Circulation Patterns Associated with Current and Future Rainfall over Ethiopia and South Sudan from a Convection-Permitting Model
Abstract
:1. Introduction
2. Data and Methods
2.1. Model Simulations
2.2. Satellite Rainfall Estimates
2.3. Subregions Used in Analysis
2.4. Season for Analysis
3. Results
3.1. Climatology of Rainfall and Dynamics
3.2. Turkana Jet
3.3. Diurnal Cycle and Propagation of Rainfall Features
3.4. Dynamics Associated with Extreme Rainfall
3.5. Projected End-of-Century Changes in Rainfall and Dynamics
3.6. Projected End-of-Century Changes in Turkana Jet
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations Office for Disaster Risk Reduction (UNISDR) and Internal Displacement Monitoring Centre (IDMC). Displacement in the Greater Horn of Africa: A Disaster Risk Reduction Perspective; United Nations Office for Disaster Risk Reduction (UNISDR) and Internal Displacement Monitoring Centre (IDMC): Nairobi, Kenya, 2017. [Google Scholar]
- Isaac, I.I. Inter-African Development and Development Fund (IADF): With Alternative Strategies towards Sustainable Economic Development for Africa; Trafford Publishing: Bloomington, IN, USA, 2009. [Google Scholar]
- Vijverberg, J.; Sibbing, F.A.; Dejen, E. Lake Tana: Source of the Blue Nile. In The Nile; Springer: Dordrecht, The Netherlands, 2009; pp. 163–192. [Google Scholar]
- Segele, Z.T.; Lamb, P.J. Characterization and variability of Kiremt rainy season over Ethiopia. Meteorol. Atmos. Phys. 2005, 89, 153–180. [Google Scholar] [CrossRef]
- Korecha, D.; Barnston, A.G. Predictability of June–September Rainfall in Ethiopia. Mon. Weather Rev. 2007, 135, 628–650. [Google Scholar] [CrossRef]
- Segele, Z.T.; Lamb, P.J.; Leslie, L.M. Seasonal-to-Interannual Variability of Ethiopia/Horn of Africa Monsoon. Part I: Associations of Wavelet-Filtered Large-Scale Atmospheric Circulation and Global Sea Surface Temperature. J. Clim. 2009, 22, 3396–3421. [Google Scholar] [CrossRef]
- Nicholson, S.E. Climate and climatic variability of rainfall over eastern Africa. Rev. Geophys. 2017, 55, 590–635. [Google Scholar] [CrossRef] [Green Version]
- Hartman, A.T. An analysis of the effects of temperatures and circulations on the strength of the low-level jet in the Turkana Channel in East Africa. Theor. Appl. Climatol. 2018, 132, 1003–1017. [Google Scholar] [CrossRef]
- Nicholson, S.E. The Turkana low-level jet: Mean climatology and association with regional aridity. Int. J. Climatol. 2016, 36, 2598–2614. [Google Scholar] [CrossRef]
- Segele, Z.T.; Lamb, P.J.; Leslie, L.M. Large-scale atmospheric circulation and global sea surface temperature associations with Horn of Africa June-September rainfall. Int. J. Climatol. 2009, 29, 1075–1100. [Google Scholar] [CrossRef]
- Williams, A.P.; Funk, C.C.; Michaelsen, J.; Rauscher, S.A.; Robertson, I.; Wils, T.H.G.; Koprowski, M.; Eshetu, Z.; Loader, N.J. Recent summer precipitation trends in the Greater Horn of Africa and the emerging role of Indian Ocean sea surface temperature. Clim. Dyn. 2012, 39, 2307–2328. [Google Scholar] [CrossRef] [Green Version]
- Viste, E.M.; Sorteberg, A. Moisture transport into the Ethiopian highlands. Int. J. Climatol. 2013, 33, 249–263. [Google Scholar] [CrossRef] [Green Version]
- Viste, E.M.; Sorteberg, A. The effect of moisture transport variability on Ethiopian summer precipitation. Int. J. Climatol. 2013, 33, 3106–3123. [Google Scholar] [CrossRef] [Green Version]
- Camberlin, P.; Fontaine, B.; Louvet, S.; Oettli, P.; Valimba, P. Climate Adjustments over Africa Accompanying the Indian Monsoon Onset. J. Clim. 2010, 23, 2047–2064. [Google Scholar] [CrossRef]
- Beltrando, G.; Camberlin, P. Interannual variability of rainfall in the eastern horn of Africa and indicators of atmospheric circulation. Int. J. Climatol. 1993, 13, 533–546. [Google Scholar] [CrossRef]
