Solar Ultraviolet Radiation in Pretoria and Its Relations to Aerosols and Tropospheric Ozone during the Biomass Burning Season
Abstract
:1. Introduction
2. Data and Methods
2.1. Aerosol Data from the CSIR Station
2.2. Tropospheric Ozone Data from the Irene Station
2.3. Observed UVB Data for Pretoria
2.4. Modelled UVR over Pretoria
2.5. Effect of Aerosol and Ozone on UVR over Pretoria
3. Results and Discussion
3.1. Aerosol Climatology
3.2. Tropospheric Ozone
3.3. Observed and Modelled UVI Levels
3.4. Anomalous AOD over Pretoria
3.5. Effect of Aerosols and Tropospheric Ozone
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fioletov, V.; Kerr, J.B.; Fergusson, A. The UV index: Definition, distribution and factors affecting it. Can. J. Public Health 2010, 101, I5–I9. [Google Scholar] [CrossRef] [PubMed]
- Bais, A.F.; Zerefos, C.S.; Meleti, C.; Ziomas, I.C.; Tourpali, K. Spectral measurements of solar UVB radiation and its relations to total ozone, SO2, and clouds. J. Geophys. Res. Atmos. 1993, 98, 5199–5204. [Google Scholar] [CrossRef]
- Lerche, C.; Philipsen, P.; Wulf, H. UVR: Sun, lamps, pigmentation and vitamin D. Photochem. Photobiol. Sci. 2017, 16, 291–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heald, C.L.; Ridley, D.A.; Kroll, J.H.; Barrett, S.R.H.; Cady-Pereira, K.E.; Alvarado, M.J.; Holmes, C.D. Contrasting the direct radiative effect and direct radiative forcing of aerosols. Atmos. Chem. Phys. 2014, 14, 5513–5527. [Google Scholar] [CrossRef] [Green Version]
- Rap, A.; Scott, C.E.; Spracklen, D.V.; Bellouin, N.; Forster, P.M.; Carslaw, K.S.; Schmidt, A.; Mann, G. Natural aerosol direct and indirect radiative effects. Geophys. Res. Lett. 2013, 40, 3297–3301. [Google Scholar] [CrossRef] [Green Version]
- Pfeifer, M.; Koepke, P.; Reuder, J. Effects of altitude and aerosol on UV radiation. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Tesfaye, M.; Sivakumar, V.; Botai, J.; Mengistu Tsidu, G. Aerosol climatology over South Africa based on 10 years of Multiangle Imaging Spectroradiometer (MISR) data. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Duflot, V.; Dils, B.; Baray, J.L.; De Mazière, M.; Attié, J.L.; Vanhaelewyn, G.; Senten, C.; Vigouroux, C.; Clain, G.; Delmas, R. Analysis of the origin of the distribution of CO in the subtropical southern Indian Ocean in 2007. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Thompson, A.M.; Witte, J.C.; Hudson, R.D.; Guo, H.; Herman, J.R.; Fujiwara, M. Tropical tropospheric ozone and biomass burning. Science 2001, 291, 2128–2132. [Google Scholar] [CrossRef]
- Piketh, S.J.; Annegarn, H.J.; Tyson, P.D. Lower tropospheric aerosol loadings over South Africa: The relative contribution of aeolian dust, industrial emissions, and biomass burning. J. Geophys. Res. Atmos. 1999, 104, 1597–1607. [Google Scholar] [CrossRef]
- Sinha, P.; Jaeglé, L.; Hobbs, P.V.; Liang, Q. Transport of biomass burning emissions from southern Africa. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Diab, R.D.; Thompson, A.M.; Mari, K.; Ramsay, L.; Coetzee, G.J.R. Tropospheric ozone climatology over Irene, South Africa, from 1990 to 1994 and 1998 to 2002. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef]
- Randles, C.A.; Ramaswamy, V. Direct and semi-direct impacts of absorbing biomass burning aerosol on the climate of southern Africa: A Geophysical Fluid Dynamics Laboratory GCM sensitivity study. Atmos. Chem. Phys. 2010, 10, 9819–9831. [Google Scholar] [CrossRef] [Green Version]
- Edwards, D.P.; Emmons, L.K.; Gille, J.C.; Chu, A.; Attié, J.-L.; Giglio, L.; Wood, S.W.; Haywood, J.; Deeter, M.N.; Massie, S.T.; et al. Satellite-observed pollution from Southern Hemisphere biomass burning. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Kumar, K.R.; Sivakumar, V.; Reddy, R.R.; Gopal, K.R.; Adesina, A.J. Inferring wavelength dependence of AOD and Ångström exponent over a sub-tropical station in South Africa using AERONET data: Influence of meteorology, long-range transport and curvature effect. Sci. Total Environ. 2013, 461–462, 397–408. [Google Scholar] [CrossRef]
