Impact of Urban Canopy Parameters on a Megacity’s Modelled Thermal Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. The COSMO Model and TERRA_URB Scheme
2.3. Local Climate Zones
2.4. LCZ-Based Urban Canopy Parameters
2.5. Reference Urban Canopy Parameters
2.6. Model Setup and Study Periods
- 5–25 August 2017, a typical period of relatively warm summer weather that followed after a cold and moist July 2017.
- 1–30 June 2019 with dominant warm and dry weather, higher temperatures than in August 2017, and a high monthly-averaged UHI intensity.
- 1–31 January 2017, a winter period with diverse weather conditions, including extreme cold temperatures on 7–10 January that were accompanied by the development of an intense winter UHI [70].
- What is the modelled impact of using advanced UCPs compared to baseline settings?
- Which ISA calculation (REF1/REF2) is better?
- Does the LCZ scheme provide a valid alternative for REF UCPs?
- What is the added value of the LCZ-based thermal UCPs?
2.7. Observations for Model Verification
3. Results
3.1. Local Climate Zone Map
3.2. Urban Canopy Parameters
3.3. Model-to-Observation Comparison for Summer Conditions
3.4. Model-to-Observation Comparison for Winter
4. Discussion and Conclusions
- The currently-used default urban description in COSMO and its EXTPAR tool is based on outdated global datasets and hard-coded constants. This description is too distant from the realistic and detailed urban description required for high-resolution weather and climate modelling, and needs to be improved.
- The noticeable improvements of the model evaluation scores may be achieved by providing more detailed and realistic UCPs. In our study, incorporating advanced LCZ-based and REF UCPs allowed to decrease the summertime RMSE for temperature and UHI intensity for urban areas and suburbs by up to in comparison to the baseline DEF simulations.
- The simulations with LCZ-based and REF UCPs demonstrated almost similar evaluation scores for the summer season. This is in line with previous studies that evaluated simulations with LCZ-based UCPs with another model, WRF, and for other cities [30,33]. The LCZ-based approach worsened model performance for winter, which is due to the underestimation of the anthropogenic heat flux. This issue may be solved by introducing a simple scaling coefficient or by revising the LCZ-specific constants in future research.
- An important advantage of the LCZ-based approach lies in a possibility to define thermal parameters of urban materials. Replacing the default constants sourced from [57] by the LCZ-based values additionally provides a minor, but noticeable model improvement, for both the LCZ and REF UCP simulations. And while such improvements are not always clearly visible from the model verification scores due to an interplay of other sources of model errors, the LCZ-based thermal parameters nevertheless improve the representation of the diurnal temperature cycle and daily temperature range.
- For the GIS-based approach, better results are achieved if the intersections between the pixels of the Sentinel-derived vegetation raster and vector polygons of impervious surfaces (buildings and roads) are interpreted as vegetated unpaved areas.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AAQS | Automatic Air-Quality Station of Mosecomonitring agency |
AHF | Anthropogenic Heat Flux |
CGLC | Copernicus Global Land Cover dataset [67] |
COSMO | Consortium for Small-Scale Modelling and corresponding model |
ISA | Impervious Surface Area |
GAIA | Global Artificial Impervious Area dataset [81] |
GIS | Geographic Information Systems |
OSM | OpenStreetMap |
LCZ | Local Climate Zone [23] |
UCM | Urban Canopy Model |
UCP | Urban Canopy Parameter |
UHI | Urban Heat Island |
UHII | UHI Intensity |
WS | Weather Station |
Appendix A. Earth Observation Input Features
Sensor | Band/Ratio |
---|---|
Landsat 8 | - Median composites for B2 (red), B3 (green), B4 (red), B5 (Near infrared), B6/7 (Shortwave infrared 1/2), B10/11 (Thermal infrared 1/2) |
- Median composites for the Normalized Difference Vegetation Index (NDVI), the Biophysical Composition Index (BCI), the Normalized Difference BAreness Index (NDBAI), the Enhanced Built-up and Bare land Index (EBBI), the Normalized Difference Water Index (NDWI), and the Normalized Difference Built Index (NDBI). | |
