0 | 0.37 | 0.07 | 2017/12/5 | −0.8 | 0.24 | 0.01 |
2018/6/29 | 30.2 | 4.82 | 0.19 | 2017/11/28 | 14.5 | 14.06 | 0.01 | 2018/2/15 | 10.5 | 0.14 | 0.01 | 2017/11/21 | 4.2 | 1.38 | 0.01 | 2018/9/27 | 22.0 | 1.41 | 0.05 | 2017/12/18 | −4.7 | 0.42 | 0.04 |
2018/7/22 | 28.0 | 3.73 | 0.28 | 2017/12/14 | 5.5 | 4.68 | 0.01 | 2018/3/2 | 11.4 | 0.12 | 0.01 | 2017/12/15 | 2.1 | 0.50 | 0.01 | 2018/10/25 | 9.4 | 0.46 | 0.02 | 2018/1/9 | 4.7 | 0.73 | 0.02 |
2018/10/29 | 20.9 | 0.83 | 0.16 | 2018/1/16 | 11.0 | 3.64 | 0.00 | 2018/3/15 | 19.6 | 0.14 | 0.01 | 2018/1/16 | 7.9 | 1.41 | 0.01 | 2018/11/22 | −0.3 | 0.29 | 0.01 | 2018/1/23 | −1.0 | 0.47 | 0.01 |
2018/11/25 | 19.5 | 0.35 | 0.11 | 2018/2/16 | 5.0 | 0.77 | 0.01 | 2018/4/19 | 20.9 | 0.16 | 0.03 | 2018/2/13 | −2.1 | 0.13 | 0.01 | 2018/12/10 | −7.0 | 0.21 | 0.02 | 2018/2/12 | −9.4 | 0.14 | 0.01 |
2018/12/12 | 18.3 | 0.05 | 0.03 | 2018/3/2 | 8.5 | 2.11 | 0.01 | 2018/5/10 | 13.9 | 0.13 | 0.08 | 2018/3/19 | 8.8 | 0.62 | 0.01 | 2018/2/22 | −2.8 | 0.09 | 0.01 | ||||
2018/3/15 | 16.0 | 2.69 | 0.01 | 2018/6/1 | 21.5 | 0.24 | 1.16 | 2018/4/19 | 14.7 | 0.67 | 0.01 | 2018/3/8 | −0.8 | 0.11 | 0.01 | ||||||||
2018/3/28 | 18.0 | 2.28 | 0.01 | 2018/6/26 | 29.1 | 0.54 | 0.64 | 2018/5/2 | 16.2 | 0.40 | 0.02 | 2018/3/22 | 2.6 | 0.17 | 0.00 | ||||||||
2018/4/10 | 19.0 | 0.84 | 0.03 | 2018/7/12 | 29.4 | 0.60 | 0.64 | 2018/5/15 | 18.5 | 1.24 | 0.04 | 2018/4/10 | 6.7 | 0.19 | 0.04 | ||||||||
2018/4/26 | 18.5 | 3.40 | 0.04 | 2018/8/1 | 31.4 | 0.56 | 0.52 | 2018/6/20 | 16.5 | 1.42 | 0.06 | 2018/4/24 | 8.3 | 0.08 | 0.01 | ||||||||
2018/5/11 | 21.0 | 3.71 | 0.03 | 2018/8/23 | 28.6 | 0.89 | 0.28 | 2018/7/3 | 26.5 | 1.82 | 0.22 | 2018/5/8 | 9.2 | 0.21 | 0.02 | ||||||||
2018/5/25 | 24.0 | 4.44 | 0.10 | 2018/9/6 | 26.9 | 0.70 | 0.41 | 2018/7/17 | 29.7 | 4.47 | 0.34 | 2018/5/15 | 19.2 | 0.53 | 0.02 | ||||||||
2018/6/7 | 23.2 | 3.49 | 0.09 | 2018/9/14 | 21.7 | 0.54 | 0.40 | 2018/8/23 | 24.4 | 1.08 | 0.24 | 2018/5/28 | 15.1 | 0.60 | 0.05 | ||||||||
2018/6/22 | 25.0 | 6.02 | 0.14 | 2018/10/5 | 22.6 | 0.46 | 0.16 | 2018/9/20 | 13.9 | 1.84 | 0.06 | 2018/6/5 | 23.3 | 0.44 | 0.21 | ||||||||
2018/7/4 | 26.0 | 2.85 | 0.29 | 2018/10/25 | 18.8 | 0.11 | 0.08 | 2018/10/3 | 17.7 | 4.92 | 0.06 | 2018/6/19 | 17.8 | 0.66 | 0.13 | ||||||||
2018/7/18 | 30.0 | 4.34 | 0.31 | 2018/11/8 | 20.8 | 0.29 | 0.10 | 2018/10/18 | 11.1 | 1.75 | 0.04 | 2018/7/10 | 20.7 | 2.25 | 0.29 | ||||||||
2018/8/2 | 29.0 | 4.10 | 0.42 | 2018/11/21 | 13.2 | 0.18 | 0.06 | 2018/11/6 | 12.7 | 4.79 | 0.02 | 2018/7/24 | 21.3 | 1.88 | 0.24 | ||||||||
2018/8/16 | 27.0 | 3.24 | 0.21 | 2018/12/15 | 0.2 | 0.85 | 0.01 | 2018/8/7 | 19.2 | 0.86 | 0.48 | ||||||||||||
2018/9/3 | 26.5 | 3.33 | 0.11 | 2018/8/21 | 22.3 | 1.16 | 0.27 | ||||||||||||||||
2018/10/12 | 16.0 | 1.07 | 0.04 | 2018/9/4 | 19.9 | 0.90 | 0.18 | ||||||||||||||||
2018/10/26 | 16.0 | 3.09 | 0.13 | 2018/10/5 | 17.4 | 0.78 | 0.30 | ||||||||||||||||
2018/11/14 | 13.5 | 1.96 | 0.02 | 2018/11/2 | 12.3 | 0.43 | 0.03 | ||||||||||||||||
2018/11/29 | 12.5 | 1.60 | 0.02 | 2018/11/7 | 10.3 | 0.27 | 0.02 | ||||||||||||||||