- Vakkari, V.; Kerminen, V.-M.; Beukes, J.P.; Tiitta, P.; van Zyl, P.G.; Josipovic, M.; Venter, A.D.; Jaars, K.; Worsnop, D.R.; Kulmala, M.; et al. Rapid changes in biomass burning aerosols by atmospheric oxidation. Geophys. Res. Lett. 2014, 41, 2644–2651. [Google Scholar] [CrossRef] [Green Version]
- Monks, P.S.; Archibald, A.T.; Colette, A.; Cooper, O.; Coyle, M.; Derwent, R.; Fowler, D.; Granier, C.; Law, K.S.; Mills, G.E.; et al. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys. 2015, 15, 8889–8973. [Google Scholar] [CrossRef] [Green Version]
- Klonecki, A.; Levy, H., II. Tropospheric chemical ozone tendencies in CO-CH4-NOy-H2O system: Their sensitivity to variations in environmental parameters and their application to a global chemistry transport model study. J. Geophys. Res. Atmos. 1997, 102, 21221–21237. [Google Scholar] [CrossRef]
- Cooper, O.R.; Parrish, D.D.; Ziemke, J.; Cupeiro, M.; Galbally, I.E.; Gilge, S.; Horowitz, L.; Jensen, N.R.; Lamarque, J.-F.; Naik, V. Global distribution and trends of tropospheric ozone: An observation-based review. Elem. Sci. Anthr. 2014. [Google Scholar] [CrossRef]
- Sivakumar, V.; Ogunniyi, J. Ozone climatology and variability over Irene, South Africa determined by ground based and satellite observations. Part 1: Vertical variations in the troposphere and stratosphere. Atmósfera 2017, 30, 337–353. [Google Scholar] [CrossRef] [Green Version]
- Adesina, A.J.; Kumar, K.R.; Sivakumar, V.; Griffith, D. Direct radiative forcing of urban aerosols over Pretoria (25.75° S, 28.28° E) using AERONET Sunphotometer data: First scientific results and environmental impact. J. Environ. Sci. 2014, 26, 2459–2474. [Google Scholar] [CrossRef]
- NASA Goddard Space Flight Center, Goddard Earth Sciences Data and Information Services Center. AERONET Aerosol Optical Depth Data. Available online: https://aeronet.gsfc.nasa.gov/cgi-bin/data_display_aod_v3?site=Pretoria_CSIR-DPSS&nachal=2&level=3&place_code=10 (accessed on 25 November 2020).
- Dubovik, O.; Holben, B.; Eck, T.F.; Smirnov, A.; Kaufman, Y.J.; King, M.D.; Tanré, D.; Slutsker, I. Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations. J. Atmos. Sci. 2002, 59, 590–608. [Google Scholar] [CrossRef]
- NASA Goddard Space Flight Center, Goddard Earth Sciences Data and Information Services Center. Version 2 AOD Descriptions. Available online: https://aeronet.gsfc.nasa.gov/new_web/data_description_AOD_V2.html (accessed on 25 November 2020).
- Eck, T.F.; Holben, B.N.; Reid, J.S.; Dubovik, O.; Smirnov, A.; O’neill, N.T.; Slutsker, I.; Kinne, S. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. Atmos. 1999, 104, 31333–31349. [Google Scholar] [CrossRef]
- Schuster, G.L.; Dubovik, O.; Holben, B.N. Angstrom exponent and bimodal aerosol size distributions. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Eck, T.F.; Holben, B.N.; Dubovik, O.; Smirnov, A.; Goloub, P.; Chen, H.B.; Chatenet, B.; Gomes, L.; Zhang, X.-Y.; Tsay, S.-C.; et al. Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
- O’Neill, N.T.; Eck, T.F.; Holben, B.N.; Smirnov, A.; Dubovik, O.; Royer, A. Bimodal size distribution influences on the variation of Angstrom derivatives in spectral and optical depth space. J. Geophys. Res. Atmos. 2001, 106, 9787–9806. [Google Scholar] [CrossRef]
- Holben, B.; Eck, T.; Slutsker, I.; Smirnov, A.; Sinyuk, A.; Schafer, J.; Giles, D.; Dubovik, O. Aeronet’s Version 2.0 Quality Assurance Criteria; SPIE: Bellingham, WA, USA, 2006; Volume 6408. [Google Scholar]
- NASA Goddard Space Flight Center, Goddard Earth Sciences Data and Information Services Center. AERONET Inversion Products (Version 3). Available online: https://aeronet.gsfc.nasa.gov/new_web/Documents/Inversion_products_for_V3.pdf (accessed on 25 November 2020).
