Subsistence Agriculture Productivity and Climate Extreme Events
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Data
2.2.1. Agricultural Data
Agricultural Requirements
2.2.2. Meteorological Data
2.3. Methods
- a)
- Cluster analysis
- b)
- Trend analysis
- c)
- Classification of years based on annual rainfall
- d)
- Pearson’s correlation analysis
- e)
- Classification of productivity based on quartiles
- f)
- Analysis of variance (ANOVA)
3. Results
3.1. Municipal Classification Regarding Rainfall Extreme Events
3.2. Subsistence Agriculture Productivity
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO—Food and Agriculture Organization of the United Nations. How Does International Price Volatility Affect Domestic Economies and Food Security? FAO: Rome, Italy, 2011; ISBN 978-92-5-106927-1. Available online: http://www.fao.org/3/a-i2330e.pdf (accessed on 22 June 2020).
- Ramirez-Villegas, J.; Challinor, A.J.; Thornton, P.K.; Jarvis, A. Implications of regional improvement in global climate models for agricultural impact research. Environ. Res. Lett. 2013, 8, 024018. [Google Scholar] [CrossRef]
- Assad, E.D.; Costa, L.C.; Martins, S.; Calmon, M.; Feltran-Barbieri, R.; Campanili, M.; Executivo, S. Papel do Plano ABC e do PLANAVEG na Adaptação da Agricultura e da Pecuária às Mudanças Climáticas. WRI Brasil, São Paulo. Available online: https://wribrasil.org.br/pt/publicacoes (accessed on 22 June 2020).
- Skansi, M.D.L.M.; Brunet, M.; Sigró, J.; Aguilar, E.; Groening, J.A.A.; Bentancur, O.J.; Geier, Y.R.C.; Amaya, R.L.C.; Jácome, H.; Ramos, A.M.; et al. Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America. Glob. Planet. Chang. 2013, 100, 295–307. [Google Scholar] [CrossRef]
- Myers, S.S.; Smith, M.R.; Guth, S.; Golden, C.D.; Vaitla, B.; Mueller, N.D.; Dangour, A.D.; Huybers, P. Climate Change and Global Food Systems: Potential Impacts on Food Security and Undernutrition. Annu. Rev. Public Heal. 2017, 38, 259–277. [Google Scholar] [CrossRef]
- Da Silva, P.E.; E Silva, C.M.S.; Spyrides, M.H.C.; Andrade, L.D.M.B. Precipitation and air temperature extremes in the Amazon and northeast Brazil. Int. J. Clim. 2019, 39, 579–595. [Google Scholar] [CrossRef]
- Alves, J.M.B.; Servoin, J.; Campos, J.N.B. Climate and Rainfed Agriculture in Northeast Brazil. Institut de Recherche Pourle Développement-IRD, 249. 2010. Available online: https://www.researchgate.net/publication/280638020Climate (accessed on 24 August 2020).
- Hansen, J.; Kharecha, P.; Sato, M.; Epstein, P.; Hearty, P.J.; Hoegh, O.; Zachos, J.C. The Case for Young People and Nature: A Path to a Healthy, Natural, Prosperous Future. 2011. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.442.8407&rep=rep1&type=pdf (accessed on 15 January 2020).
