Assessing the Sensitivity of Main Crop Yields to Climate Change Impacts in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Division of Main Grain-Producing Areas
2.2. Data Sources and Preprocessing
2.3. Methods
2.3.1. Principal Component Analysis Method
2.3.2. Economy–Climate Model (C-D-C)
2.4. Evaluation Indicators
2.4.1. Comprehensive Climate Factor (CCF) Indicator
2.4.2. Climate Output Elasticity
3. Results
3.1. Characteristics of the Comprehensive Climate Factor
3.1.1. Simulation of the Comprehensive Climate Factor
3.1.2. Characteristics of the Comprehensive Climate Factor
3.2. Regional Sensitivity of Different Crop Yields to Climate Change
3.2.1. The Yield per Hectare for Rice
3.2.2. The Yield per Hectare for Wheat
3.2.3. The Yield per Hectare for Maize
3.2.4. The Yield per Hectare for Grain
3.3. Division of Economy–Climate Sensitivity Zones
4. Discussion
5. Conclusions
- (1)
- Climate change promoted an ensemble increase in grain yield in the North and South regions, but the sensitivities of different crop yields to climate change were different. Climate change was conducive to an increase in the yields for rice and maize in the North and South regions. Among them, the sensitivity of the yield for maize in the North region to climate change was stronger than that in the South region, while the sensitivity of the yield for rice in the South region was stronger.
- (2)
- The sensitivities of yields in different regions to climate change had differences in crop varieties. In the North region, climate change increased the yields for the three main crops. Maize yield had the highest sensitivity to the effects of climate change. In the South region, climate change led to increases in the yields for rice and maize, and the rice yield was more sensitive to climate change.
- (3)
- Climate change factors are the main constraints for food production, but they have a relatively little impact on yields, and other economic factors account for a large proportion.
- (4)
- Although climate change has little impact on crop yields, it is indispensable. Therefore, under the constraints of other economic factors, to focus on the research on the impact of climate change factors, we can divide the main grain-producing areas into sensitive regions for climate change response according to the output elasticity of climate factor changes.
- (5)
- According to the climate output elasticity for each province, they were divided into three levels of economy–climate sensitivity zones (i.e., high, medium and low sensitivity). Among them, high-sensitivity regions to climate change in terms of the grain yield were located in Hebei, Guangdong and Sichuan provinces. High-sensitivity regions in terms of rice yield were Liaoning, Hebei and Sichuan provinces. High-sensitivity regions in terms of wheat yield were Liaoning, Jiangsu and Jiangxi provinces. High-sensitivity regions in terms of maize yield were Jilin, Liaoning, Hebei and Sichuan provinces.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Year | Heilongjiang | Jilin | Liaoning | Hebei | Shandong | Henan | Anhui | Jiangsu | Jiangxi | Hubei | Hunan | Guangdong | Sichuan |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1981 | 297.08 | 299.71 | 301.19 | 359.20 | 336.06 | 249.64 | 343.94 | 342.07 | 277.56 | 259.56 | 268.73 | 467.87 | 263.76 |
1982 | 294.56 | 296.46 | 299.97 | 358.10 | 334.27 | 260.39 | 346.26 | 342.37 | 278.37 | 274.58 | 276.95 | 415.17 | 259.02 |
1983 | 298.45 | 301.89 | 304.38 | 354.93 | 332.19 | 258.80 | 352.19 | 344.89 | 292.71 | 283.01 | 277.38 | 414.06 | 260.21 |
1984 | 298.12 | 298.81 | 303.06 | 355.29 | 333.52 | 265.13 | 348.83 | 344.81 | 287.14 | 267.36 | 271.26 | 453.40 | 262.05 |