- Moosmüller, H.; Sorensen, C.M. Single scattering albedo of homogeneous, spherical particles in the transition regime. J. Quant. Spectrosc. Radiat. Transf. 2018, 219, 333–338. [Google Scholar] [CrossRef]
- Thompson, A.M.; Witte, J.C.; Sterling, C.; Jordan, A.; Johnson, B.J.; Oltmans, S.J.; Fujiwara, M.; Vömel, H.; Allaart, M.; Piters, A.; et al. First Reprocessing of Southern Hemisphere Additional Ozonesondes (SHADOZ) Ozone Profiles (1998–2016): 2. Comparisons With Satellites and Ground-Based Instruments. J. Geophys. Res. Atmos. 2017, 122, 13000–13025. [Google Scholar] [CrossRef]
- Witte, J.C.; Thompson, A.M.; Smit, H.G.J.; Fujiwara, M.; Posny, F.; Coetzee, G.J.R.; Northam, E.T.; Johnson, B.J.; Sterling, C.W.; Mohamad, M.; et al. First reprocessing of Southern Hemisphere ADditional OZonesondes (SHADOZ) profile records (1998–2015): 1. Methodology and evaluation. J. Geophys. Res. Atmos. 2017, 122, 6611–6636. [Google Scholar] [CrossRef]
- Witte, J.C.; Thompson, A.M.; Smit, H.G.J.; Vömel, H.; Posny, F.; Stübi, R. First Reprocessing of Southern Hemisphere ADditional OZonesondes Profile Records: 3. Uncertainty in Ozone Profile and Total Column. J. Geophys. Res. Atmos. 2018, 123, 3243–3268. [Google Scholar] [CrossRef]
- WMO. A three-dimensional science. WMO Bull. 1957, 6, 134–138. [Google Scholar]
- Coetzee, G.J.R. Pretoria Solar UVB Radiation Data; SAWS: San Antonio, TX, USA, 2020. [Google Scholar]
- SolarLight. Available online: https://solarlight.com/wp-content/uploads/Meters_Model-501-UVB.pdf (accessed on 7 March 2020).
- Heckman, C.J.; Chandler, R.; Kloss, J.D.; Benson, A.; Rooney, D.; Munshi, T.; Darlow, S.D.; Perlis, C.; Manne, S.L.; Oslin, D.W. Minimal Erythema Dose (MED) Testing. JoVE 2013, e50175. [Google Scholar] [CrossRef] [PubMed]
- McKinlay, A.F.; Diffey, B.L. A reference action spectrum for ultraviolet erythema in human skin. CIE J. 1987, 6, 17–22. [Google Scholar]
- Nollas, F.; Luccini, E.; Carbajal, G.; Orte, F.; Wolfran, E.; Hülsen, G.; Gröbner, J. Report of the Fifth Erythemal UV Radiometers Intercomparison: Buenos Aires, Argentina, 2018; World Meteorological Organisation: Geneva, Switzerland, 2019. [Google Scholar]
- Cadet, J.-M.; Bencherif, H.; Portafaix, T.; Lamy, K.; Ncongwane, K.; Coetzee, G.J.R.; Wright, C.Y. Comparison of Ground-Based and Satellite-Derived Solar UV Index Levels at Six South African Sites. Int. J. Env. Res. Public Health 2017, 14, 1384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodeker, G.E.; McKenzie, R.L. An algorithm for inferring surface UV irradiance including cloud effects. J. Appl. Meteorol. 1996, 35, 1860–1877. [Google Scholar] [CrossRef] [Green Version]
- du Preez, D.J.; Ajtić, J.V.; Bencherif, H.; Bègue, N.; Cadet, J.M.; Wright, C.Y. Spring and summer time ozone and solar ultraviolet radiation variations over Cape Point, South Africa. Ann. Geophys. 2019, 37, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Madronich, S. UV radiation in the natural and perturbed atmosphere. In Environmental Effects of UV; Tevini, M., Ed.; Lewis Publisher: Boca Raton, FL, USA, 1993. [Google Scholar]
- Stamnes, K.; Tsay, S.-C.; Wiscombe, W.; Jayaweera, K. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt. 1988, 27, 2502–2509. [Google Scholar] [CrossRef]
