Can Technological Development Compensate for the Unfavorable Impacts of Climate Change? Conclusions from 50 Years of Maize (Zea mays L.) Production in Hungary
Abstract
:1. Introduction
2. Experiments
2.1. Crop Yield and Meteorological Databases
2.2. Statistical Analyses
3. Results and Discussion
3.1. Long-Term Maize Production Data in Hungary between 1970 and 2019
3.2. Long-Term Climatic Data in Hungary (1970–2019)
3.3. Correlation of Climatic and Maize Yield Data in Hungary (1970–2019)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nielsen, R.L. Corn Grain Yield Trends: Eyes of the Beholder; Corny News Network; Purdue University Department of Agronomy: West Lafayette, IN, USA, 2006; Available online: http://www.kingcorn.org/news/articles.06/YieldTrends-0615.html (accessed on 30 September 2020).
- Olesen, J.E.; Trnka, M.; Kersebaum, K.C.; Skjelvag, A.O.; Seguin, B.; Peltonen-Saionio, P.; Rossi, F.; Kozyra, J.; Micale, F. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 2011, 34, 96–112. [Google Scholar] [CrossRef]
- Marton, L.C. Hybrid maize in Hungary is 60 years old. In 60 Years of Hungarian Hybrid Maize (1953–2013), Proceedings of the 2013 Hungarian Science Festival, Hybrid Maize Conference, Martonvásár, Hungary, 14 November 2013; Marton, L.C., Spitkó, T., Eds.; Pannonian Plant Biotechnology Association: Martonvásár, Hungary, 2013; pp. 10–16. ISBN 978-963-89129-4-7. [Google Scholar]
- Lipper, L.; McCarthy, N.; Zilberman, D.; Asfaw, S.; Branca, G. Climate Smart Agriculture. Building Resilience to Climate Change; Food and Agriculture Organization of the United Nations: Rome, Italy; Springer International Publishing AG: New York, NY, USA, 2018; pp. 1–630. ISBN 978-3-319-61193-8. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, R.L. Historical Corn Grain Yields in the U.S; Purdue University Department of Agronomy: West Lafayette, IN, USA, 2020; Available online: http://www.kingcorn.org/news/timeless/YieldTrends.html (accessed on 30 September 2020).
- Csáki, C.; Lerman, Z. Land reform and farm restructuring in East Central Europe and CIS in the 1990’s: Expectations and achievements after the first five years. Eur. Rev. Agric. Econ. 1997, 24, 428–452. [Google Scholar] [CrossRef]
- Burger, A. Agricultural development and land concentration in a central European country: A case study of Hungary. Land Use Policy 2001, 18, 259–268. [Google Scholar] [CrossRef]
- Amanullah, K.; Fahad, S. Corn—Production and Human Health in Changing Climate; IntechOpen: London, UK, 2018; pp. 1–148. ISBN 978-1-78984-155-8. [Google Scholar] [CrossRef]
- Olesen, J.E.; Bindi, M. Consequences of climate change for European agricultural productivity, land use and policy. Eur. J. Agron. 2002, 16, 239–262. [Google Scholar] [CrossRef]
- Szerb, B.A. The opportunities of the Hungarian corn at the international agricultural markets in 2016. Reg. Bus. Stud. 2016, 8, 59–67. [Google Scholar]
- Wolf, J.; van Diepen, C.A. Effects of climate change on grain maize yields. Clim. Chang. 1995, 29, 299–331. [Google Scholar] [CrossRef] [Green Version]
- Fogarasi, J.; Kemény, G.; Molnár, A.; Kemény Horváth, Z.; Zubor-Nemes, A.; Kiss, A. Modelling climate effects on Hungarian winter wheat and maize yields. Stud. Agric. Econ. 2016, 118, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Juhász, C.; Gálya, B.; Kovács, E.; Nagy, A.; Tamás, J.; Huzsvai, L. Seasonal predictability of weather and crop yield in regions of Central European continental climate. Comput. Electron. Agric. 2020, 173, 105400. [Google Scholar] [CrossRef]
- Roudier, P.; Sultan, B.; Quirion, P.; Berg, A. The impact of future climate change on West African crop yields: What does the recent literature say? Global Environ. Chang. 2011, 21, 1073–1083. [Google Scholar] [CrossRef] [Green Version]
- Carter, T.R.; Porter, J.H.; Parry, M.L. Climatic warming and crop potential in Europe: Prospects and uncertainties. Glob. Environ. Chang. 1991, 1, 291–312. [Google Scholar] [CrossRef]
- Alcamo, J.; Dronin, N.; Endejan, M.; Golubev, G.; Kirilenko, A. A new assessment of climate change impacts on food production shortfalls and water availability in Russia. Glob. Environ. Chang. 2007, 17, 429–444. [Google Scholar] [CrossRef]
- Waha, K.; Müller, C.; Bondeau, A.; Dietrich, J.P.; Kurukulasuriya, P.; Heinke, J.; Lotze-Campen, H. Adaptation to climate change through the choice of cropping system and sowing date in sub-Saharan Africa. Glob. Environ. Chang. 2013, 23, 130–143. [Google Scholar] [CrossRef]