- 10th and 90th percentile composites for NDVI and BCI | |
Sentinel 1 | - Single co-polarization (VV), dual-band cross-polarization (VH) and their ratio (VV/VH) |
- Mean and standard deviation of VV and VH combined | |
- VVH indicator [103] | |
Sentinel 2 | - Median composite Red edge bands (B5, B6, B7) |
- Median composite NDVI Red Edge 1 and 2 [104] | |
- Median composite Sentinel-2 Red-Edge Position Index (S2REP) [105] | |
Other | - Global Forest Canopy Height (GFCH) |
- DTM, DEM, DSM |
Appendix B. Urban Canopy Parameters
LCZ Class | ISA [unit fraction] | AHF [W/m] | R [Unit Fraction] | H [m] | [Unit-Less] |
---|---|---|---|---|---|
1 | 0.95 | 100 | 0.5 | 25 | 2.5 |
2 | 0.9 | 35 | 0.5 | 15 | 1.25 |
3 | 0.85 | 30 | 0.55 | 5 | 1.25 |
4 | 0.65 | 30 | 0.3 | 25 | 1 |
5 | 0.7 | 15 | 0.3 | 15 | 0.5 |
6 | 0.6 | 10 | 0.3 | 5 | 0.5 |
7 | 0.85 | 30 | 0.8 | 3 | 1.5 |
8 | 0.85 | 40 | 0.4 | 7 | 0.2 |
9 | 0.3 | 5 | 0.15 | 5 | 0.15 |
10 | 0.55 | 100 | 0.25 | 8.5 | 0.35 |
LCZ | Albedo, | Emissivity, | Heat Capacity, | Heat Conductivity, | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Class | [Unit Fraction] | [Unit Fraction] | [MJ m K] | [W m K] | ||||||||
Roof | Walls | Road | Roof | Walls | Road | Roof | Walls | Road | Roof | Walls | Road | |
1 | 0.13 | 0.25 | 0.14 | 0.91 | 0.9 | 0.95 | 1.8 | 1.8 | 1.75 | 1.25 | 1.09 | 0.77 |
2 | 0.18 | 0.2 | 0.14 | 0.91 | 0.9 | 0.95 | 1.8 | 2.67 | 1.68 | 1.25 | 1.5 | 0.73 |
3 | 0.15 | 0.2 | 0.14 | 0.91 | 0.9 | 0.95 | 1.44 | 2.05 | 1.63 | 1.0 | 1.25 | 0.69 |
4 | 0.13 | 0.25 | 0.14 | 0.91 | 0.9 | 0.95 | 1.8 | 2.0 | 1.54 | 1.25 | 1.45 | 0.64 |
5 | 0.13 | 0.25 | 0.14 | 0.91 | 0.9 | 0.95 | 1.8 | 2.0 | 1.5 | 1.25 | 1.45 | 0.62 |
6 | 0.13 | 0.25 | 0.14 | 0.91 | 0.9 | 0.95 | 1.44 | 2.05 | 1.47 | 1.0 | 1.25 | 0.6 |
7 | 0.15 | 0.2 | 0.18 | 0.28 | 0.9 | 0.92 | 2.0 | 0.72 | 1.67 | 2.0 | 0.5 | 0.72 |
8 | 0.18 | 0.25 | 0.14 | 0.91 | 0.9 | 0.95 | 1.8 | 1.8 | 1.38 | 1.25 | 1.25 | 0.51 |
9 | 0.13 | 0.25 | 0.14 | 0.91 | 0.9 | 0.95 | 1.44 | 2.56 | 1.37 | 1.0 | 1.0 | 0.55 |
10 | 0.1 | 0.2 | 0.14 | 0.91 | 0.9 | 0.95 | 2.0 | 1.69 | 1.49 | 2.0 | 1.33 | 0.61 |
Appendix C. Additional Engineerings with External Parameters
Appendix D. Computer Code and Software
References
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017; pp. 1–16. [Google Scholar] [CrossRef] [Green Version]
- Tanner, C.J.; Adler, F.R.; Grimm, N.B.; Groffman, P.M.; Levin, S.A.; Munshi-South, J.; Pataki, D.E.; Pavao-Zuckerman, M.; Wilson, W.G. Urban ecology: Advancing science and society. Front. Ecol. Environ. 2014. [Google Scholar] [CrossRef]
- Fernandez Milan, B.; Creutzig, F. Reducing urban heat wave risk in the 21st century. Curr. Opin. Environ. Sustain. 2015, 14, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Baklanov, A.; Grimmond, C.; Carlson, D.; Terblanche, D.; Tang, X.; Bouchet, V.; Lee, B.; Langendijk, G.; Kolli, R.; Hovsepyan, A. From urban meteorology, climate and environment research to integrated city services. Urban Clim. 2018, 23, 330–341. [Google Scholar] [CrossRef]
- Baklanov, A.; Cárdenas, B.; Lee, T.C.; Leroyer, S.; Masson, V.; Molina, L.T.; Müller, T.; Ren, C.; Vogel, F.R.; Voogt, J.A. Integrated urban services: Experience from four cities on different continents. Urban Clim. 2020, 32, 100610. [Google Scholar] [CrossRef] [PubMed]
- Rivin, G.S.; Rozinkina, I.A.; Vil’fand, R.; Kiktev, D.B.; Tudriy, K.O.; Blinov, D.V.; Varentsov, M.; Zakharchenko, D.I.; Samsonov, T.; Repina, I.A.; et al. Development of the High-resolution Operational System for Numerical Prediction of Weather and Severe Weather Events for the Moscow Region. Russ. Meteorol. Hydrol. 2020, 45, 455–465. [Google Scholar] [CrossRef]
- Barlage, M.; Miao, S.; Chen, F. Impact of physics parameterizations on high-resolution weather prediction over two Chinese megacities. J. Geophys. Res. Atmos. 2016, 121, 4487–4498. [Google Scholar] [CrossRef] [Green Version]
- Vandamme, S.; Demuzere, M.; Verdonck, M.l.; Zhang, Z.; Coillie, F.V. Revealing Kunming’s (China) Historical Urban Planning Policies Through Local Climate Zones. Remote Sens. 2019, 11, 1731. [Google Scholar] [CrossRef] [Green Version]