2018/12/14 | 6.0 | 0.90 | 0.01 | 2018/11/20 | 5.2 | 0.12 | 0.03 | ||||||||||||||||
2018/12/5 | 1.6 | 0.16 | 0.01 | ||||||||||||||||||||
2018/12/17 | 2.7 | 0.09 | 0.02 |
References
- Guenther, A.B.; Jiang, X.; Heald, C.L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L.K.; Wang, X. The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 2012, 5, 1471–1492. [Google Scholar] [CrossRef] [Green Version]
- Simpson, D. Biogenic emission in Europe 2. Implications for ozone control strategies. J. Geophys. Res. 1995, 100, 22891–22906. [Google Scholar] [CrossRef]
- Curci, G.; Beekmann, M.; Vautard, R.; Smiatek, G.; Steinbrecher, R.; Theloke, J.; Friedrich, R. Modelling study of the impact of isoprene and terpene biogenic emissions on European ozone levels. Atmos. Environ. 2009, 43, 1444–1455. [Google Scholar] [CrossRef]
- Hakola, H.; Tarvainen, V.; Laurila, T.; Hiltunen, V.; Hellén, H.; Keronen, P. Seasonal variation of VOC concentrations above a boreal coniferous forest. Atmos. Environ. 2003, 37, 1623–1634. [Google Scholar] [CrossRef]
- Kulmala, M.; Nieminen, T.; Chellapermal, R.; Makkonen, R.; Bäck, J.; Kerminen, V.-M. Climate Feedbacks Linking the Increasing Atmospheric CO2 Concentration, BVOC Emissions, Aerosols and Clouds in Forest Ecosystems. In Biology, Controls and Models of Tree Volatile Organic Compound Emissions; Niinemets, Ü., Monson, R.K., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 489–508. ISBN 978-94-007-6605-1. [Google Scholar]
- Ruiz-Suárez, L.G.; Mar-Morales, B.E.; García-Reynoso, J.A.; Andraca-Ayala, G.L.; Torres-Jardón, R.; García-Yee, J.S.; Barrera-Huertas, H.A.; Gavilán-García, A.; Cruz, R.B. Estimation of the impact of ozone on four economically important crops in the city belt of Central Mexico. Atmosphere 2018, 9, 223. [Google Scholar] [CrossRef] [Green Version]
- Chatani, S.; Matsunaga, S.N.; Nakatsuka, S. Estimate of biogenic VOC emissions in Japan and their effects on photochemical formation of ambient ozone and secondary organic aerosol. Atmos. Environ. 2015, 120, 38–50. [Google Scholar] [CrossRef]
- Chatani, S.; Okumura, M.; Shimadera, H.; Yamaji, K.; Kitayama, K.; Matsunaga, S.N. Effects of a detailed vegetation database on simulated meteorological fields, biogenic VOC emissions, and ambient pollutant concentrations over Japan. Atmosphere 2018, 9, 179. [Google Scholar] [CrossRef] [Green Version]
- Guenther, A. A global model of natural volatile organic compound emissions. J. Geophys. Res. 1995, 100, 8873–8892. [Google Scholar] [CrossRef]
- Matsunaga, S.N.; Ishikura, A.; Shimada, K.; Hoshi, J.; Saito, S.; Ueno, H. Ozone and Formaldehyde Formation by UV Irradiation to Biogenic VOC Added Urban Air in Tokyo. J. Jpn. Soc. Atmos. Environ. 2015, 50, 233–238. [Google Scholar]
- Pacifico, F.; Harrison, S.P.; Jones, C.D.; Sitch, S. Isoprene emissions and climate. Atmos. Environ. 2009, 43, 6121–6135. [Google Scholar] [CrossRef]
- Fineschi, S.; Loreto, F.; Staudt, M.; Peñuelas, J. Diversification of Volatile Isoprenoid Emissions from Trees: Evolutionary and ecological perspectives. In Biology, Controls and Models of Tree Volatile Organic Compound Emissions; Niinemets, Ü., Monson, R.K., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 1–20. ISBN 978-94-007-6605-1. [Google Scholar]