- Kangalawe, R.Y.; Mung’Ong’O, C.G.; Mwakaje, A.G.; Kalumanga, E.; Yanda, P.Z. Climate change and variability impacts on agricultural production and livelihood systems in Western Tanzania. Clim. Dev. 2017, 9, 202–216. [Google Scholar] [CrossRef]
- Kattumuri, R.; Ravindranath, D.; Esteves, T. Local adaptation strategies in semi-arid regions: Study of two villages in Karnataka, India. Clim. Dev. 2015, 9, 36–49. [Google Scholar] [CrossRef] [Green Version]
- Mbow, H.O.P.; Reisinger, A.; Canadell, J.; O’Brien, P. Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (SR2); IPCC: Ginevra, Switzerland, 2017. [Google Scholar]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Tank, A.M.G.K.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Space Phys. 2006, 111, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, D.; Vandecar, K.L. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Chang. 2015, 5, 27–36. [Google Scholar] [CrossRef]
- Anderson, M.C.; Zolin, C.A.; Sentelhas, P.C.; Hain, C.R.; Semmens, K.; Yilmaz, M.T.; Gao, F.; Otkin, J.A.; Tetrault, R. The Evaporative Stress Index as an indicator of agricultural drought in Brazil: An assessment based on crop yield impacts. Remote. Sens. Environ. 2016, 174, 82–99. [Google Scholar] [CrossRef]
- Silva, A.S.; Silva, I.D.F.D.; Neto, L.D.F.D.S.; De Souza, C. Semeadura direta na produção do milho em agricultura de sequeiro na região Nordeste do Brasil. Ciência Rural 2011, 41, 1556–1562. [Google Scholar] [CrossRef] [Green Version]
- IBGE—Instituto Brasileiro de Geografia e Estatística. RESULTADOS—Censo Agropecuário 2017. 2020. Available online: https://censoagro2017.ibge.gov.br/templates/censo_agro/resultadosagro/index.html (accessed on 23 July 2020).
- Felipe, J.L.A.; Rocha, A.P.B.; Carvalho, E. Economia do Rio Grande do Norte: Estudo Geo-Histórico e Econômico; Grafset: João Pessoa, Brasil, 2002. [Google Scholar]
- Oliveira, P.T.; e Silva, C.M.S.; Lima, K.C. Linear trend of occurrence and intensity of heavy rainfall events on Northeast Brazil. Atmos. Sci. Lett. 2014, 15, 172–177. [Google Scholar] [CrossRef]
- Bezerra, B.G.; Silva, L.L.; e Silva, C.M.S.; De Carvalho, G.G. Changes of precipitation extremes indices in São Francisco River Basin, Brazil from 1947 to 2012. Appl. Clim. 2019, 135, 565–576. [Google Scholar] [CrossRef]
- Reis, L.; e Silva, C.M.S.; Bezerra, B.G.; Mutti, P.R.; Spyrides, M.H.C.; Da Silva, P.E. Analysis of Climate Extreme Indices in the MATOPIBA Region, Brazil. Pure Appl. Geophys. Pageoph 2020, 177, 4457–4478. [Google Scholar] [CrossRef]
- Marengo, J.A. O futuro clima do Brasil. Rev. USP 2014, 103, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Marengo, J.A.; Torres, R.R.; Alves, L.M. Drought in Northeast Brazil—Past, present, and future. Appl. Clim. 2017, 129, 1189–1200. [Google Scholar] [CrossRef]
- Domingues, E.P.; Magalhães, A.S.; Ruiz, R.M. Cenários de Mudanças Climáticas e Agricultura no Brasil: Impactos Econômicos na Região Nordeste. Rev. Econômica Nordeste 2016, 42, 229. Available online: https://ren.emnuvens.com.br/ren/article/view/147%0Ahttps://ren.emnuvens.com.br/ren/article/view/147/126 (accessed on 1 July 2020).
- IBGE—Instituto Brasileiro de Geografia e Estatística. SIDRA—Censo Agropecuário. 2020. Available online: https://sidra.ibge.gov.br/pesquisa/censo-agropecuario/censo-agropecuario-2017 (accessed on 24 August 2020).
- Guanziroli, C.E.; Cardim, S.E.d.S.; Romeiro, A.R.; di Sabbato, A.; Buainain, A.M.; de Rezende, G.C.; Bittencourt, G.A. Novo Retrato da Agricultura Familiar. O Brasil Redescoberto. 2000. Available online: http:/www.INCRA.gov.br/fao/ (accessed on 1 July 2020).