- Verdonck, M.L.; Demuzere, M.; Bechtel, B.; Beck, C.; Brousse, O.; Droste, A.; Fenner, D.; Leconte, F.; Van Coillie, F. The Human Influence Experiment (Part 2): Guidelines for Improved Mapping of Local Climate Zones Using a Supervised Classification. Urban Sci. 2019, 3, 27. [Google Scholar] [CrossRef] [Green Version]
- Maronga, B.; Gross, G.; Raasch, S.; Banzhaf, S.; Forkel, R.; Heldens, W.; Kanani-sühring, F.; Matzarakis, A.; Mauder, M.; Pavlik, D.; et al. Development of a new urban climate model based on the model PALM – Project overview, planned work, and first achievements. Meteorol. Z. 2019, 28, 105–119. [Google Scholar] [CrossRef]
- Piroozmand, P.; Mussetti, G.; Allegrini, J.; Mohammadi, M.H.; Akrami, E.; Carmeliet, J. Coupled CFD framework with mesoscale urban climate model: Application to microscale urban flows with weak synoptic forcing. J. Wind. Eng. Ind. Aerodyn. 2020, 197, 104059. [Google Scholar] [CrossRef]
- Garuma, G.F. Review of urban surface parameterizations for numerical climate models. Urban Clim. 2017, 24, 830–851. [Google Scholar] [CrossRef]
- Masson, V.; Heldens, W.; Bocher, E.; Bonhomme, M.; Bucher, B.; Burmeister, C.; de Munck, C.; Esch, T.; Hidalgo, J.; Kanani-Sühring, F.; et al. City-descriptive input data for urban climate models: Model requirements, data sources and challenges. Urban Clim. 2020, 31, 100536. [Google Scholar] [CrossRef]
- Bocher, E.; Petit, G.; Bernard, J.; Palominos, S. A geoprocessing framework to compute urban indicators: The MApUCE tools chain. Urban Clim. 2018, 24, 153–174. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Li, Y.; Wang, X.; Chen, L.; Yu, B.; Zhang, Y.; Miao, S. High-resolution dataset of urban canopy parameters for Beijing and its application to the integrated WRF/Urban modelling system. J. Clean. Prod. 2019, 208, 373–383. [Google Scholar] [CrossRef]
- Mussetti, G.; Brunner, D.; Allegrini, J.; Wicki, A.; Schubert, S.; Carmeliet, J. Simulating urban climate at sub-kilometre scale for representing the intra-urban variability of Zurich, Switzerland. Int. J. Climatol. 2020, 40, 458–476. [Google Scholar] [CrossRef]
- Samsonov, T.E.; Konstantinov, P.I.; Varentsov, M.I. Object-oriented approach to urban canyon analysis and its applications in meteorological modeling. Urban Clim. 2015, 13, 122–139. [Google Scholar] [CrossRef]
- Wong, M.M.F.; Fung, J.C.H.; Ching, J.; Yeung, P.P.S.; Tse, J.W.P.; Ren, C.; Wang, R.; Cai, M. Evaluation of uWRF performance and modeling guidance based on WUDAPT and NUDAPT UCP datasets for Hong Kong. Urban Clim. 2019, 28, 100460. [Google Scholar] [CrossRef] [Green Version]
- Kwok, Y.T.; De Munck, C.; Schoetter, R.; Ren, C.; Lau, K.K.L. Refined dataset to describe the complex urban environment of Hong Kong for urban climate modelling studies at the mesoscale. Theor. Appl. Climatol. 2020. [Google Scholar] [CrossRef]
- Brousse, O.; Georganos, S.; Demuzere, M.; Vanhuysse, S.; Wouters, H.; Wolff, E.; Linard, C.; Lipzig, N.P.V. Urban Climate Using Local Climate Zones in Sub-Saharan Africa to tackle urban health issues. Urban Clim. 2019, 27, 227–242. [Google Scholar] [CrossRef] [Green Version]
- Brousse, O.; Wouters, H.; Demuzere, M.; Thiery, W.; Van de Walle, J.; Lipzig, N.P.M. The local climate impact of an African city during clear-sky conditions—Implications of the recent urbanization in Kampala (Uganda). Int. J. Climatol. 2020, 40, 4586–4608. [Google Scholar] [CrossRef]
- Brousse, O.; Georganos, S.; Demuzere, M.; Dujardin, S.; Lennert, M.; Linard, C.; Snow, R.W.; Thiery, W.; van Lipzig, N.P.M. Can we use Local Climate Zones for predicting malaria prevalence across sub-Saharan African cities? Environ. Res. Lett. 2020. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Demuzere, M.; Harshan, S.; Järvi, L.; Roth, M.; Grimmond, C.S.; Masson, V.; Oleson, K.W.; Velasco, E.; Wouters, H. Impact of urban canopy models and external parameters on the modelled urban energy balance in a tropical city. Q. J. R. Meteorol. Soc. 2017, 143, 1581–1596. [Google Scholar] [CrossRef]
- Demuzere, M.; Bechtel, B.; Mills, G. Global transferability of local climate zone models. Urban Clim. 2019, 27, 46–63. [Google Scholar] [CrossRef]