- Saunier, A.; Ormeño, E.; Wortham, H.; Temime-Roussel, B.; Lecareux, C.; Boissard, C.; Fernandez, C. Chronic drought decreases anabolic and catabolic BVOC emissions of Quercus pubescens in a mediterranean forest. Front. Plant Sci. 2017, 8, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geron, C.D.; Arnts, R.R. Seasonal monoterpene and sesquiterpene emissions from Pinus taeda and Pinus virginiana. Atmos. Environ. 2010, 44, 4240–4251. [Google Scholar] [CrossRef]
- Mochizuki, T.; Tani, A.; Takahashi, Y.; Saigusa, N.; Ueyama, M. Long-term measurement of terpenoid flux above a Larix kaempferi forest using a relaxed eddy accumulation method. Atmos. Environ. 2014, 83, 53–61. [Google Scholar] [CrossRef]
- Baldocchi, D.; Falge, E.; Gu, L.; Olson, R.; Hollinger, D.; Running, S.; Anthoni, P.; Bernhofer, C.; Davis, K.; Evans, R.; et al. FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities. Bull. Am. Meteorol. Soc. 2001, 82, 2415–2434. [Google Scholar] [CrossRef]
- Kominami, Y.; Jomura, M.; Dannoura, M.; Goto, Y.; Tamai, K.; Miyama, T.; Kanazawa, Y.; Kaneko, S.; Okumura, M.; Misawa, N.; et al. Biometric and eddy-covariance-based estimates of carbon balance for a warm-temperate mixed forest in Japan. Agric. For. Meteorol. 2008, 148, 723–737. [Google Scholar] [CrossRef]
- Mizoguchi, Y.; Miyata, A.; Ohtani, Y.; Hirata, R.; Yuta, S. A review of tower flux observation sites in Asia. J. For. Res. 2008, 14, 1–9. [Google Scholar] [CrossRef]
- Calogirou, A.; Larsen, B.R.; Brussel, C.; Duane, M.; Kotzias, D. Decomposition of terpenes by ozone during sampling on tenax. Anal. Chem. 1996, 68, 1499–1506. [Google Scholar] [CrossRef]
- Okumura, M.; Tani, A.; Kominami, Y.; Takanashi, S.; Kosugi, Y.; Miyama, T.; Tohno, S. Isoprene Emission Characteristics of Quercus serrata in a Deciduous Broad-Leaved Forest. J. Agric. Meteorol. 2008, 64, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Miyama, T.; Tobita, H.; Uchiyama, K.; Yazaki, K.; Ueno, S.; Uemura, A.; Matsumoto, A.; Kitao, M.; Izuta, T. Seasonal Changes in Interclone Variation Following Ozone Exposure on Three Major Gene Pools: An Analysis of Cryptomeria Japonica Clones. Atmosphere 2019, 10, 643. [Google Scholar] [CrossRef] [Green Version]
- Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. Discuss. 2006, 6, 107–173. [Google Scholar] [CrossRef] [Green Version]
- Yoshiaki, G.; Yuji, K.; Takafumi, M.; Koji, T.; Yoichi, K. Aboveground Biomass and Net Primary Production of a Broad-leaved Secondary Forest in the Southern Part of Kyoto Prefecture, Central Japan. Bull. FFPRI 2003, 387, 115–147. [Google Scholar]
- Guenther, A.B.; Zimmerman, P.R.; Harley, P.C.; Monson, R.K. Isoprene and Monoterpene Emission Rate Variability’ Model Evaluations and Sensitivity Analyses. J. Geophys. Res. 1993, 98617, 609–612. [Google Scholar] [CrossRef] [Green Version]
- Past Weather Data Search. Available online: https://www.data.jma.go.jp/obd/stats/etrn/index.php (accessed on 17 November 2020).