- Dobor, L.; Barcza, Z.; Glásny, T.; Árendás, T.; Spitkó, T. Crop planting date matters: Estimation methods and effect on future yields. Agric. For. Meteorol. 2016, 223, 103–115. [Google Scholar] [CrossRef]
- Berzsenyi, Z.; Tokatlidis, I.S. Density dependence rather than maturity determines hybrid selection in dryland maize production. Agron. J. 2012, 104, 331–336. [Google Scholar] [CrossRef]
- Sárvári, M.; Pepó, P. Effect of production factors on maize yield and yield stability. Cereal Res. Commun. 2014, 42, 710–720. [Google Scholar] [CrossRef] [Green Version]
- Széles, A.; Nagy, J.; Rátonyi, T.; Harsányi, E. Effect of differential fertilization treatments on maize hybrid quality and performance under environmental stress conditions in Hungary. Maydica 2019, 62, 11–14. [Google Scholar]
- Parent, B.; Leclere, M.; Lacube, S.; Semenov, M.A.; Welcker, C.; Martre, P.; Fardieu, F. Maize yields over Europe may increase in spite of climate change, with appropriate use of genetic variability of flowering time. Proc. Natl. Acad. Sci. USA 2018, 115, 10642–10647. Available online: www.pnas.org/cgi/doi/10.1073/pnas.1720716115 (accessed on 30 September 2020). [CrossRef] [PubMed] [Green Version]
- Mercel, K.L.; Rerales, H.R.; Wainwright, J.D. Climate change and the transgenic adaptation strategy: Smallholder livelihoods, climate justice, and maize landraces in Mexico. Glob. Environ. Chang. 2012, 22, 495–504. [Google Scholar] [CrossRef]
- Collins, M.; Knutti, R.; Arblaster, J.; Dufresne, J.-L.; Fichefet, T.; Friedlingstein, P.; Gao, X.; Gutowski, W.J.; Johns, T.; Krinner, G.; et al. Long-term climate change: Projections, commitments and irreversibility. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; Chapter 12; pp. 1029–1136. [Google Scholar] [CrossRef] [Green Version]
- Döös, B.R.; Shaw, R. Can we predict the future food production? A sensitivity analysis. Glob. Environ. Chang. 1999, 9, 261–283. [Google Scholar] [CrossRef]
- Bassu, S.; Brisson, N.; Durand, J.-L.; Boote, K.; Lizaso, J.; Jones, J.W.; Rosenweig, C.; Ruane, A.C.; Adam, M.; Baron, C.; et al. How do various maize crop models vary in their responses to climate change factors? Glob. Chang. Biol. 2014, 20, 2301–2320. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, P.G.; Thornton, P.K. The potential impacts of climate change on maize production in Africa and Latin America in 2055. Glob. Environ. Chang. 2003, 13, 51–59. [Google Scholar] [CrossRef]
- Thornton, P.K.; Jones, P.G.; Alagarswamy, G.; Andersen, J. Spatial variation of crop yield response to climate change in East Africa. Glob. Environ. Chang. 2009, 19, 54–65. [Google Scholar] [CrossRef]
- Ma, J.; Maystadt, J.-F. The impact of weather variations on maize yields and household income: Income diversification as adaptation in rural China. Glob. Environ. Chang. 2017, 42, 93–106. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D.B.; Burke, M.B. On the use of statistical models to predict crop yield responses to climate change. Agric. For. Meteorol. 2010, 150, 1443–1452. [Google Scholar] [CrossRef]
- Metzger, M.J.; Bunce, R.G.H.; Jongman, R.H.G.; Mücher, C.A.; Watkins, J.W. A climatic stratification of the environment of Europe. Glob. Ecol. Biogeogr. 2005, 14, 549–563. [Google Scholar] [CrossRef]
- Durdu, Ö.F. Evaluation of climate change effects on future corn (Zea mays L.) yield in western Turkey. Int. J. Climatol. 2013, 33, 444–456. [Google Scholar] [CrossRef]
- Vanuytrecht, E.; Raes, D.; Willems, P. Regional and global climate projections increase mid-century yield variability and crop productivity in Belgium. Reg. Environ. Chang. 2015, 16, 659–672. [Google Scholar] [CrossRef] [Green Version]
- Supit, I.; van Diepen, C.A.; de Wit, A.J.W.; Kabat, P.; Baruth, B.; Ludwig, F. Recent changes in the climatic yield potential of various crops in Europe. Agric. Syst. 2010, 103, 683–694. [Google Scholar] [CrossRef]
- Wu, F.; Guclu, H. Global maize trade and food security: Implications from a social network model. Risk Anal. 2013, 33, 2168–2178. [Google Scholar] [CrossRef] [Green Version]
- Fertő, I.; Szerb, A.B. The role of food crisis and trade costs in the Hungarian maize exports. Probl. Agric. Econ. 2017, 353, 110–124. [Google Scholar] [CrossRef]
- Juhász, A.; Wagner, H. An analysis of Hungarian agri-food export competitiveness. Stud. Agric. Econ. 2013, 115, 150–156. [Google Scholar] [CrossRef] [Green Version]
- United Nations Commodity Trade Statistics Database (UNComtrade). Available online: http://comtrade.un.org (accessed on 24 May 2020).