- Altieri, M.A. Agroecologia, agricultura camponesa e soberania alimentar. Rev. Nera 2013, 16, 22–32. [Google Scholar]
- Aquino, J.R.; de Gazolla, M.; Schneider, S. O financiamento público da produção agroecológica e orgânica no Brasil. In A Política Nacional de Agroecologia e Produção Orgânica no Brasil; IPEA—Instituto de Pesquisa Econômica Aplicada: Brasília, Brasil, 2017; pp. 197–228. Available online: http://www.ipea.gov.br (accessed on 12 June 2020).
- Campos, S.; Mendes, K.R.; Da Silva, L.L.; Mutti, P.R.; Medeiros, S.S.; Amorim, L.B.; Dos Santos, C.A.; Perez-Marin, A.M.; Ramos, T.M.; Marques, T.V.; et al. Closure and partitioning of the energy balance in a preserved area of a Brazilian seasonally dry tropical forest. Agric. Meteorol. 2019, 271, 398–412. [Google Scholar] [CrossRef]
- Ambrizzi, T.; Ahmad, M. (Eds.) Scientific Basis of Climate Change. Contribution of Working Group 1 of the Brazilian Climate Change Panel to the First National Assessment Report on Climate Change, COPPE; Federal University of Rio de Janeiro: Rio de Janeiro, Brazil, 2014. [Google Scholar]
- Castells-Quintana, D.; Lopez-Uribe, M.D.P.; McDermott, T.K. Geography, institutions and development: A review of the long-run impacts of climate change. Clim. Dev. 2016, 9, 452–470. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Li, H.; Ward, M.N. Climate Variability and Corn Yields in Semiarid Ceará, Brazil. J. Appl. Meteorol. Climatol. 2007, 46, 226–240. [Google Scholar] [CrossRef]
- Mainali, J.; Pricope, N.G. Mapping the need for adaptation: Assessing drought vulnerability using the livelihood vulnerability index approach in a mid-hill region of Nepal. Clim. Dev. 2018, 11, 607–622. [Google Scholar] [CrossRef]
- Marengo, J.A.; Alves, R.; Torres, R.; Muniz, L. Drought in Northeast Brazil—past, present, and future. Theor. Appl. Climatol. 2016. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.D.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- IBGE—Instituto Brasileiro de Geografia e Estatística. MAPAS ESTADUAIS. Geociências. 2020. Available online: https://www.ibge.gov.br/geociencias/cartas-e-mapas/mapas-estaduais.html (accessed on 12 March 2020).
- IBGE—Instituto Brasileiro de Geografia e Estatística. PAM—Produção de Agricultura Municipal. 2020. Available online: https://sidra.ibge.gov.br/pesquisa/pam/tabelas (accessed on 20 January 2019).
- Cruz, J.C.; Filho, I.A.P.; Pereira, F.T.F.; Oliveira, M.-d.R. Cultivo do Milho: Cultivares; Comunicado Técnico No. 55; EMBRAPA: Sete Lagoas, MG, Brasil, 2002. [Google Scholar]
- Borges, T.K.D.S.; Montenegro, A.A.D.A.; Santos, T.E.M.D.; Silva, D.D.D.; Silva Junior, V.D.P. Influência de práticas conservacionistas na umidade do solo e no cultivo do milho (Zea mays L.) em semiárido nordestino. Rev. Bras. Ciência Solo 2014, 38, 1862–1873. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, H.W.L.; Cardoso, M.J.; Pacheco, C.A.P.; Rocha, L.M.P.; Guimarães, P.E.; Tabosa, J.N.; Cavalcanti, M.H.B. Desempenho de Cultivares de Milho no Nordeste Brasileiro; Embrapa Tabuleiros Costeiros: Aracaju, Brasil, 2016. [Google Scholar]
- Ribeiro, F.; del Peloso, M.K.; Barbosa, F.; Gonzaga, A.D.O.; de Oliveira, L.F.C. Recomendações Técnicas para o Cultivo do Feijoeiro-Comum (Phaseolus vulgaris L.) nas Regiões Norte e Nordeste do Brasil; EMBRAPA: Brasilia, Brazil, 2011. [Google Scholar]
- CONAB. Séries de Produção por Unidade de Federação. Available online: https://www.conab.gov.br/info-agro/safras/serie-historica-das-safras (accessed on 20 March 2020).