- Tsuruta, J.; Okumura, M.; Makita, N.; Kosugi, Y.; Kume, T.; Tohno, S. A comparison of the biogenic volatile organic compound emissions from the fine roots of 15 tree species in Japan and Taiwan. J. For. Res. 2018, 23, 242–251. [Google Scholar] [CrossRef]
- Morishita, T.; Miyama, T.; Noguchi, K.; Matsuura, Y.; Kim, Y. Spatiotemporal variations of below-ground monoterpene concentrations in an upland black spruce stand in interior Alaska. Polar Sci. 2019, 21, 158–164. [Google Scholar] [CrossRef]
- Lim, Y.J.; Armendariz, A.; Son, Y.S.; Kim, J.C. Seasonal variations of isoprene emissions from five oak tree species in East Asia. Atmos. Environ. 2011, 45, 2202–2210. [Google Scholar] [CrossRef]
- Ohta, K. Diurnal and seasonal variations in isoprene emission from live oak. Geochem. J. 1986, 19, 269–274. [Google Scholar] [CrossRef]
- Son, Y.S.; Kim, K.J.; Jung, I.H.; Lee, S.J.; Kim, J.C. Seasonal variations and emission fluxes of monoterpene emitted from coniferous trees in East Asia: Focused on Pinus rigida and Pinus koraiensis. J. Atmos. Chem. 2015, 72, 27–41. [Google Scholar] [CrossRef]
- Mochizuki, T.; Amagai, T.; Tani, A. Effects of soil water content and elevated CO2 concentration on the monoterpene emission rate of Cryptomeria japonica. Sci. Total Environ. 2018, 634, 900–908. [Google Scholar] [CrossRef]
- Monson, R.K.; Harley, P.C.; Litvak, M.E.; Wildermuth, M.; Guenther, A.B.; Zimmerman, P.R.; Fall, R. Environmental and developmental controls over the seasonal pattern of isoprene emission from aspen leaves. Oecologia 1994, 99, 260–270. [Google Scholar] [CrossRef]
- Fortunati, A.; Barta, C.; Brilli, F.; Centritto, M.; Zimmer, I.; Schnitzler, J.P.; Loreto, F. Isoprene emission is not temperature-dependent during and after severe drought-stress: A physiological and biochemical analysis. Plant J. 2008, 55, 687–697. [Google Scholar] [CrossRef]
- Jiang, X.; Guenther, A.; Potosnak, M.; Geron, C.; Seco, R.; Karl, T.; Kim, S.; Gu, L.; Pallardy, S. Isoprene emission response to drought and the impact on global atmospheric chemistry. Atmos. Environ. 2018, 183, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Haruo, K.; Yuji, K.; Yoshimura, K.; Yamamoto, R. Sap flow velocity in Quercus serrata trees attacked by Platypus quercivorus. Tree For. Health 2016, 20, 26–27. [Google Scholar]
- Noe, S.M.; Hüve, K.; Niinemets, U.; Copolovici, L. Seasonal variation in vertical volatile compounds air concentrations within a remote hemiboreal mixed forest. Atmos. Chem. Phys. 2012, 12, 3909–3926. [Google Scholar] [CrossRef] [Green Version]
- Okumura, M. Estimation of Biogenic Volatile Organic Compound Emission from Forest Vegetation. Ph.D. Thesis, Kyoto University, Kyoto, Japan, 2009. [Google Scholar]