1985 | 297.53 | 301.80 | 309.78 | 352.82 | 339.82 | 255.35 | 343.87 | 344.86 | 273.40 | 264.71 | 264.18 | 433.12 | 262.42 |
1986 | 294.76 | 303.05 | 305.23 | 363.56 | 342.02 | 247.07 | 344.19 | 344.92 | 272.21 | 266.01 | 269.55 | 425.46 | 256.63 |
1987 | 296.83 | 300.34 | 302.66 | 364.11 | 343.14 | 253.14 | 349.23 | 347.48 | 276.89 | 272.49 | 273.26 | 415.47 | 260.94 |
1988 | 297.55 | 298.76 | 302.61 | 354.07 | 338.58 | 251.33 | 343.23 | 340.99 | 279.55 | 266.80 | 275.78 | 413.48 | 259.90 |
1989 | 294.01 | 298.33 | 298.20 | 356.52 | 321.55 | 253.86 | 347.56 | 343.89 | 284.53 | 276.38 | 275.01 | 394.15 | 260.55 |
1990 | 297.96 | 301.57 | 305.20 | 354.59 | 356.44 | 256.24 | 344.68 | 348.41 | 277.70 | 264.92 | 270.93 | 390.35 | 261.34 |
1991 | 298.13 | 299.75 | 303.08 | 359.04 | 335.86 | 254.80 | 357.29 | 354.28 | 268.63 | 276.00 | 269.98 | 366.07 | 259.67 |
1992 | 295.22 | 298.96 | 300.42 | 351.82 | 336.02 | 252.09 | 340.73 | 341.93 | 277.32 | 261.29 | 269.45 | 440.80 | 257.03 |
1993 | 297.46 | 298.36 | 301.16 | 352.22 | 335.23 | 250.66 | 344.64 | 344.22 | 289.30 | 268.80 | 281.88 | 500.13 | 260.42 |
1994 | 298.93 | 303.08 | 307.99 | 362.38 | 349.26 | 253.83 | 342.96 | 340.43 | 293.29 | 264.71 | 284.04 | 484.78 | 253.46 |
1995 | 294.33 | 301.16 | 306.95 | 353.36 | 342.94 | 254.58 | 345.19 | 341.80 | 293.38 | 267.97 | 280.30 | 421.16 | 258.22 |
1996 | 296.33 | 299.20 | 304.57 | 350.18 | 330.29 | 259.60 | 348.71 | 343.21 | 280.25 | 276.36 | 279.86 | 415.91 | 256.61 |
1997 | 296.49 | 297.57 | 300.24 | 354.16 | 346.94 | 244.56 | 342.16 | 340.88 | 290.97 | 260.97 | 274.62 | 495.14 | 254.37 |
1998 | 299.61 | 303.65 | 306.94 | 350.89 | 338.88 | 264.75 | 349.97 | 346.87 | 289.64 | 278.99 | 281.16 | 427.31 | 266.38 |
1999 | 293.50 | 297.29 | 299.37 | 348.90 | 334.87 | 250.85 | 349.93 | 344.30 | 303.12 | 270.29 | 293.04 | 405.31 | 261.96 |
2000 | 295.39 | 299.47 | 299.04 | 355.33 | 334.32 | 265.39 | 346.17 | 345.69 | 278.27 | 269.57 | 273.21 | 427.03 | 260.59 |
2001 | 292.93 | 297.64 | 301.85 | 352.80 | 338.94 | 246.82 | 339.33 | 340.74 | 279.48 | 254.89 | 269.55 | 555.05 | 260.36 |
2002 | 296.32 | 298.81 | 299.26 | 342.99 | 328.64 | 254.74 | 347.12 | 341.84 | 294.28 | 272.63 | 293.55 | 443.96 | 256.11 |
2003 | 298.87 | 299.49 | 302.81 | 340.06 | 325.59 | 265.59 | 349.61 | 346.54 | 274.71 | 271.92 | 272.50 | 403.73 | 262.14 |
2004 | 294.13 | 298.22 | 303.67 | 350.11 | 342.31 | 260.73 | 345.97 | 341.88 | 278.49 | 272.36 | 278.00 | 378.18 | 259.65 |
2005 | 297.38 | 304.42 | 306.48 | 351.31 | 337.67 | 262.67 | 349.34 | 348.78 | 281.30 | 272.12 | 270.34 | 460.14 | 260.95 |
2006 | 296.36 | 298.95 | 302.47 | 340.15 | 327.16 | 256.98 | 346.14 | 346.00 | 287.31 | 262.09 | 274.17 | 477.58 | 252.30 |
2007 | 293.38 | 299.08 | 302.65 | 347.93 | 333.34 | 259.25 | 347.02 | 347.45 | 272.85 | 271.24 | 273.10 | 416.63 | 257.80 |
2008 | 295.52 | 300.50 | 303.78 | 343.50 | 327.37 | 259.35 | 347.67 | 345.34 | 278.15 | 273.56 | 271.36 | 511.67 | 259.22 |
2009 | 297.72 | 298.03 | 300.45 | 352.95 | 329.20 | 256.82 | 346.35 | 345.97 | 273.89 | 267.53 | 270.04 | 407.56 | 259.06 |
2010 | 296.16 | 304.36 | 308.87 | 345.52 | 325.77 | 264.11 | 347.44 | 344.58 | 297.35 | 276.07 | 287.26 | 465.04 | 261.06 |
2011 | 295.10 | 297.95 | 303.06 | 349.26 | 326.14 | 254.76 | 346.26 | 346.70 | 274.06 | 262.83 | 263.23 | 368.39 | 255.32 |
2012 | 298.99 | 302.54 | 306.76 | 352.27 | 329.93 | 254.09 | 346.05 | 342.75 | 291.84 | 265.53 | 281.12 | 417.68 | 263.03 |
2013 | 300.19 | 302.59 | 304.48 | 345.39 | 339.38 | 252.31 | 347.29 | 343.30 | 275.67 | 272.24 | 273.68 | 483.35 | 262.74 |
2014 | 298.72 | 298.62 | 298.99 | 344.06 | 325.34 | 256.69 | 347.35 | 345.89 | 289.18 | 268.71 | 279.68 | 431.76 | 262.25 |