- Harvest Results of Main Crops. 2019. Available online: http://www.ksh.hu/docs/hun/xftp/stattukor/fobbnoveny/2019/index.html (accessed on 24 May 2020).
- Hungarian Meteorological Service, 2019. National Inventory Report for 1985–2017, Hungary. Available online: https://www.met.hu/eghajlat/magyarorszag_eghajlata/eghajlati_adatsorok (accessed on 24 May 2020).
- Statistical Book of the Agro-Economic Research Institute of Hungary. Available online: http://repo.aki.gov.hu/2581/1/Zsebkonyv_2016_magyar_web_pass.pdf (accessed on 24 May 2020).
- Haylock, M.R.; Hofstra, N.; Klein Tank, A.M.G. A European daily high-resolution gridded dataset of surface temperature and precipitation. J. Geophys. Res. Atmos. 2008, 113, D20119. [Google Scholar] [CrossRef] [Green Version]
- Royston, P. Algorithm AS 181: The W test for Normality. Appl. Stat. 1982, 31, 176–180. [Google Scholar] [CrossRef]
- Royston, P. An extension of Shapiro and Wilk’s W test for normality to large samples. Appl. Stat. 1982, 31, 115–124. [Google Scholar] [CrossRef]
- Royston, P. Remark AS R94: A remark on Algorithm AS 181: The W test for normality. Appl. Stat. 1995, 44, 547–551. [Google Scholar] [CrossRef]
- Chambers, J.M. Linear models. In Statistical Models in S; Chambers, J.M., Hastie, T.J., Eds.; Wadsworth & Brooks/Cole: Pacific Grove, CA, USA, 1992; Chapter 4. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; Chapter 4; Available online: www.fao.org (accessed on 30 September 2020).
- Akaike, H. Information theory and an extension of the maximum likelihood principle. In Proceedings of the 2nd International Symposium on Information Theory, Tsahkadsor, Armenia, 2–8 September 1971; Petrov, B.N., Csáki, F., Eds.; Akadémiai Kiadó: Budapest, Hungary, 1973; pp. 267–281. [Google Scholar]
- Teasdale, J.R.; Cavigelli, M.A. Meteorological fluctuations define long-term crop yield patterns in conventional and organic production systems. Sci. Rep. 2017, 7, 688. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 30 September 2020).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; pp. 1–216. [Google Scholar]
- Swain, N. Hungary—The Rise and Fall of Feasible Socialism; Verso: Guildford, UK, 1992; pp. 1–272. ISBN 0860915697. [Google Scholar]
- Mathijs, E.; Mészáros, S. Privatisation and restructuring of Hungarian agriculture. In Agricultural Privatization, Land Reform and Farm Restructuring in Central and Eastern Europe; Swinnen, J.F.M., Buckwell, A., Mathijs, E., Eds.; CRC Press Series; Routledge Revivals: London, UK, 1997; pp. 161–188. ISBN 978-1859726488. [Google Scholar]
- Oros, I. The Hungarian agriculture and its output in the 20th century. Stat. Szle. 2000, 78, 3–23. [Google Scholar]
- Loch, J. Nutrient management in Hungary—A review. Agrochem. Soil Sci. 2015, 64, 273–382. [Google Scholar] [CrossRef] [Green Version]
- Lerman, Z.; Csáki, C.; Feder, G. Land Policies and Evolving Farm Structures in Transition Countries; The World Bank: Washington, DC, USA, 2002; pp. 1–172. [Google Scholar] [CrossRef]
- Hartvigsen, M.B. Land Reform in Central and Eastern Europe after 1989 and Its Outcome in Form of Farm Structures and Land Fragmentation; FAO Land Tenure Working Paper 24; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; Available online: http://www.fao.org/docrep/017/aq097e/aq097e.pdf (accessed on 30 September 2020).