- Melo, L.C.; Pereira, S.; Wendland, A.; Almeida, V.M.; De Pereira, C.L.; Melo, D.; Vianello, R.P. Cultivar de Feijoeiro Comum de Grão Tipo Comercial Preto; Comunicado 185 Técnico; EMBRAPA: Brasilia, Brazil, 2009. [Google Scholar]
- Oliveira, M.G.C.; Oliveira, L.F.C.; Wendland, A.; Guimarães, C.M.; Quintela, E.D.; Barbosa, F.R.; Silveira, P.M. Conhecendo a Fenologia do Feijoeiro e Seus Aspectos Fitotécnicos, 1st ed.; EMBRAPA: Brasília, Brazil, 2018. [Google Scholar]
- Júnior, M.d.M.; Alves, R.N.B. Cultura da Mandica: Apostila; Embrapa Amazônia Oriental: Belém, PA, Brazil, 2014; Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/112346/1/Apostila-Mandioca.pdf (accessed on 28 June 2020).
- da Souza, L.S.; da Silva, J.; Souza, L.D. Recomendação de Calagem e Adubação Para o Cultivo da Mandioca; Comunicado técnico, Embrapa Mandioca e Fruticultura Tropical: Brasilia, Brazil, 2009; pp. 1–6. [Google Scholar]
- Diniz, F.D.A.; Ramos, A.M.; Rebello, E.R.G. Brazilian climate normals for 1981–2010. Pesqui. Agropecuária Bras. 2018, 53, 131–143. [Google Scholar] [CrossRef]
- INMET, Normais Climatológicas 1981. Available online: https://clima.inmet.gov.br/NormaisClimatologicas/ (accessed on 21 November 2020).
- Luo, Q. Temperature thresholds and crop production: A review. Clim. Chang. 2011, 109, 583–598. [Google Scholar] [CrossRef]
- Xavier, A.C.; King, C.W.; Scanlon, B.R. Daily gridded meteorological variables in Brazil (1980–2013). Int. J. Clim. 2016, 36, 2644–2659. [Google Scholar] [CrossRef] [Green Version]
- Silveira Marinho, K.F.; Barbosa Andrade, L.D.M.; Constantino Spyrides, M.H.; Santos e Silva, C.M.; de Oliveira, C.P.; Guedes Bezerra, B.; Rodrigues Mutti, P. Climate Profiles in Brazilian Microregions. Atmosphere 2020, 11, 1217. [Google Scholar] [CrossRef]
- Araújo, J.M.S.; Maia, A.G.; Neves, J.A. Uso dos índices pcp e pcd na determinação de regiões com precipitação pluvial homogênea (the use of pcp and pcd indices to determining precipitation homogeneous AREAS). Rev. Bras. Climatol. 2015, 17. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Zhang, F.; Zhou, L.; Hu, Z.; Li, Y. Regional changes of climate extremes and its effect on rice yield in Jiangsu province, southeast China. Environ. Earth Sci. 2018, 77, 106. [Google Scholar] [CrossRef]
- Zhang, X.; Alexander, L.; Hegerl, G.C.; Jones, P.; Tank, A.K.; Peterson, T.C.; Trewin, B.; Zwiers, F.W. Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Clim. Chang. 2011, 2, 851–870. [Google Scholar] [CrossRef]
- Wilcox, K.R.; Shi, Z.; Gherardi, L.A.; Lemoine, N.P.; Koerner, S.E.; Hoover, D.L.; Evans, S. Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments. Glob. Chang. Biol. 2017, 23, 4376–4385. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.A.; Wichern, D.W. Applied Multivariate Statistical Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 2002; Volume 5. [Google Scholar]