- Palancar, G.G.; Lefer, B.L.; Hall, S.R.; Shaw, W.J.; Corr, C.A.; Herndon, S.C.; Slusser, J.R.; Madronich, S. Effect of aerosols and NO2 concentration on ultraviolet actinic flux near Mexico City during MILAGRO: Measurements and model calculations. Atmos. Chem. Phys. 2013, 13, 1011–1022. [Google Scholar] [CrossRef] [Green Version]
- Bhartia, P.K. OMI/Aura TOMS-Like Ozone and Radiative Cloud Fraction L3 1 Day 0.25 Degree X 0.25 Degree V3; NASA Goddard Space Flight Center Goddard Earth Sciences Data and Information Services Center: Greenbelt, MD, USA, 2012. [Google Scholar] [CrossRef]
- Krotkov, N.A.; Lamsal, L.N.; Marchenko, S.V.; Celarier, E.A.; Bucsela, E.J.; Swartz, W.H.; Joiner, J. OMI/Aura NO2 Cloud-Screened Total and Tropospheric Column L3 Global Gridded 0.25 Degree X 0.25 Degree V3; NASA Goddard Space Flight Center, Goddard Earth Sciences Data and Information Services Center: Greenbelt, MD, USA, 2019. [Google Scholar] [CrossRef]
- McPeters, R.D.; Labow, G.J. Climatology 2011: An MLS and sonde derived ozone climatology for satellite retrieval algorithms. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Cunnold, D.M.; Wang, H.J.; Thomason, L.W.; Zawodny, J.M.; Logan, J.A.; Megretskaia, I.A. SAGE (version 5.96) ozone trends in the lower stratosphere. J. Geophys. Res. Atmos. 2000, 105, 4445–4457. [Google Scholar] [CrossRef]
- Elterman, L. UV, Visible and IR attenuation for altitudes to 50 km. Environ. Res. Pap. 1968, 285. [Google Scholar]
- Kinne, S. The MACv2 aerosol climatology. Tellus B Chem. Phys. Meteorol. 2019, 71, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, P.T.; Keeble, J.; Shin, Y.M.; Abraham, N.L.; Archibald, A.T.; Pyle, J.A. On the Changing Role of the Stratosphere on the Tropospheric Ozone Budget: 1979–2010. Geophys. Res. Lett. 2020, 46, e2019GL086901. [Google Scholar] [CrossRef] [Green Version]
- Mkololo, T.; Mbatha, N.; Sivakumar, V.; Bègue, N.; Coetzee, G.; Labuschagne, C. Stratosphere–Troposphere Exchange and O3 Variability in the Lower Stratosphere and Upper Troposphere over the Irene SHADOZ Site, South Africa. Atmosphere 2020, 11, 586. [Google Scholar] [CrossRef]
- Kumar, K.R.; Sivakumar, V.; Yin, Y.; Reddy, R.R.; Kang, N.; Diao, Y.; Adesina, A.J.; Yu, X. Long-term (2003–2013) climatological trends and variations in aerosol optical parameters retrieved from MODIS over three stations in South Africa. Atmos. Environ. 2014, 95, 400–408. [Google Scholar] [CrossRef]
- Power, H.C.; Willmott, C.J. Seasonal and interannual variability in atmospheric turbidity over South Africa. Int. J. Clim. 2001, 21, 579–591. [Google Scholar] [CrossRef]
- Thompson, A.M.; Balashov, N.V.; Witte, J.C.; Coetzee, J.G.R.; Thouret, V.; Posny, F. Tropospheric ozone increases over the southern Africa region: Bellwether for rapid growth in Southern Hemisphere pollution? Atmos. Chem. Phys. 2014, 14, 9855–9869. [Google Scholar] [CrossRef] [Green Version]
- Balashov, N.V.; Thompson, A.M.; Piketh, S.J.; Langerman, K.E. Surface ozone variability and trends over the South African Highveld from 1990 to 2007. J. Geophys. Res. Atmos. 2014, 119, 4323–4342. [Google Scholar] [CrossRef] [Green Version]
- Cadet, J.-M.; Portafaix, T.; Bencherif, H.; Lamy, K.; Brogniez, C.; Auriol, F.; Metzger, J.-M.; Boudreault, L.-E.; Wright, C.Y. Inter-Comparison Campaign of Solar UVR Instruments under Clear Sky Conditions at Reunion Island (21° S, 55° E). Int. J. Environ. Res. Public Health 2020, 17, 2867. [Google Scholar] [CrossRef] [Green Version]