2015 | 297.74 | 299.37 | 300.29 | 347.19 | 328.61 | 255.74 | 349.10 | 351.57 | 293.25 | 268.62 | 279.57 | 436.99 | 261.10 |
References
- Jianping, H.; Yuhong, Y.; Shaowu, W.; Jifen, C. An analogue-dynamical long-range numerical weather prediction system incorporating historical evolution. Q. J. R. Meteorol. Soc. 1993, 119, 547–565. [Google Scholar] [CrossRef]
- FAO. The Future of Food and Agriculture: Alternative Pathways to 2050; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018; 228p, Available online: http://www.fao.org/3/CA1553EN/ca1553en.pdf (accessed on 27 January 2021).
- Mbow, C.; Rosenzweig, C.; Barioni, L.G.; Benton, T.G.; Herrero, M.; Krishnapillai, M.; Liwenga, E.; Pradhan, P.; Rivera-Ferre, M.G.; Sapkota, T.; et al. Food Security. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Tao, F.; Zhang, Z.; Xiao, D.; Zhang, S.; Rötter, R.P.; Shi, W.; Zhang, H. Responses of wheat growth and yield to climate change in different climate zones of China, 1981–2009. Agric. For. Meteorol. 2014, 189, 91–104. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Q.; Ge, Q.; Dai, J.; Qin, Y.; Dai, L.; Chen, J. Modelling the impacts of climate change and crop management on phenological trends of spring and winter wheat in China. Agric. For. Meteorol. 2018, 248, 518–526. [Google Scholar] [CrossRef]
- Battisti, D.S.; Naylor, R.L. Historical Warnings of Future Food Insecurity with Unprecedented Seasonal Heat. Science 2009, 323, 240–244. [Google Scholar] [CrossRef] [Green Version]
- Hussain, A.; Rasul, G.; Mahapatra, B.; Tuladhar, S. Household food security in the face of climate change in the Hindu-Kush Himalayan region. Food Secur. 2016, 8, 921–937. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Fang, J. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.-O.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; Pidcock, R.; et al. Summary for Policymakers. In Global Warming of 1.5 °C an IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Farbotko, C.; Lazrus, H. The first climate refugees? Contesting global narratives of climate change in Tuvalu. Glob. Environ. Chang. Hum. Policy Dimens. 2012, 22, 382–390. [Google Scholar] [CrossRef] [Green Version]
- Iizumi, T.; Shiogama, H.; Imada, Y.; Hanasaki, N.; Takikawa, H.; Nishimori, M. Crop production losses associated with anthropogenic climate change for 1981-2010 compared with preindustrial levels. Int. J. Climatol. 2018, 38, 5405–5417. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.H.; Gao, J.B.; Deng, H.Y.; Liu, L.L.; Pan, T. Climate change risk and methodology for its quantitative assessment. Prog. Geogr. 2018, 37, 28–35. [Google Scholar]
- Impacts, adaptation, and vulnerability. Part a: Global and sectoral aspects. In Field Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B.; Barros, V.R.; Dokken, D.J.; Mach, K.J.; Mastrandrea, M.D.; Bilir, T.E.; Chatterjee, M.; Ebi, K.L.; Estrada, Y.O.; Genova, R.C.; et al. (Eds.) IPCC: Geneva, Switzerland; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Dong, Z.Q.; Pan, Z.; An, P.; Zhang, J.T.; Zhang, J.; Pan, Y.; Huang, L.; Zhao, H.; Han, G.; Wu, D.; et al. A quantitative method for risk assessment of agriculture due to climate change. Theor. Appl. Climatol. 2018, 131, 653–659. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Tubiello, F.N. Effects of changes in minimum and maximum temperature on wheat yields in the central US—A simulation study. Agric. For. Meteorol. 1996, 80, 215–230. [Google Scholar] [CrossRef]
- Araya, A.; Hoogenboom, G.; Luedeling, E.; Hadgu, M.K.; Kisekka, I.; Martorano, G.L. Assessment of maize growth and yield using crop models under present and future climate in southwestern Ethiopia. Agric. For. Meteorol. 2015, 214, 252–265. [Google Scholar] [CrossRef]