- Demuzere, M.; Hankey, S.; Mills, G.; Zhang, W.; Lu, T.; Bechtel, B. Combining expert and crowd-sourced training data to map urban form and functions for the continental US. Sci. Data 2020, 7, 264. [Google Scholar] [CrossRef] [PubMed]
- Ching, J.; Mills, G.; Bechtel, B.; See, L.; Feddema, J.; Wang, X.; Ren, C.; Brousse, O.; Martilli, A.; Neophytou, M.; et al. WUDAPT: An Urban Weather, Climate, and Environmental Modeling Infrastructure for the Anthropocene. Bull. Am. Meteorol. Soc. 2018, 99, 1907–1924. [Google Scholar] [CrossRef] [Green Version]
- Demuzere, M.; Bechtel, B.; Middel, A.; Mills, G. Mapping Europe into local climate zones. PLoS ONE 2019, 14, e0214474. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Ren, C.; Xu, Y.; Lau, K.K.l.; Shi, Y. Mapping the local climate zones of urban areas by GIS-based and WUDAPT methods: A case study of Hong Kong. Urban Clim. 2018, 24, 567–576. [Google Scholar] [CrossRef]
- Hammerberg, K.; Brousse, O.; Martilli, A.; Mahdavi, A. Implications of employing detailed urban canopy parameters for mesoscale climate modelling: A comparison between WUDAPT and GIS databases over Vienna, Austria. Int. J. Climatol. 2018, 38, e1241–e1257. [Google Scholar] [CrossRef] [Green Version]
- Richard, Y.; Emery, J.; Dudek, J.; Pergaud, J.; Chateau-Smith, C.; Zito, S.; Rega, M.; Vairet, T.; Castel, T.; Thévenin, T.; et al. How relevant are local climate zones and urban climate zones for urban climate research? Dijon (France) as a case study. Urban Clim. 2018, 26, 258–274. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Kusaka, H.; Bornstein, R.; Ching, J.; Grimmond, C.S.B.; Grossman-Clarke, S.; Loridan, T.; Manning, K.W.; Martilli, A.; Miao, S.; et al. The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol. 2011, 31, 273–288. [Google Scholar] [CrossRef]
- Brousse, O.; Martilli, A.; Foley, M.; Mills, G.; Bechtel, B. WUDAPT, an efficient land use producing data tool for mesoscale models? Integration of urban LCZ in WRF over Madrid. Urban Clim. 2016, 17, 116–134. [Google Scholar] [CrossRef]
- Zonato, A.; Martilli, A.; Di Sabatino, S.; Zardi, D.; Giovannini, L. Evaluating the performance of a novel WUDAPT averaging technique to define urban morphology with mesoscale models. Urban Clim. 2020, 31, 100584. [Google Scholar] [CrossRef]
- Rockel, B.; Will, A.; Hense, A. The regional climate model COSMO-CLM (CCLM). Meteorol. Z. 2008, 17, 347–348. [Google Scholar] [CrossRef]
- Wouters, H.; Demuzere, M.; Blahak, U.; Fortuniak, K.; Maiheu, B.; Camps, J.; Tielemans, D.; van Lipzig, N.P. Efficient urban canopy parametrization for atmospheric modelling: Description and application with the COSMO-CLM model (version 5.0_clm6) for a Belgian Summer. Geosci. Model Dev. 2016, 9, 3027–3054. [Google Scholar] [CrossRef] [Green Version]
- Cox, P.M.; Huntingford, C.; Williamson, M.S. Emergent constraint on equilibrium climate sensitivity from global temperature variability. Nature 2018, 553, 319–322. [Google Scholar] [CrossRef]
- Samsonov, T.; Trigub, K. Mapping of local climate zones of Moscow city (in Russian). Geod. Cartogr. 2018, 936, 14–25. [Google Scholar] [CrossRef]
- Varentsov, M.; Wouters, H.; Platonov, V.; Konstantinov, P. Megacity-Induced Mesoclimatic Effects in the Lower Atmosphere: A Modeling Study for Multiple Summers over Moscow, Russia. Atmosphere 2018, 9, 50. [Google Scholar] [CrossRef] [Green Version]
- Kislov, A.V.; Varentsov, M.I.; Gorlach, I.; Alekseeva, L. “Heat island” of the Moscow agglomeration and the urban-induced amplification of global warming [in Russian]. Mosc. Univ. Vestn. Ser. 5 Geogr. 2017, 4, 12–19. [Google Scholar]
- Lokoshchenko, M.A. Urban ‘heat island’ in Moscow. Urban Clim. 2014, 10 Part 3, 550–562. [Google Scholar] [CrossRef]
- Lokoshchenko, M.A. Urban Heat Island and Urban Dry Island in Moscow and Their Centennial Changes. J. Appl. Meteorol. Climatol. 2017, 56, 2729–2745. [Google Scholar] [CrossRef]
- Varentsov, M.I.; Grishchenko, M.Y.; Wouters, H. Simultaneous assessment of the summer urban heat island in Moscow megacity based on in situ observations, thermal satellite images and mesoscale modeling. Geogr. Environ. Sustain. 2019, 12, 74–95. [Google Scholar] [CrossRef] [Green Version]
- Consortium for Small-scale Modeling. 2020. Available online: https:/http://www.cosmo-model.org/ (accessed on 11 December 2020).