Site (Code) | Location | Altitude (m) | Area (ha) | Ta (C°) | P (mm) | Climate | Dominant Tree Species | H (m) | LAI (Min.) | LAI (Max.) |
---|---|---|---|---|---|---|---|---|---|---|
Sapporo (SAP) | 42°59′ N, 141°23′ E | 182 | 80 | 7.4 | 1150 | Continental (Dfb) | Betula platyphylla Quercus crispula Kalopanax septemlobus | 20 | - | 4 |
Appi (API) | 40°00′ N, 140°56′ E | 825 | 44 | 5.9 | 1869 | Continental (Dfb) | Fagus crenata Quercus crispula Quercus serrata | 19 | - | 4.8 |
Fujiyoshida (FJY) | 35°27′ N, 138°46′ E | 1030 | 3600 | 9.5 | 1954 | Temperate (Cfb) | Pinus densiflora Ilex pedunculosa Quercus serrata | 20 | 2 | 5 |
Yamashiro (YMS) | 34°47′ N, 135°51′ E | 180–255 | 100 | 14.7 | 1095 | Temperate (Cfa) | Quercus serrate Ilex pedunculosa Pinus densiflora | 6–20 | 2.7 | 4.4 |
Kahoku (KHW) | 33°08′ N, 130°43′ E | 165 | 13 | 15.1 | 2106 | Temperate (Cfa) | Cryptomeria japonica Chamaecyparis obtuse Castanopsis cuspidata | 10–35 | 3.6 | 5.2 |
Okinawa (OKI) | 26°45′ N, 128°13′ E | 380 | 318 | 20.7 | 2673 | Temperate (Cfa) | Castanopsis sieboldii Myrsine seguinii Ilex liukiuensis | 7 | 2.3 | 2.8 |
(a) | OKI | KHW | YMS | FJY | API | SAP |
Maximum | 0.38 | 0.49 | 1.2 | 0.34 | 0.26 | 0.48 |
Mean | 0.14 | 0.1 | 0.31 | 0.07 | 0.07 | 0.1 |
SD | 0.11 | 0.13 | 0.36 | 0.09 | 0.08 | 0.12 |
Median | 0.14 | 0.04 | 0.1 | 0.03 | 0.03 | 0.03 |
n | 22 | 40 | 33 | 34 | 21 | 42 |
(b) | OKI | KHW | YMS | FJY | API | SAP |
Maximum | 7.66 | 16.46 | 1.28 | 4.92 | 1.49 | 2.79 |
Mean | 2.08 | 3.5 | 0.49 | 1.55 | 0.49 | 0.64 |
SD | 2.25 | 3.19 | 0.36 | 1.24 | 0.37 | 0.62 |
Median | 0.92 | 2.77 | 0.46 | 1.33 | 0.4 | 0.45 |
n | 22 | 40 | 33 | 34 | 21 | 42 |
No. | Date | Site | BVOC | ppb | Station | P | P_week | WS_max | WS_max_week | Ta_max | Ta_min | Ta_delta | L |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2017/11/16 | KHW | MT | 16.46 | Kahoku | 0.0 | 6.5 | 4.5 | 5.7 | 13.4 | 1.8 | 11.6 | 9.3 |
2 | 2017/11/28 | KHW | MT | 14.06 | Kahoku | 0.0 | 8.0 | 1.6 | 6.8 | 20.1 | 2.4 | 17.7 | 7.0 |
3 | 2018/10/3 | FJY | MT | 4.92 | Kawaguchiko | 0.0 | 273.5 | 4.7 | 17.6 | 21.6 | 9.7 | 11.9 | 6.1 |
4 | 2018/11/6 | FJY | MT | 4.79 | Kawaguchiko | 6.0 | 0.0 | 2.8 | 6.0 | 14.6 | 11.9 | 2.7 | 0.0 |
5 | 2017/6/27 | SAP | MT | 1.47 | Sapporo | 0.0 | 89.0 | 7.2 | 12.2 | 22.2 | 11.6 | 10.6 | 4.2 |
6 | 2016/6/21 | SAP | MT | 1.43 | Sapporo | 0.0 | 93.5 | 7.4 | 12.1 | 25.4 | 16.5 | 8.9 | 9.9 |
7 | 2017/3/23 | YMS | MT | 1.28 | Kyotanabe | 0.0 | 32.0 | 2.9 | 6.5 | 14.1 | 2.1 | 12.0 | 2.8 |
8 | 2017/3/23 | YMS | ISO | 0.65 | Kyotanabe | 0.0 | 32.0 | 2.9 | 6.5 | 14.1 | 2.1 | 12.0 | 2.8 |