- Saddique, Q.; Khan, M.I.; Habib ur Rahman, M.; Jiatun, X.; Waseem, M.; Gaiser, T.; Mohsin Waqas, M.; Ahmad, I.; Chong, L.; Cai, H. Effects of Elevated Air Temperature and CO2 on Maize Production and Water Use Efficiency under Future Climate Change Scenarios in Shaanxi Province, China. Atmosphere 2020, 11, 843. [Google Scholar] [CrossRef]
- Mendelsohn, R.; Nordhaus, W.; Shaw, D. Climate impacts on aggregate farm value: Accounting for adaptation. Agric. For. Meteorol. 1996, 80, 55–66. [Google Scholar] [CrossRef]
- Liu, H.; Li, X.B.; Fischer, G.; Sun, L.X. Study on the impacts of climate change on China’s agriculture. Clim. Chang. 2004, 65, 125–148. [Google Scholar] [CrossRef]
- Gbetibouo, G.A.; Hassan, R.M. Measuring the economic impact of climate change on major South African field crops: A Ricardian approach. Glob. Planet. Chang. 2005, 47, 143–152. [Google Scholar] [CrossRef]
- Huang, D.L.; Li, X.M.; Ju, S.P. Research on the Impact of Climate Change on China’s Food Production, Consumption and Economic Growth——Based on China’s Agricultural General Equilibrium Model. Chin. Agric. Sci. Bull. 2016, 32, 165–176. [Google Scholar]
- Wang, F.T. Lecture Seven, Forecast of Agricultural Meteorological Output (Part 1). Meteorological 1986, 10, 5. [Google Scholar]
- Fang, X.Q.; Wang, Y.; Xu, T.; Yun, Y.R. Contribution of Climate Warming to Rice Yield in Heilongjiang Province. Acta Geogr. Sin. 2004, 59, 820–828. [Google Scholar]
- Fang, S.B. Exploration of method for discrimination between trend crop yield and climatic fluctuant yield. J. Nat. Disasters 2011, 20, 13–18. [Google Scholar]
- Chou, J.M.; Feng, G.L.; Dong, W.J.; Ye, D.Z.; Chen, H.Z. A New Approach the Economy Evaluation of Influence on CHina Agriculture by Climate Change. Clim. Environ. Res. 2004, 9, 361–368. [Google Scholar]
- Zhou, G.S. Research Prospect on Impact of Climate Change on Agricultural Production in China. Meteorol. Environ. Sci. 2015, 38, 15. [Google Scholar] [CrossRef]
- Chou, J.M.; Ye, D.Z. Assessing the Effect of Climate Changes on Grains yields with a New Economy-Climate model. Chin. Sci. Bull. 2006, 11, 347–353. [Google Scholar] [CrossRef]
- Dong, W.J.; Chou, J.M.; Feng, G.L. A new economic assessment index for the impact of climate change on grain yield. Adv. Atmos. Sci. 2007, 24, 336–342. [Google Scholar] [CrossRef]
- Yuqing, F.; Jieming, C.; Wenjie, D. Impact and its assessment methods of climate change on the economic system of China. Adv. Meteorol. Sci. Technol. 2013, 2, 8. [Google Scholar] [CrossRef]
- Zhou, S.D.; Zhou, W.K.; Zhu, H.G.; Wang, C.X.; Wang, Y. Impact of Climate Change on Agriculture and its Countermeasures. J. Najing Agric. Univ. (Soc. Sci. Ed.) 2010, 10, 6. [Google Scholar] [CrossRef]
- Lu, S.B.; Bai, X.; Li, W.; Wang, N. Impacts of climate change on water resources and grain production. Technol. Forecast. Soc. Chang. 2019, 143, 76–84. [Google Scholar] [CrossRef]
- Sun, M.Y.; Chou, J.M.; Xu, Y.; Yang, F.; Li, J.N. Study on the thresholds of grain production risk from climate change in China’s main grain-producing areas. Phys. Chem. Earthparts A/B/C 2020, 116, 102837. [Google Scholar] [CrossRef]
- Chen, H.Z.; Zhu, D.F. Overview of Global Rice Production and Rice Farming Ecosystem. Hybrid Rice 2003, 18, 1–4. [Google Scholar]
- Zhao, G.C.; Chang, X.H.; Wang, D.M.; Tao, Z.Q.; Wang, Y.J.; Yang, Y.S.; Zhu, Y.J. General Situation and Development of Wheat Production. Gen. Situat. Dev. Wheat Prod. 2018, 4, 7. [Google Scholar] [CrossRef]