- The Climate Limited-area Modeling Community. 2020. Available online: https://wiki.coast.hzg.de/clmcom (accessed on 11 December 2020).
- Wouters, H.; Demuzere, M.; Ridder, K.D.; van Lipzig, N.P. The impact of impervious water-storage parametrization on urban climate modelling. Urban Clim. 2015, 11, 24–50. [Google Scholar] [CrossRef]
- Trusilova, K.; Schubert, S.; Wouters, H.; Früh, B.; Grossman-Clarke, S.; Demuzere, M.; Becker, P. The urban land use in the COSMO-CLM model: A comparison of three parameterizations for Berlin. Meteorol. Z. 2016, 25, 231–244. [Google Scholar] [CrossRef]
- Wouters, H.; De Ridder, K.; Poelmans, L.; Willems, P.; Brouwers, J.; Hosseinzadehtalaei, P.; Tabari, H.; Vanden Broucke, S.; van Lipzig, N.P.M.; Demuzere, M. Heat stress increase under climate change twice as large in cities as in rural areas: A study for a densely populated midlatitude maritime region. Geophys. Res. Lett. 2017, 44, 8997–9007. [Google Scholar] [CrossRef] [Green Version]
- Bucchignani, E.; Mercogliano, P. High-resolution simulations with COSMO model including TERRA_URB TERRA_URB parameterization for the representation of Urban Heat Islands over South Italy. Adv. Sci. Res. 2020, 17, 19–22. [Google Scholar] [CrossRef]
- Bucchignani, E.; Mercogliano, P.; Garbero, V.; Milelli, M.; Varentsov, M.; Rozinkina, I.; Rivin, G.; Blinov, D.; Kirsanov, A.; Wouters, H.; et al. Analysis and Evaluation of TERRA_URB Scheme: PT AEVUS Final Report; Deutscher Wetterdienst: Offenbach, Germany, 2019; Technical report, COSMO Technical Report 40. [Google Scholar] [CrossRef]
- Zängl, G.; Reinert, D.; Rípodas, P.; Baldauf, M. The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core. Q. J. R. Meteorol. Soc. 2015, 141, 563–579. [Google Scholar] [CrossRef]
- Pham, T.V.; Steger, C.; Rockel, B.; Keuler, K.; Kirchner, I.; Mertens, M.; Rieger, D.; Zaengl, G.; Frueh, B. ICON in Climate Limited-area Mode (ICON Release Version 2.6.1): A new regional climate model. Geosci. Model Dev. Discuss. 2020, 1–32. [Google Scholar] [CrossRef]
- Flanner, M.G. Integrating anthropogenic heat flux with global climate models. Geophys. Res. Lett. 2009, 36, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Smiatek, G. Time invariant boundary data of regional climate models COSMO-CLM and WRF and their application in COSMO-CLM. J. Geophys. Res. Atmos. 2014, 119, 7332–7347. [Google Scholar] [CrossRef]
- Bicheron, P.; Defourny, P.; Brockmann, C.; Schouten, L.; Vancutsem, C.; Huc, M.; Bontemps, S.; Leroy, M.; Achard, F.; Herold, M.; et al. Globcover. Products Description and Validation Report; Technical report; Medias France: Toulouse, France, 2008. [Google Scholar]
- Elvidge, C.D.; Tuttle, B.T.; Sutton, P.C.; Baugh, K.E.; Howard, A.T.; Milesi, C.; Bhaduri, B.; Nemani, R. Global Distribution and Density of Constructed Impervious Surfaces. Sensors 2007, 7, 1962–1979. [Google Scholar] [CrossRef] [PubMed]
- Loridan, T.; Grimmond, C.S.B. Multi-site evaluation of an urban land-surface model: Intra-urban heterogeneity, seasonality and parameter complexity requirements. Q. J. R. Meteorol. Soc. 2011, 138, 1094–1113. [Google Scholar] [CrossRef] [Green Version]