9 | 2017/3/24 | KHW | ISO | 0.49 | Kahoku | 0.0 | 38.5 | 3.3 | 6.2 | 13.3 | 0.3 | 13.0 | 1.5 |
10 | 2017/4/27 | YMS | ISO | 0.35 | Kyotanabe | 1.0 | 14.5 | 4.7 | 6.0 | 19.1 | 7.5 | 11.6 | 7.9 |
11 | 2017/4/27 | SAP | ISO | 0.3 | Sapporo | 0.5 | 18.5 | 7.1 | 10.3 | 13.9 | 5.4 | 8.5 | 4.5 |
12 | 2016/6/21 | SAP | ISO | 0.21 | Sapporo | 0.0 | 93.5 | 7.4 | 12.1 | 25.4 | 16.5 | 8.9 | 9.9 |
13 | 2016/6/23 | FJY | ISO | 0.16 | Kawaguchiko | 7.0 | 12.5 | 3.8 | 5.3 | 26.9 | 17.6 | 9.3 | 4.5 |
14 | 2018/10/26 | KHW | ISO | 0.13 | Kahoku | 24.0 | 5.5 | 1.6 | 4.7 | 20.7 | 6.6 | 14.1 | 0.8 |
15 | 2018/6/19 | SAP | ISO | 0.13 | Sapporo | 0.0 | 55.5 | 6.7 | 10.7 | 24.4 | 15.2 | 9.2 | 13.8 |
16 | 2017/6/6 | SAP | ISO | 0.13 | Sapporo | 0.0 | 42.0 | 12.2 | 12.2 | 23.8 | 7.6 | 16.2 | 13.5 |
17 | 2017/6/27 | SAP | ISO | 0.13 | Sapporo | 0.0 | 89.0 | 7.2 | 12.2 | 22.2 | 11.6 | 10.6 | 4.2 |
18 | 2016/2/15 | FJY | ISO | 0.09 | Kawaguchiko | 0.0 | 40.0 | 7.3 | 9.0 | 10.9 | −4.2 | 15.1 | 1.2 |
19 | 2018/6/11 | API | ISO | 0.09 | Okunakayama | 13.0 | 17.0 | 3.2 | 3.9 | 16.9 | 11.4 | 5.5 | 0.0 |
20 | 2016/5/2 | SAP | ISO | 0.07 | Sapporo | 0.0 | 22.5 | 9.1 | 12.3 | 17.0 | 1.7 | 15.3 | 10.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyama, T.; Morishita, T.; Kominami, Y.; Noguchi, H.; Yasuda, Y.; Yoshifuji, N.; Okano, M.; Yamanoi, K.; Mizoguchi, Y.; Takanashi, S.; et al. Increases in Biogenic Volatile Organic Compound Concentrations Observed after Rains at Six Forest Sites in Non-Summer Periods. Atmosphere 2020, 11, 1381. https://doi.org/10.3390/atmos11121381
Miyama T, Morishita T, Kominami Y, Noguchi H, Yasuda Y, Yoshifuji N, Okano M, Yamanoi K, Mizoguchi Y, Takanashi S, et al. Increases in Biogenic Volatile Organic Compound Concentrations Observed after Rains at Six Forest Sites in Non-Summer Periods. Atmosphere. 2020; 11(12):1381. https://doi.org/10.3390/atmos11121381
Chicago/Turabian StyleMiyama, Takafumi, Tomoaki Morishita, Yuji Kominami, Hironori Noguchi, Yukio Yasuda, Natsuko Yoshifuji, Michiaki Okano, Katsumi Yamanoi, Yasuko Mizoguchi, Satoru Takanashi, and et al. 2020. "Increases in Biogenic Volatile Organic Compound Concentrations Observed after Rains at Six Forest Sites in Non-Summer Periods" Atmosphere 11, no. 12: 1381. https://doi.org/10.3390/atmos11121381
APA StyleMiyama, T., Morishita, T., Kominami, Y., Noguchi, H., Yasuda, Y., Yoshifuji, N., Okano, M., Yamanoi, K., Mizoguchi, Y., Takanashi, S., Kitamura, K., & Matsumoto, K. (2020). Increases in Biogenic Volatile Organic Compound Concentrations Observed after Rains at Six Forest Sites in Non-Summer Periods. Atmosphere, 11(12), 1381. https://doi.org/10.3390/atmos11121381