- Zeleke, T.; Giorgi, F.; Tsidu, G.M.; Diro, G.T. Spatial and temporal variability of summer rainfall over Ethiopia from observations and a regional climate model experiment. Theor. Appl. Climatol. 2013, 111, 665–681. [Google Scholar] [CrossRef]
- Segele, Z.T.; Leslie, L.M.; Tarhule, A. Sensitivity of Horn of Africa Rainfall to Regional Sea Surface Temperature Forcing. Climate 2015, 3, 365–390. [Google Scholar] [CrossRef] [Green Version]
- Shongwe, M.E.; Van Oldenborgh, G.J.; van den Hurk, B.; Van Aalst, M. Projected Changes in Mean and Extreme Precipitation in Africa under Global Warming. Part II: East Africa. J. Clim. 2011, 24, 3718–3733. [Google Scholar] [CrossRef] [Green Version]
- Otieno, V.O.; Anyah, R.O. CMIP5 simulated climate conditions of the Greater Horn of Africa (GHA). Part II: Projected climate. Clim. Dyn. 2013, 41, 2099–2113. [Google Scholar] [CrossRef]
- Endris, H.S.; Omondi, P.; Jain, S.L.; Lennard, C.; Hewitson, B.; Chang’A, L.; Awange, J.L.; Dosio, A.; Ketiem, P.; Nikulin, G.; et al. Assessment of the Performance of CORDEX Regional Climate Models in Simulating East African Rainfall. J. Clim. 2013, 26, 8453–8475. [Google Scholar] [CrossRef]
- Osima, S.; Indasi, V.S.; Zaroug, M.; Endris, H.S.; Gudoshava, M.; Misiani, H.O.; Nimusiima, A.; Anyah, R.O.; Otieno, G.; Ogwang, B.A.; et al. Projected climate over the Greater Horn of Africa under 1.5 °C and 2 °C global warming. Environ. Res. Lett. 2018, 13, 065004. [Google Scholar] [CrossRef]
- Endris, H.S.; Lennard, C.; Hewitson, B.; Dosio, A.; Nikulin, G.; Artan, G.A. Future changes in rainfall associated with ENSO, IOD and changes in the mean state over Eastern Africa. Clim. Dyn. 2018, 52, 2029–2053. [Google Scholar] [CrossRef] [Green Version]
- Vizy, E.K.; Cook, K.H. Observed relationship between the Turkana low-level jet and boreal summer convection. Clim. Dyn. 2019, 53, 4037–4058. [Google Scholar] [CrossRef]
- Kinuthia, J.H. Horizontal and Vertical Structure of the Lake Turkana Jet. J. Appl. Meteorol. 1992, 31, 1248–1274. [Google Scholar] [CrossRef] [Green Version]
- Kinuthia, J.H.; Asnani, G.C. A Newly Found Jet in North Kenya (Turkana Channel). Mon. Weather Rev. 1982, 110, 1722–1728. [Google Scholar] [CrossRef]
- Crook, J.A.; Klein, C.; Folwell, S.; Taylor, C.M.; Parker, D.J.; Stratton, R.; Stein, T.H.M. Assessment of the Representation of West African Storm Lifecycles in Convection-Permitting Simulations. Earth Space Sci. 2019, 6, 818–835. [Google Scholar] [CrossRef] [Green Version]
- Taylor, C.M.; Belušić, D.; Guichard, F.; Parker, D.J.; Vischel, T.; Bock, O.; Harris, P.P.; Janicot, S.; Klein, C.; Panthou, G. Frequency of extreme Sahelian storms tripled since 1982 in satellite observations. Nature 2017, 544, 475–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marsham, J.H.; Dixon, N.S.; Garcia-Carreras, L.; Lister, G.M.S.; Parker, D.J.; Knippertz, P.; Birch, C.E. The role of moist convection in the West African monsoon system: Insights from continental-scale convection-permitting simulations. Geophys. Res. Lett. 2013, 40, 1843–1849. [Google Scholar] [CrossRef] [Green Version]
- Pearson, K.; Lister, G.M.S.; Birch, C.E.; Allan, R.P.; Hogan, R.J.; Woolnough, S.J. Modelling the diurnal cycle of tropical convection across the ‘grey zone’. Q. J. R. Meteorol. Soc. 2013, 140, 491–499. [Google Scholar] [CrossRef] [Green Version]
- Stein, T.H.M.; Parker, D.J.; Hogan, R.J.; Birch, C.E.; Holloway, C.E.; Lister, G.M.S.; Marsham, J.H.; Woolnough, S.J. The representation of the West African monsoon vertical cloud structure in the Met Office Unified Model: An evaluation with CloudSat. Q. J. R. Meteorol. Soc. 2015, 141, 3312–3324. [Google Scholar] [CrossRef] [Green Version]
- Finney, D.L.; Marsham, J.H.; Jackson, L.S.; Kendon, E.J.; Rowell, D.P.; Boorman, P.M.; Keane, R.J.; Stratton, R.A.; Senior, C.A. Implications of Improved Representation of Convection for the East Africa Water Budget Using a Convection-Permitting Model. J. Clim. 2019, 32, 2109–2129. [Google Scholar] [CrossRef]