- Çakir, R. Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crop. Res. 2004, 89, 1–16. [Google Scholar] [CrossRef]
- Romesburg, C. Cluster Analysis for Researchers; Lulu Press: Morrisville, NC, USA, 2004. [Google Scholar]
- WMO. Detecting Trend and Other Changes in Hydrological Data; WCDMP-45, WMO/TD 1013; WMO: Geneva, Switzerland, 2000. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Fernandes, R.; Leblanc, S.G. Parametric (modified least squares) and non-parametric (Theil–Sen) linear regressions for predicting biophysical parameters. Remote Sens. Environ. 2005, 95, 303–316. [Google Scholar] [CrossRef]
- Dalgaard, P. Introductory Statistics with R. In Mixed-Effects Models in Sand S-PLUS.; Springer: New York, NY, USA, 2008. [Google Scholar]
- Heumann, C.; Schomaker, M.; Shalabh. Introduction to Statistics and Data Analysis; Springer International: Cham, Switverland, 2016. [Google Scholar]
- Marengo, J.A. Vulnerabilidade, impactos e adaptação à mudança do clima no semi-árido do Brasil. Parcer. Estratégicas 2008, 13, 148–176. [Google Scholar]
- Crespo, A.A. Estatística Fácil, 19th ed.; Editora Saraiva: Bela Vista, São Paulo, 2017; Available online: http://saraivauni.com.br (accessed on 1 June 2020).
- Shumway Robert, H.; Stoffer David, S. Time Series Analysis and Its Applications: With R Examples; Springer: New York, NY, USA, 2017. [Google Scholar]
- Hastenrath, S. Exploring the climate problems of Brazil’s Nordeste: A review. Clim. Chang. 2012, 112, 243–251. [Google Scholar] [CrossRef]
- Reboita, M.S.; Gan, M.A.; Rocha, R.P.D.; Ambrizzi, T. Regimes de precipitação na América do Sul: Uma revisão bibliográfica. Rev. Bras. De Meteorol. 2010, 25, 185–204. [Google Scholar] [CrossRef]
- Reboita, M.S.; Krusche, N.; Ambrizzi, T.; Da Rocha, R.P. Entendendo O Tempo E O Clima Na América Do Sul. Terrae Didat. 2015, 8, 34–50. [Google Scholar] [CrossRef] [Green Version]
- Lindoso, D.P. Vulnerabilidade e Adaptação da Vida às Secas: Desafios à sustentabilidade rural familiar nos semiáridos nordestinos. Ph.D. Thesis, Tese (Centro de Desenvolvimento Sustentável)—Universidade de Brasília, Brasília, Brazil, 2013. [Google Scholar]
- Oliveira, P.T.; e Silva, C.M.S.; Lima, K.C. Climatology and trend analysis of extreme precipitation in subregions of Northeast Brazil. Appl. Clim. 2017, 130, 77–90. [Google Scholar] [CrossRef]
- Mutti, P.R.; De Abreu, L.P.; Andrade, L.D.M.B.; Spyrides, M.H.C.; Lima, K.C.; De Oliveira, C.P.; Dubreuil, V.; Bezerra, B.G. A detailed framework for the characterization of rainfall climatology in semiarid watersheds. Appl. Clim. 2020, 139, 109–125. [Google Scholar] [CrossRef]
- Junior, M.d.S.M.; Alves, R.N.B. Cultura da Mandica: Apostila; Alves, R.N.B., de Souza Modesto Júnior, M., Eds.; Embrapa Amazônia Oriental: Belém, PA, Brazil, 2014. [Google Scholar]