- Potori, N.; Chmielinski, P.; Fieldsend, A.F. Structural Changes in Polish and Hungarian Agriculture since EU Accession: Lessons Learned and Implications for the Design of Future Agricultural Policies; Research Institute of Agricultural Economics: Budapest, Hungary, 2014; pp. 1–292. ISBN 978-963-491-588-1. [Google Scholar]
- Shaw, R.H. Climate requirement. In Corn and Corn Improvement, 2nd ed.; Sprague, G.F., Ed.; American Society of Agronomy, Inc.: Madison, WI, USA, 1977; pp. 591–623. [Google Scholar]
- Zsembeli, J.; Kovács, G.; Mándoki, A. Water use efficiency of maize and different sorghum hybrids under lysimeter conditions. In Lysimeter in der Klimafolgenforschung und Wasserwirtschaft, Proceedings of the 14. Gumpensteiner Lysimetertagung, Raumberg-Gumpenstein, Austria, 3–4 May 2011; Lehr- und Forschungszentrum für Landwirtschaft Raumberg-Gumpenstein: Irdning, Austria, 2011; pp. 227–229. ISBN 978-3-902559-61-6. [Google Scholar]
- Kim, S.H.; Myoung, B.; Stack, D.; Kim, J.; Kafatos, M. Sensitivity of maize yield potential to regional climate in the Southern U.S. Trans. ASABE 2016, 59, 1745–1757. [Google Scholar] [CrossRef] [Green Version]
- Huzsvai, L.; Rajkai, K. Modeling of plant adaptation to climatic drought induced water deficit. Biologia 2009, 64, 536–540. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D.B.; Cahill, K.N.; Field, C.B. Historical effects of temperature and precipitation on California crop yields. Clim. Chang. 2007, 81, 187–203. [Google Scholar] [CrossRef]
- Marton, T.A.; Kis, A.; Zubor-Nemes, A.; Kern, A.; Fodor, N. Human impact promotes sustainable corn production in Hungary. Sustainability 2020, 12, 6784. [Google Scholar] [CrossRef]
- Angulo, C.; Rötter, R.; Lock, R.; Enders, A.; Frozek, S.; Ewert, F. Implication of crop model calibration strategies for assessing regional impacts of climate change in Europe. Agric. Forest Meteorol. 2013, 170, 32–46. [Google Scholar] [CrossRef]
- Granger, O.E. The impact of climatic variation on the yield of selected crops in three California counties. Agric. Meteorol. 1980, 22, 367–386. [Google Scholar] [CrossRef]
- Birkás, M.; Kalmár, T.; Fenyvesi, L.; Földesi, P. Realities and beliefs in sustainable soil tillage. Cereal Res. Comm. 2007, 35, 257–260. [Google Scholar] [CrossRef]
- Zsembeli, J.; Kovács, G. Dynamics of CO2-emission of the soil in conventional and reduced tillage systems. Cereal Res. Comm. 2007, 35, 1337–1340. [Google Scholar] [CrossRef]
Region | 1970–1989 | 1990–2018 | ||
---|---|---|---|---|
W | p-Value | W | p-Value | |
1. West | 0.936 | 0.203 | 0.969 | 0.520 |
2. East | 0.949 | 0.351 | 0.981 | 0.864 |
3. Southwest | 0.948 | 0.339 | 0.950 | 0.178 |
4. Southeast | 0.984 | 0.9768 | 0.947 | 0.157 |
Linear Trend Analysis (1970–1989) | |||
Region | Estimate (t ha−1 year−1) | Residual Standard Error | R-Squared |
1. West | 0.208 | 0.620 | 0.806 |
2. East | 0.185 | 0.568 | 0.796 |
3. Southwest | 0.171 | 0.860 | 0.594 |
4. Southeast | 0.123 | 0.669 | 0.555 |
Linear Trend Analysis (1990–2019) | |||
Region | Estimate (t ha−1 year−1) | Residual Standard Error | R-Squared |
1. West | 0.112 | 1.225 | 0.401 |
2. East | 0.104 | 1.277 | 0.347 |
3. Southwest | 0.096 | 1.388 | 0.276 |