- Birch, C.E.; Marsham, J.H.; Parker, D.J.; Taylor, C.M. The scale dependence and structure of convergence fields preceding the initiation of deep convection. Geophys. Res. Lett. 2014, 41, 4769–4776. [Google Scholar] [CrossRef] [Green Version]
- Wainwright, C.M.; Marsham, J.H.; Rowell, D.P.; Finney, D.L.; Black, E. Future changes in seasonality in Eastern Africa from regional simulations with explicit and parametrised convection. J. Clim. 2020, 1–54. [Google Scholar] [CrossRef]
- Stratton, R.; Senior, C.A.; Vosper, S.B.; Folwell, S.S.; Boutle, I.A.; Earnshaw, P.D.; Kendon, E.; Lock, A.P.; Malcolm, A.; Manners, J.; et al. A Pan-African Convection-Permitting Regional Climate Simulation with the Met Office Unified Model: CP4-Africa. J. Clim. 2018, 31, 3485–3508. [Google Scholar] [CrossRef]
- Walters, D.; Boutle, I.; Brooks, M.; Melvin, T.; Stratton, R.; Vosper, S.B.; Wells, H.; Williams, K.; Wood, N.; Allen, T.; et al. The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations. Geosci. Model Dev. 2017, 10, 1487–1520. [Google Scholar] [CrossRef] [Green Version]
- Finney, D.L.; Marsham, J.H.; Rowell, D.P.; Kendon, E.J.; Tucker, S.O.; Stratton, R.A.; Jackson, L.S. Effects of Explicit Convection on Future Projections of Mesoscale Circulations, Rainfall, and Rainfall Extremes over Eastern Africa. J. Clim. 2020, 33, 2701–2718. [Google Scholar] [CrossRef]
- Fitzpatrick, R.G.J.; Parker, D.J.; Marsham, J.H.; Rowell, D.P.; Guichard, F.M.; Taylor, C.M.; Cook, K.H.; Vizy, E.K.; Jackson, L.S.; Finney, D.; et al. What Drives the Intensification of Mesoscale Convective Systems over the West African Sahel under Climate Change? J. Clim. 2020, 33, 3151–3172. [Google Scholar] [CrossRef]
- Berthou, S.; Kendon, E.J.; Chan, S.C.; Ban, N.; Leutwyler, D.; Schär, C.; Fosser, G. Pan-European climate at convection-permitting scale: A model intercomparison study. Clim. Dyn. 2020, 55, 35–59. [Google Scholar] [CrossRef] [Green Version]
- Jackson, L.S.; Finney, D.L.; Kendon, E.J.; Marsham, J.H.; Parker, D.J.; Stratton, R.A.; Tomassini, L.; Tucker, S. The effect of explicit convection on couplings between rainfall, humidity and ascent over Africa under climate change. J. Clim. 2020, 1–60. [Google Scholar] [CrossRef]
- Kendon, E.J.; Stratton, R.A.; Tucker, S.; Marsham, J.H.; Berthou, S.; Rowell, D.P.; Senior, C.A. Enhanced future changes in wet and dry extremes over Africa at convection-permitting scale. Nat. Commun. 2019, 10, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Weisman, M.L.; Klemp, J.B. The Dependence of Numerically Simulated Convective Storms on Vertical Wind Shear and Buoyancy. Mon. Weather Rev. 1982, 110, 504–520. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily High-Resolution-Blended Analyses for Sea Surface Temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Cook, K.H. Generation of the African Easterly Jet and Its Role in Determining West African Precipitation. J. Clim. 1999, 12, 1165–1184. [Google Scholar] [CrossRef]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. cMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Habib, E.; Haile, A.T.; Tian, Y.; Joyce, R.J. Evaluation of the High-Resolution CMORPH Satellite Rainfall Product Using Dense Rain Gauge Observations and Radar-Based Estimates. J. Hydrometeorol. 2012, 13, 1784–1798. [Google Scholar] [CrossRef]
- Dinku, T.; Ceccato, P.; Grover-Kopec, E.; Lemma, M.; Connor, S.J.; Ropelewski, C.F. Validation of satellite rainfall products over East Africa’s complex topography. Int. J. Remote Sens. 2007, 28, 1503–1526. [Google Scholar] [CrossRef]
- Romilly, T.G.; Gebremichael, M. Evaluation of satellite rainfall estimates over Ethiopian river basins. Hydrol. Earth Syst. Sci. 2011, 15, 1505–1514. [Google Scholar] [CrossRef] [Green Version]