- Ray, D.K.; Gerber, J.S.; Macdonald, G.K.; West, P.C. Climate variation explains a third of global crop yield variability. Nat. Commun. 2015, 6, 5989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rockström, J.; Karlberg, L.; Wani, S.P.; Barron, J.; Hatibu, N.; Oweis, T.Y.; Bruggeman, A.; Farahani, J.; Qiang, Z. Managing water in rainfed agriculture—The need for a paradigm shift. Agric. Water Manag. 2010, 97, 543–550. [Google Scholar] [CrossRef] [Green Version]
Crop | Cardinals Temperature (°C) | Source | ||
---|---|---|---|---|
TB | To | Tmax | ||
Bean | 5 | 24 | >32 | Luo (2011) [48], Ramirez-Villegas et al. (2013) [2] |
Corn | 8 | 30 | >35 | Luo (2011) [48], Ramirez-Villegas et al. (2013) [2] |
Cassava | 15 | 30 | >35 | Ramirez-Villegas et al. (2013) [2] |
No. | Acronym | Name of the Index | Description | Unit |
---|---|---|---|---|
1 | CDD | Consecutive dry days | Maximum number of consecutive days with precipitation <1 mm (consecutive dry days) | days |
2 | R95p | Very wet days | Annual rainfall exceeding the 95th percentile (wet days percentile). | mm |
3 | PRCPTOT | Annual total wet-day precipitation | Total annual rainfall in wet days | mm |
Cluster | n | CDD | R95p | PRCPTOT | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Average | sd | τ | Average | s | τ | Average | sd | τ | ||
I | 24 | 35.0 C | 1.6 | 37,500 | 313.8 A | 35.0 | 69,500 | 1165.9 A | 341.7 | 0.101 |
II | 19 | 40.3 C | 3.7 | 0.178 | 287.6 A | 38.9 | 0.251 ** | 1067.2 A | 348.0 | 62,388 |
III | 19 | 79.6 A | 3.6 | 83,928 | 190.1 B | 5.9 | 55,300 | 826.9 B | 277.4 | 76,648 |
IV | 32 | 60.0 B | 13.2 | 0.266 ** | 179.8 B | 40.4 | 8910 | 717.8 B | 268.8 | 0.119 |
V | 73 | 95.1 A | 9.9 | 0.163 | 150.9 B | 16.0 | 0.198 * | 644.3 B | 283.8 | 76,648 |
Groups | Corn | Bean | Cassava | ||||||
---|---|---|---|---|---|---|---|---|---|
Average | Mean | Sd | Average | Mean | Sd | Average | Mean | Sd | |
I | 435.4 A,B | 463.9 | 206.8 | 366.5 | 355.7 | 155.9 | 9879.7 A | 9798.5 | 1304.9 |
II | 358.6 B | 367.4 | 188.8 | 349.0 | 346.9 | 178.7 | 7704.7 B | 7536.5 | 1191.7 |
III | 568.8 A | 620.8 | 355.6 | 336.0 | 348.8 | 164.9 | 4117.7 C | 4147.3 | 1063.3 |
IV | 300.4 B | 331.4 | 190.2 | 282.3 | 313.1 | 153.9 | 6877.5 B | 6566.7 | 1586.7 |
V | 362.9 B | 390.6 | 203.7 | 320.6 | 336.8 | 143.1 | 3883.8 C | 3779.6 | 1367.7 |
Mean | 405.2 | 330.9 | 6492.7 | ||||||
ANOVA p-value | <0.001 | 0.249 | <0.001 |
Groups | Corn | Bean | Cassava | |||
---|---|---|---|---|---|---|
Index | Correlation | p-Value | Correlation | p-Value | Correlation | p-Value |
CDD | 0.057 | 0.747 | 0.093 | 0.602 | −0.140 | 0.428 |
R95p | 0.624 | 0.080 | 0.564 | 0.001 | 0.345 | 0.046 |
PRCPTOT | 0.720 | 0.002 | 0.643 | 0.000 | 0.590 | 0.000 |
GroupI | ||||||
CDD | −0.076 | 0.670 | −0.112 | 0.527 | −0.171 | 0.333 |