- Xiong, W.; Yang, J.; Wu, W.; Huang, D.; Cao, Y. Sensitivity and vulnerability of China’s rice production to observed climate change. Acta Ecol. Sin. 2013, 33, 509–518. [Google Scholar] [CrossRef]
- Peng, S. Reflection on China’s Rice Production Strategies during the Transition Period. Sci. Sin. Vitae 2014, 44, 845–850. [Google Scholar] [CrossRef]
- Liu, Y.S.; Zhai, R.X. Spatial-temporal Pattern Changes and Optimal Strategy of Grain Production in China since 1990s. Areal Res. Dev. 2009, 28, 6. [Google Scholar] [CrossRef]
- Han, R.; Zheng, D.; Dai, E.; Wu, S.; Zhao, M. Response of Production Potential to Climate Fluctuation in Major Grain Regions of China. Resour. Sci. 2014, 36, 2611–2623. [Google Scholar]
- Chou, J.M.; Xu, Y.; Dong, W.J.; Xian, T.; Wang, Z. Research on the variation characteristics of climatic elements from April to September in China’s main grain-producing areas. Theor. Appl. Climatol. 2019, 137, 3197–3207. [Google Scholar] [CrossRef] [Green Version]
- Chou, J.M.; Xu, Y.; Dong, W.J.; Xian, T.; Xu, H.; Wang, Z. Comprehensive climate factor characteristics and quantitative analysis of their impacts on grain yields in China’s grain-producing areas. Heliyon 2019, 5, 11. [Google Scholar] [CrossRef] [Green Version]
- Brunetti, M.; Maugeri, M.; Monti, F.; Nannia, T. Temperature and precipitation variability in Italy in the last two centuries from homogenised instrumental time series. Int. J. Climatol. 2006, 26, 345–381. [Google Scholar] [CrossRef]
- Wei, F.Y. Modern Climate Statistics Diagnosis and Prediction Technology, 2nd ed.; Meteorological Press: Hong Kong, China, 2007. [Google Scholar]
- Zhao, H.X. Brief Analysis of Principal Component Analysis Method. Sci. Technol. Inf. 2009, 2, 1. [Google Scholar] [CrossRef]
- Huang, J.Y. Meteorological Statistical Analysis and Forecasting Methods, 3rd ed.; Meteorological Press: Beijing, China, 2014. [Google Scholar]
- Yin, P.H.; Fang, X.Q.; Zhang, X.Z.; Qi, F.Q. Identification of the Susceptible Regions to Climate Change Impact on Grain Yield per Unit Area in China. Acta Geograph. Sin. 2010, 65, 515–524. [Google Scholar]
- Huang, W.; Deng, X.Z.; He, S.J.; Lin, Y.Z. An Econometric Analysis on the Impacts of Climatic Change on Grain Production at Counties of China. Prog. Geogr. 2010, 29, 677–683. [Google Scholar]
- Ma, Z.; Fu, C. Basic facts of drought in northern China from 1951 to 2004. Chin. Sci. Bull. 2006, 51, 2429–2439. [Google Scholar] [CrossRef]
- Osborne, T.M.; Wheeler, T.R. Evidence for a climate signal in trends of global crop yield variability over the past 50 years. Environ. Res. Lett. 2013, 8, 9. [Google Scholar] [CrossRef]
- Ray, D.K.; Gerber, J.S.; MacDonald, G.K.; West, P.C. Climate variation explains a third of global crop yield variability. Nat. Commun. 2015, 6, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quan, C.; Jing, Y.; Tan, K. Progress in Research of Impacts of Climate Change on Yield of Three Major Grain Crops. Chin. Agric. Sci. Bull. 2013, 29, 361–367. [Google Scholar]
- Wang, P.; Zhang, Z.; Song, X.; Chen, Y.; Wei, X.; Shi, P.J.; Tao, F.L. Temperature variations and rice yields in China: Historical contributions and future trends. Clim. Chang. 2014, 124, 777–789. [Google Scholar] [CrossRef]
- Chen, S.L.; Wang, T.X. A comparative study on the equidistant method and the mean standard deviation method in defining urban heat islands. J. Geo-Inf. Sci. 2012, 11, 145–150. [Google Scholar]
- Peng, J.H.; Yang, M.; Lu, Q.; Hu, S.A. Maize drought grade division and meteorological yield evaluation method. Environ. Sci. Technol. 2012, s2, 3. [Google Scholar]
- The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2018. Available online: https://www.nobelprize.org/prizes/economic-sciences/2018/prize-announcement/ (accessed on 27 January 2021).