- Hirpa, F.A.; Gebremichael, M.; Hopson, T. Evaluation of High-Resolution Satellite Precipitation Products over Very Complex Terrain in Ethiopia. J. Appl. Meteorol. Climatol. 2010, 49, 1044–1051. [Google Scholar] [CrossRef]
- Alfaro, D.A. Low-Tropospheric Shear in the Structure of Squall Lines: Impacts on Latent Heating under Layer-Lifting Ascent. J. Atmos. Sci. 2017, 74, 229–248. [Google Scholar] [CrossRef]
- Dinku, T.; Connor, S.J.; Ceccato, P. Comparison of CMORPH and TRMM-3B42 over mountainous regions of Africa and South America. In Satellite Rainfall Applications for Surface Hydrology; Springer: Dordrecht, The Netherlands, 2010; pp. 193–204. [Google Scholar]
- Stephens, G.L.; L’Ecuyer, T.; Forbes, R.; Gettelmen, A.; Golaz, J.-C.; Bodas-Salcedo, A.; Suzuki, K.; Gabriel, P.; Haynes, J. Dreary state of precipitation in global models. J. Geophys. Res. Space Phys. 2010, 115. [Google Scholar] [CrossRef]
- Joseph, P.V.; Sijikumar, S. Intraseasonal Variability of the Low-Level Jet Stream of the Asian Summer Monsoon. J. Clim. 2004, 17, 1449–1458. [Google Scholar] [CrossRef]
- Pithan, F.; Shepherd, T.G.; Zappa, G.; Sandu, I. Climate model biases in jet streams, blocking and storm tracks resulting from missing orographic drag. Geophys. Res. Lett. 2016, 43, 7231–7240. [Google Scholar] [CrossRef] [Green Version]
- Prein, A.F.; Langhans, W.; Fosser, G.; Ferrone, A.; Ban, N.; Goergen, K.; Keller, M.; Toelle, M.; Gutjahr, O.; Feser, F.; et al. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys. 2015, 53, 323–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, D.J.; Burton, R.R.; Diongue-Niang, A.; Ellis, R.J.; Felton, M.; Taylor, C.M.; Thorncroft, C.D.; Bessemoulin, P.; Tompkins, A.M. The diurnal cycle of the West African monsoon circulation. Q. J. R. Meteorol. Soc. 2005, 131, 2839–2860. [Google Scholar] [CrossRef]
- Rotunno, R.; Klemp, J.B.; Weisman, M.L. A theory for strong, long-lived squall lines. J. Atmos. Sci. 1988, 45, 463–485. [Google Scholar] [CrossRef] [Green Version]
- Van Vuuren, D.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Prein, A.F.; Rasmussen, R.; Stephens, G. Challenges and Advances in Convection-Permitting Climate Modeling. Bull. Am. Meteorol. Soc. 2017, 98, 1027–1030. [Google Scholar] [CrossRef]
- Hastings, D.A.; Paula, K.D.; Gerald, M.E.; Mark, B.; Hiroshi, M.; Hiroshi, M.; Hiroshi, M.; Peter, H.; John, P.; Nevin, A.B.; et al. The Global Land One-Kilometer Base Elevation (GLOBE) Digital Elevation Model, Version 1.0.; National Oceanic and Atmospheric Administration, National Geophysical Data Center: Boulder, CO, USA, 1999. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Misiani, H.O.; Finney, D.L.; Segele, Z.T.; Marsham, J.H.; Tadege, A.; Artan, G.; Atheru, Z. Circulation Patterns Associated with Current and Future Rainfall over Ethiopia and South Sudan from a Convection-Permitting Model. Atmosphere 2020, 11, 1352. https://doi.org/10.3390/atmos11121352
Misiani HO, Finney DL, Segele ZT, Marsham JH, Tadege A, Artan G, Atheru Z. Circulation Patterns Associated with Current and Future Rainfall over Ethiopia and South Sudan from a Convection-Permitting Model. Atmosphere. 2020; 11(12):1352. https://doi.org/10.3390/atmos11121352
Chicago/Turabian StyleMisiani, Herbert O., Declan L. Finney, Zewdu T. Segele, John H. Marsham, Abebe Tadege, Guleid Artan, and Zachary Atheru. 2020. "Circulation Patterns Associated with Current and Future Rainfall over Ethiopia and South Sudan from a Convection-Permitting Model" Atmosphere 11, no. 12: 1352. https://doi.org/10.3390/atmos11121352
APA StyleMisiani, H. O., Finney, D. L., Segele, Z. T., Marsham, J. H., Tadege, A., Artan, G., & Atheru, Z. (2020). Circulation Patterns Associated with Current and Future Rainfall over Ethiopia and South Sudan from a Convection-Permitting Model. Atmosphere, 11(12), 1352. https://doi.org/10.3390/atmos11121352