R95p | 0.417 | 0.014 | 0.330 | 0.057 | 0.370 | 0.031 |
PRCPTOT | 0.426 | 0.012 | 0.407 | 0.017 | 0.280 | 0.109 |
GroupII | ||||||
CDD | 0.198 | 0.262 | 0.173 | 0.329 | −0.030 | 0.866 |
R95p | 0.519 | 0.002 | 0.507 | 0.002 | 0.084 | 0.637 |
PRCPTOT | 0.526 | 0.001 | 0.543 | 0.001 | 0.546 | 0.001 |
GroupIII | ||||||
CDD | −0.130 | 0.462 | −0.136 | 0.445 | 0.005 | 0.978 |
R95p | 0.350 | 0.043 | 0.265 | 0.130 | 0.098 | 0.581 |
PRCPTOT | 0.758 | 0.000 | 0.656 | 0.000 | 0.298 | 0.087 |
GroupIV | ||||||
CDD | 0.162 | 0.360 | 0.194 | 0.272 | 0.165 | 0.353 |
R95p | 0.461 | 0.006 | 0.425 | 0.012 | 0.183 | 0.301 |
PRCPTOT | 0.595 | 0.000 | 0.553 | 0.001 | 0.354 | 0.040 |
GroupV | ||||||
CDD | 0.115 | 0.517 | 0.167 | 0.345 | −0.300 | 0.085 |
R95p | 0.549 | 0.001 | 0.467 | 0.005 | 0.000 | 0.999 |
PRCPTOT | 0.600 | 0.000 | 0.463 | 0.006 | 0.195 | 0.268 |
Group and Condition | Mean Corn Productivity(kg/ha) | Mean Bean Productivity(kg/ha) | Mean Cassava Productivity(kg/ha) |
---|---|---|---|
GroupI | |||
Wet | 570.88 A | 458.83 A | 10,548.04 A |
Normal | 433.58 B | 367.83 A,B | 9797.32 A |
Dry | 318.44 C | 281.92 B | 9441.27 A |
GroupII | |||
Wet | 491.75 A | 489.47 A | 8450.19 A |
Normal | 366.59 A,B | 348.69 A,B | 7853.46 A |
Dry | 225.30 B | 224.85 B | 6760.88 B |
GroupIII | |||
Wet | 860.79 A | 437.80 A | 4478.77 A |
Normal | 643.71 A | 376.19 A | 4198.98 A |
Dry | 167.90 B | 169.68 B | 3643.08 A |
GroupIV | |||
Wet | 467.91 A | 373.39 A | 7579.18 A |
Normal | 328.34 A | 317.27 A | 7221.22 A |
Dry | 98.81 B | 135.38 B | 5604.36 B |
GroupV | |||
Wet | 534.31 A | 410.23 A | 3712.66 A |
Normal | 391.88 A | 355.13 A | 4359.03 A |
Dry | 155.86 B | 175.60 B | 3138.19 A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moura Cardoso do Vale, T.; Helena Constantino Spyrides, M.; De Melo Barbosa Andrade, L.; Guedes Bezerra, B.; Evangelista da Silva, P. Subsistence Agriculture Productivity and Climate Extreme Events. Atmosphere 2020, 11, 1287. https://doi.org/10.3390/atmos11121287
Moura Cardoso do Vale T, Helena Constantino Spyrides M, De Melo Barbosa Andrade L, Guedes Bezerra B, Evangelista da Silva P. Subsistence Agriculture Productivity and Climate Extreme Events. Atmosphere. 2020; 11(12):1287. https://doi.org/10.3390/atmos11121287
Chicago/Turabian StyleMoura Cardoso do Vale, Tásia, Maria Helena Constantino Spyrides, Lara De Melo Barbosa Andrade, Bergson Guedes Bezerra, and Pollyanne Evangelista da Silva. 2020. "Subsistence Agriculture Productivity and Climate Extreme Events" Atmosphere 11, no. 12: 1287. https://doi.org/10.3390/atmos11121287
APA StyleMoura Cardoso do Vale, T., Helena Constantino Spyrides, M., De Melo Barbosa Andrade, L., Guedes Bezerra, B., & Evangelista da Silva, P. (2020). Subsistence Agriculture Productivity and Climate Extreme Events. Atmosphere, 11(12), 1287. https://doi.org/10.3390/atmos11121287