- Bechtel, B.; Alexander, P.; Böhner, J.; Ching, J.; Conrad, O.; Feddema, J.; Mills, G.; See, L.; Stewart, I. Mapping Local Climate Zones for a Worldwide Database of the Form and Function of Cities. ISPRS Int. J. Geo-Inf. 2015, 4, 199–219. [Google Scholar] [CrossRef] [Green Version]
- Bechtel, B.; Alexander, P.J.; Beck, C.; Böhner, J.; Brousse, O.; Ching, J.; Demuzere, M.; Fonte, C.; Gál, T.; Hidalgo, J.; et al. Generating WUDAPT Level 0 data—Current status of production and evaluation. Urban Clim. 2019, 27, 24–45. [Google Scholar] [CrossRef] [Green Version]
- Ching, J.; Aliaga, D.; Mills, G.; Masson, V.; See, L.; Neophytou, M.; Middel, A.; Baklanov, A.; Ren, C.; Ng, E.; et al. Pathway using WUDAPT’s Digital Synthetic City tool towards generating urban canopy parameters for multi-scale urban atmospheric modeling. Urban Clim. 2019, 28, 100459. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Bechtel, B.; Demuzere, M.; Sismanidis, P.; Fenner, D.; Brousse, O.; Beck, C.; Van Coillie, F.; Conrad, O.; Keramitsoglou, I.; Middel, A.; et al. Quality of Crowdsourced Data on Urban Morphology—The Human Influence Experiment (HUMINEX). Urban Sci. 2017, 1, 15. [Google Scholar] [CrossRef] [Green Version]
- Bechtel, B.; Demuzere, M.; Stewart, I.D. A Weighted Accuracy Measure for Land Cover Mapping: Comment on Johnson et al. Local Climate Zone (LCZ) Map Accuracy Assessments Should Account for Land Cover Physical Characteristics that Affect the Local Thermal Environment. Remote Sens. 2019, 11, 2420. Remote Sens. 2020, 12, 1769. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R.; Krayenhoff, E.S. Evaluation of the ‘local climate zone’ scheme using temperature observations and model simulations. Int. J. Climatol. 2014, 34, 1062–1080. [Google Scholar] [CrossRef]
- Van de Walle, J.; Brousse, O.; Arnalsteen, L.; Byarugaba, D.; Ddumba, D.S.; Demuzere, M.; Lwasa, S.; Nsangi, G.; Sseviiri, H.; Thiery, W.; et al. The impact of field-derived canopy parameters on tropical urban climate. Theor. Appl. Climatol. (Under Rev.) 2020. [Google Scholar] [CrossRef]
- Buchhorn, M.; Lesiv, M.; Tsendbazar, N.E.; Herold, M.; Bertels, L.; Smets, B. Copernicus global land cover layers-collection 2. Remote Sens. 2020, 12, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Samsonov, T.; Varentsov, M.I. Computation of City-descriptive Parameters for High-resolution Numerical Weather Prediction in Moscow Megacity in the Framework of the COSMO Model. Russ. Meteorol. Hydrol. 2020, 45. [Google Scholar] [CrossRef]
- Stewart, I.D.; Kennedy, C.A. Metabolic heat production by human and animal populations in cities. Int. J. Biometeorol. 2017, 61, 1159–1171. [Google Scholar] [CrossRef] [PubMed]
- Yushkov, V.P.; Kurbatova, M.M.; Varentsov, M.I.; Lezina, E.A.; Kurbatov, G.A.; Miller, E.A.; Repina, I.A.; Artamonov, A.Y.; Kallistratova, M.A. Modeling an Urban Heat Island during Extreme Frost in Moscow in January 2017. Izv. Atmos. Ocean. Phys. 2019, 55, 389–406. [Google Scholar] [CrossRef]
- Different Configurations for the COSMO-ICON Physics. 2018. Available online: http://www.cosmo-model.org/content/model/releases/cosmo-icon-physics.htm (accessed on 11 December 2020).