- Xiong, W.; Holman, I.P.; You, L.Z.; Yang, J.; Wu, W.B. Impacts of observed growing-season warming trends since 1980 on crop yields in China. Reg Environ. Chang. 2014, 14, 7–16. [Google Scholar] [CrossRef]
- Gammans, M.; Mérel, P.; Ortizbobea, A. Negative impacts of climate change on cereal yields: Statistical evidence from France. Environ. Res. Lett. 2017, 12, 054007. [Google Scholar] [CrossRef]
- Schlenker, W.; Roberts, M.J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl. Acad. Sci. USA 2009, 106, 15594–15598. [Google Scholar] [CrossRef] [Green Version]
Area | V1% | V2% | Comprehensive Climate Factor Equation |
---|---|---|---|
Northeast China | 85.3 | \ | C = 1.037 × T + 0.123 × P − 0.053 × S |
North China | 74.0 | 25.9 | C = 0.820 × T + 0.220 × P + 0.400 × S |
East China | 99.87 | \ | C = 1.054 × T + 0.173 × P + 0.057 × S |
South China | 95.4 | \ | C = −0.044 × T + 1.468 × P + 0.649 × S |
Central China | 79.1 | 20.9 | C = 0.820 × T + 0.250 × P − 0.050 × S |
Southwest China | 77.4 | 22.5 | C = 0.800 × T + 0.270 × P − 0.040 × S |
Output Elasticity | Grain Yield | Rice Yield | Wheat Yield | Maize Yield | ||||
---|---|---|---|---|---|---|---|---|
North Region | South Region | North Region | South Region | North Region | South Region | North Region | South Region | |
0.412 * | 0.344 * | 1.101 | 0.801 * | 1.269 | 0.765 * | 0.7 * | 0.725 * | |
0.275 * | 0.207 * | 1.53 ** | 0.448 * | 2.534 * | 1.433 * | 0.765 | 0.709 | |
1.099 ** | 0.995 ** | 1.431 *** | 1.273 * | 1.361 | 1.429 * | 0.977 * | 0.606 * | |
0.485 | 0.654 * | 1.114 | 0.742 * | 1.508 | 0.979 | 0.646 ** | 0.333 * | |
−0.205 ** | −0.118 * | −0.244 | −0.091 | −0.172 | −0.173 | −0.307 * | −0.091 | |
γ | 0.055 ** | 0.067 ** | 0.059 * | 0.104 | 0.056 * | −0.007 | 0.075 ** | 0.061 ** |
0.97 | 0.952 | 0.827 | 0.931 | 0.913 | 0.916 | 0.892 | 0.928 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Chou, J.; Yang, F.; Sun, M.; Zhao, W.; Li, J. Assessing the Sensitivity of Main Crop Yields to Climate Change Impacts in China. Atmosphere 2021, 12, 172. https://doi.org/10.3390/atmos12020172
Xu Y, Chou J, Yang F, Sun M, Zhao W, Li J. Assessing the Sensitivity of Main Crop Yields to Climate Change Impacts in China. Atmosphere. 2021; 12(2):172. https://doi.org/10.3390/atmos12020172
Chicago/Turabian StyleXu, Yuan, Jieming Chou, Fan Yang, Mingyang Sun, Weixing Zhao, and Jiangnan Li. 2021. "Assessing the Sensitivity of Main Crop Yields to Climate Change Impacts in China" Atmosphere 12, no. 2: 172. https://doi.org/10.3390/atmos12020172
APA StyleXu, Y., Chou, J., Yang, F., Sun, M., Zhao, W., & Li, J. (2021). Assessing the Sensitivity of Main Crop Yields to Climate Change Impacts in China. Atmosphere, 12(2), 172. https://doi.org/10.3390/atmos12020172