4. Southeast | n.s. | n.s. | n.s. |
Region | 1. West (Szombathely) | 2. East (Debrecen) | 3. Southwest (Pécs) | 4. Southeast (Szeged) | ||||
---|---|---|---|---|---|---|---|---|
Critical Weekly Period | r | Critical Weekly Period | r | Critical Weekly Period | r | Critical Weekly Period | r | |
Early temperature | 14 to 15 | 0.44 | 14 to 15 | 0.45 | 14 to 15 | 0.26 | 14 to 15 | 0.37 |
Late temperature | 17 to 34 | −0.69 | 17 to 34 | −0.65 | 17 to 34 | −0.71 | 17 to 34 | −0.78 |
Heat stress units | 23 to 34 | −0.76 | 21 to 34 | −0.73 | 23 to 34 | −0.88 | 21 to 34 | −0.79 |
Early precipitation | 15 to 20 | 0.57 | 15 to 20 | 0.31 | 15 to 20 | 0.39 | 15 to 20 | 0.42 |
Late precipitation | 29 to 32 | 0.42 | 29 to 32 | 0.61 | 29 to 32 | 0.40 | 29 to 32 | 0.60 |
Region | 1. West (Szombathely) | 2. East (Debrecen) | 3. Southwest (Pécs) | 4. Southeast (Szeged) | ||||
---|---|---|---|---|---|---|---|---|
Estimate | Pr(>|t|) | Estimate | Pr(>|t|) | Estimate | Pr(>|t|) | Estimate | Pr(>|t|) | |
Early temperature | 0.2309 | 0.00192 | ||||||
Late temperature | −0.6362 | 0.01063 | ||||||
Heat stress units | −0.02317 | 8.59 × 10−5 | −0.01787 | 0.00197 | −0.03726 | 1.4 × 10−10 | −0.01363 | 0.00654 |
Early precipitation | 0.01040 | 0.088 | ||||||
Late precipitation | 0.01086 | 0.00769 | ||||||
Multiple R2 | 0.62 | 0.72 | 0.78 | 0.71 | ||||
Adjusted R2 | 0.59 | 0.69 | 0.77 | 0.68 |
Region | 1. West (Szombathely) | 2. East (Debrecen) | 3. Southwest (Pécs) | 4. Southeast (Szeged) | ||||
---|---|---|---|---|---|---|---|---|
Annual Change | 2050 | Annual Change | 2050 | Annual Change | 2050 | Annual Change | 2050 | |
Technological development (t ha−1) | 0.112 | 3.472 | 0.104 | 3.224 | 0.096 | 2.976 | n.s. | 0 |
Heat stress unit (°C) | 1.019 | 31.589 | 1.045 | 32.395 | 0.488 | 15.128 | 1.965 | 60.915 |
Effect of heat stress on yield (t °C−1) | −0.023 | −0.727 | −0.018 | −0.583 | −0.037 | −0.560 | −0.014 | −0.853 |
Estimated yield change (t ha−1) | 2.745 | 2.641 | 2.416 | −0.853 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huzsvai, L.; Zsembeli, J.; Kovács, E.; Juhász, C. Can Technological Development Compensate for the Unfavorable Impacts of Climate Change? Conclusions from 50 Years of Maize (Zea mays L.) Production in Hungary. Atmosphere 2020, 11, 1350. https://doi.org/10.3390/atmos11121350
Huzsvai L, Zsembeli J, Kovács E, Juhász C. Can Technological Development Compensate for the Unfavorable Impacts of Climate Change? Conclusions from 50 Years of Maize (Zea mays L.) Production in Hungary. Atmosphere. 2020; 11(12):1350. https://doi.org/10.3390/atmos11121350
Chicago/Turabian StyleHuzsvai, László, József Zsembeli, Elza Kovács, and Csaba Juhász. 2020. "Can Technological Development Compensate for the Unfavorable Impacts of Climate Change? Conclusions from 50 Years of Maize (Zea mays L.) Production in Hungary" Atmosphere 11, no. 12: 1350. https://doi.org/10.3390/atmos11121350
APA StyleHuzsvai, L., Zsembeli, J., Kovács, E., & Juhász, C. (2020). Can Technological Development Compensate for the Unfavorable Impacts of Climate Change? Conclusions from 50 Years of Maize (Zea mays L.) Production in Hungary. Atmosphere, 11(12), 1350. https://doi.org/10.3390/atmos11121350