- Tegen, I.; Hollrig, P.; Chin, M.; Fung, I.; Jacob, D.; Penner, J. Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results. J. Geophys. Res. 1997, 102, 23895–23915. [Google Scholar] [CrossRef]
- Schulz, J.P.; Vogel, G. Improving the Processes in the Land Surface Scheme TERRA: Bare Soil Evaporation and Skin Temperature. Atmosphere 2020, 11, 513. [Google Scholar] [CrossRef]
- Rossa, A.M.; Domenichini, F.; Szintai, B. Selected COSMO-2 verification results over North-eastern Italian Veneto. COSMO Newsl. 2012, 12, 64–71. [Google Scholar]
- Cerenzia, I.; Tampieri, F.; Tesini, M. Diagnosis of Turbulence Schema in Stable Atmospheric Conditions and Sensitivity Tests. COSMO Newsl. 2014, 14, 28–36. [Google Scholar]
- Canadell, J.; Jackson, R.B.; Ehleringer, J.B.; Mooney, H.A.; Sala, O.E.; Schulze, E.D. Maximum rooting depth of vegetation types at the global scale. Oecologia 1996, 108, 583–595. [Google Scholar] [CrossRef]
- Persson, H.; Baitulin, I.O. Plant Root Systems and Natural Vegetation; Opulus Press AB: Uppsala, Sweden, 1996; p. 136. [Google Scholar]
- Schenk, H.J.; Jackson, R.B. The Global Biogeography of Roots. Ecol. Monogr. 2002, 72, 311. [Google Scholar] [CrossRef]
- Akkermans, T.; Lauwaet, D.; Demuzere, M.; Vogel, G.; Nouvellon, Y.; Ardö, J.; Caquet, B.; De Grandcourt, A.; Merbold, L.; Kutsch, W.; et al. Validation and comparison of two soil-vegetation-atmosphere transfer models for tropical Africa. J. Geophys. Res. 2012, 117, G02013. [Google Scholar] [CrossRef] [Green Version]
- Kislov, A.V. (Ed.). Climate of Moscow in Conditions of Global Warming [in Russian]; Publishing house of Moscow University: Moscow, Russia, 2017; p. 288. [Google Scholar]
- Gong, P.; Li, X.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Liu, X.; Xu, B.; Yang, J.; Zhang, W.; et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. 2020, 236, 111510. [Google Scholar] [CrossRef]
- Aleksandrov, G.G.; Belova, I.N.; Ginzburg, A.S. Anthropogenic heat flows in the capital agglomerations of Russia and China. Dokl. Earth Sci. 2014, 457, 850–854. [Google Scholar] [CrossRef]
- Alexandrov, G.; Ginzburg, A. Anthropogenic impact of Moscow district heating system on urban environment. Energy Procedia 2018, 149, 161–169. [Google Scholar] [CrossRef]
- Ryu, Y.H.; Baik, J.J. Quantitative Analysis of Factors Contributing to Urban Heat Island Intensity. J. Appl. Meteorol. Climatol. 2012, 51, 842–854. [Google Scholar] [CrossRef]
- Sheng, L.; Lu, D.; Huang, J. Impacts of land-cover types on an urban heat island in Hangzhou, China. Int. J. Remote Sens. 2015, 36, 1584–1603. [Google Scholar] [CrossRef]
- Li, J.; Song, C.; Cao, L.; Zhu, F.; Meng, X.; Wu, J. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [Google Scholar] [CrossRef]
- Kłysik, K.; Fortuniak, K. Temporal and spatial characteristics of the urban heat island of Łódź, Poland. Atmos. Environ. 1999, 33, 3885–3895. [Google Scholar] [CrossRef]
- Konstantinov, P.; Varentsov, M.; Esau, I. A high density urban temperature network deployed in several cities of Eurasian Arctic. Environ. Res. Lett. 2018, 13, 075007. [Google Scholar] [CrossRef]
- Varentsov, M.; Konstantinov, P.; Baklanov, A.; Esau, I.; Miles, V.; Davy, R. Anthropogenic and natural drivers of a strong winter urban heat island in a typical Arctic city. Atmos. Chem. Phys. 2018, 18, 17573–17587. [Google Scholar] [CrossRef] [Green Version]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Bohnenstengel, S.I.; Hamilton, I.; Davies, M.; Belcher, S.E. Impact of anthropogenic heat emissions on London’s temperatures. Q. J. R. Meteorol. Soc. 2014, 140, 687–698. [Google Scholar] [CrossRef]
- World Urban Database Portal Tools. 2020. Available online: https://wudapt.cs.purdue.edu/wudaptTools/default/user/login?_next=/wudaptTools/default/tools (accessed on 11 December 2020).