- Lamy, K.; Portafaix, T.; Brogniez, C.; Godin-Beekmann, S.; Bencherif, H.; Morel, B.; Pazmino, A.; Metzger, J.M.; Auriol, F.; Deroo, C.; et al. Ultraviolet radiation modelling from ground-based and satellite measurements on Reunion Island, southern tropics. Atmos. Chem. Phys. 2018, 18, 227–246. [Google Scholar] [CrossRef] [Green Version]
- Andrada, G.C.; Palancar, G.G.; Toselli, B.M. Using the optical properties of aerosols from the AERONET database to calculate surface solar UV-B irradiance in Córdoba, Argentina: Comparison with measurements. Atmos. Environ. 2008, 42, 6011–6019. [Google Scholar] [CrossRef]
- Wenny, B.N.; Saxena, V.K.; Frederick, J.E. Aerosol optical depth measurements and their impact on surface levels of ultraviolet-B radiation. J. Geophys. Res. Atmos. 2001, 106, 17311–17319. [Google Scholar] [CrossRef]
- Brühl, C.; Crutzen, P.J. On the disproportionate role of tropospheric ozone as a filter against solar UV-B radiation. Geophys. Res. Lett. 1989, 16, 703–706. [Google Scholar] [CrossRef]
- Madronich, S.; Wagner, M.; Groth, P. Influence of Tropospheric Ozone Control on Exposure to Ultraviolet Radiation at the Surface. Environ. Sci. Technol. 2011, 45, 6919–6923. [Google Scholar] [CrossRef] [PubMed]
- Clain, G.; Baray, J.-L.; Delmas, R.; Diab, R.; de Bellevue, J.L.; Keckhut, P.; Posny, F.; Metzger, J.-M.; Cammas, J.-P. Tropospheric ozone climatology at two Southern Hemisphere tropical/subtropical sites, (Reunion Island and Irene, South Africa) from ozonesondes, LIDAR, and in situ aircraft measurements. Atmos. Chem. Phys. 2009, 9, 1723–1734. [Google Scholar] [CrossRef] [Green Version]
- Bencherif, H.; Toihir, A.M.; Mbatha, N.; Sivakumar, V.; du Preez, D.J.; Bègue, N.; Coetzee, G.J.R. Ozone Variability and Trend Estimates from 20-Years of Ground-Based and Satellite Observations at Irene Station, South Africa. Atmosphere 2020, 11. [Google Scholar] [CrossRef]
Aerosol | Tropospheric ozone | RD—August | RD—September | RD—October | |
---|---|---|---|---|---|
Simulation 1 | BB * | BB | −4 | -3 | -7 |
Simulation 2 | BGL ** | BGL | −2 | 11 | 2 |
Simulation 3 | BB | BGL | −4 | −2 | −6 |
Simulation 4 | BGL | BB | −2 | 10 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
du Preez, D.J.; Bencherif, H.; Portafaix, T.; Lamy, K.; Wright, C.Y. Solar Ultraviolet Radiation in Pretoria and Its Relations to Aerosols and Tropospheric Ozone during the Biomass Burning Season. Atmosphere 2021, 12, 132. https://doi.org/10.3390/atmos12020132
du Preez DJ, Bencherif H, Portafaix T, Lamy K, Wright CY. Solar Ultraviolet Radiation in Pretoria and Its Relations to Aerosols and Tropospheric Ozone during the Biomass Burning Season. Atmosphere. 2021; 12(2):132. https://doi.org/10.3390/atmos12020132
Chicago/Turabian Styledu Preez, D. Jean, Hassan Bencherif, Thierry Portafaix, Kévin Lamy, and Caradee Yael Wright. 2021. "Solar Ultraviolet Radiation in Pretoria and Its Relations to Aerosols and Tropospheric Ozone during the Biomass Burning Season" Atmosphere 12, no. 2: 132. https://doi.org/10.3390/atmos12020132
APA Styledu Preez, D. J., Bencherif, H., Portafaix, T., Lamy, K., & Wright, C. Y. (2021). Solar Ultraviolet Radiation in Pretoria and Its Relations to Aerosols and Tropospheric Ozone during the Biomass Burning Season. Atmosphere, 12(2), 132. https://doi.org/10.3390/atmos12020132