- Demuzere, M.; Kittner, J.; Bechtel, B. LCZ Generator: Online tool to create Local Climate Zone maps. Front. Environ. Sci. 2020. Under Review. [Google Scholar]
- Demuzere, M.; Hankey, S.; Mills, G.; Zhang, W.; Lu, T.; Bechtel, B. CONUS-WIDE LCZ map and Training Areas. Figshare 2020. [Google Scholar] [CrossRef]
- Schubert, S.; Grossman-Clarke, S.; Martilli, A. A Double-Canyon Radiation Scheme for Multi-Layer Urban Canopy Models. Bound.-Layer Meteorol. 2012, 145, 439–468. [Google Scholar] [CrossRef]
- Chen, Y.C.; Chiu, H.W.; Su, Y.F.; Wu, Y.C.; Cheng, K.S. Does urbanization increase diurnal land surface temperature variation? Evidence and implications. Landsc. Urban Plan. 2017, 157, 247–258. [Google Scholar] [CrossRef]
- Vahmani, P.; Ban-Weiss, G.A. Impact of remotely sensed albedo and vegetation fraction on simulation of urban climate in WRF-urban canopy model: A case study of the urban heat island in Los Angeles. J. Geophys. Res. Atmos. 2016, 121, 1511–1531. [Google Scholar] [CrossRef]
- Lemonsu, a.; Masson, V.; Shashua-Bar, L.; Erell, E.; Pearlmutter, D. Inclusion of vegetation in the Town Energy Balance model for modeling urban green areas. Geosci. Model Dev. Discuss. 2012, 5, 1295–1340. [Google Scholar] [CrossRef]
- Mussetti, G.; Brunner, D.; Henne, S.; Allegrini, J.; Krayenhoff, E.S.; Schubert, S.; Feigenwinter, C.; Vogt, R.; Wicki, A.; Carmeliet, J. COSMO-BEP-Tree v1.0: A coupled urban climate model with explicit representation of street trees. Geosci. Model Dev. 2020, 13, 1685–1710. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Varquez, A.C.G.; Kanda, M. Global anthropogenic heat flux database with high spatial resolution. Atmos. Environ. 2017, 150, 276–294. [Google Scholar] [CrossRef]
- Jin, K.; Wang, F.; Chen, D.; Liu, H.; Ding, W.; Shi, S. A new global gridded anthropogenic heat flux dataset with high spatial resolution and long-term time series. Sci. Data 2019, 6, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Allen, L.; Lindberg, F.; Grimmond, C.S.B. Global to city scale urban anthropogenic heat flux: Model and variability. Int. J. Climatol. 2010. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Gong, P.; Seto, K.C.; Clinton, N. Developing a method to estimate building height from Sentinel-1 data. Remote Sens. Environ. 2020, 240, 111705. [Google Scholar] [CrossRef]
- Forkuor, G.; Dimobe, K.; Serme, I.; Tondoh, J.E. Landsat-8 vs. Sentinel-2: Examining the added value of sentinel-2’s red-edge bands to land-use and land-cover mapping in Burkina Faso. GIScience Remote Sens. 2018, 55, 331–354. [Google Scholar] [CrossRef]
- Kaplan, G.; Avdan, U. Sentinel-1 and Sentinel-2 data fusion for wetlands mapping: Balikdami, Turkey. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2018, 42, 729–734. [Google Scholar] [CrossRef] [Green Version]
Name | ISA | AHF | Morphological UCPs | Thermal UCPs | |
---|---|---|---|---|---|
2D field | 2D field | ||||
DEF | from EXTPAR [56] | from EXTPAR [53] | Constants from Reference [36] | Constants from Reference [36] | |
LCZa | LCZ-based 2D fields | Constants from Reference [36] | |||
LCZb | LCZ-based 2D fields | ||||
REF1a | 2D field based | less paved | 2D field based | Constants from Reference [36] | |
on CGLC, OSM | fraction | on estimate from [69] | 2D field based | 2D field based | |
and Sentinel imagery | and OSM data | on OSM data | from facet-level | ||
REF1b | constants | ||||
REF2a | more paved | Constants from Reference [36] | |||
fraction | 2D fields derived | ||||
from facet-level | |||||
REF2b | constants |
UCPs | Unit | DEF | LCZ | REF1/REF2 | |||
---|---|---|---|---|---|---|---|
City | Center | City | Center | City | Center | ||
ISA | % | 89 | 100 | 50 | 69 | 50/58 | 81/87 |
AHF | W/m | 51 | 69 | 28 | 22 | 52 | 88 |
Building fraction, R | % | 66.7 | 33.1 | 38.1 | 19.1 | 26.9 | |
Building height, H | m | 15 | 18.6 | 17.1 | 21.5 | 18.2 | |
Canyon height-to-width ratio, [] | unit-less | 1.5 | 0.75 | 0.86 | 0.54 | 0.69 | |
Facet-level albedo, | unit fraction | 0.101 | 0.175 | 0.177 | 0.178 | 0.175 | |
Facet-level emissivity, | unit fraction | 0.86 | 0.917 | 0.916 | 0.922 | 0.918 | |
Facet-level heat capacity, | MJ m K | 1.25 | 1.789 | 1.910 | 1.762 | 1.791 | |
Facet-level heat conductivity, | W m K | 0.767 | 1.104 | 1.142 | 1.024 | 1.061 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varentsov, M.; Samsonov, T.; Demuzere, M. Impact of Urban Canopy Parameters on a Megacity’s Modelled Thermal Environment. Atmosphere 2020, 11, 1349. https://doi.org/10.3390/atmos11121349
Varentsov M, Samsonov T, Demuzere M. Impact of Urban Canopy Parameters on a Megacity’s Modelled Thermal Environment. Atmosphere. 2020; 11(12):1349. https://doi.org/10.3390/atmos11121349
Chicago/Turabian StyleVarentsov, Mikhail, Timofey Samsonov, and Matthias Demuzere. 2020. "Impact of Urban Canopy Parameters on a Megacity’s Modelled Thermal Environment" Atmosphere 11, no. 12: 1349. https://doi.org/10.3390/atmos11121349
APA StyleVarentsov, M., Samsonov, T., & Demuzere, M. (2020). Impact of Urban Canopy Parameters on a Megacity’s Modelled Thermal Environment. Atmosphere, 11(12), 1349. https://doi.org/10.3390/atmos11121349