Modeling the Effect of COVID-19 Lockdown on Mobility and NO2 Concentration in the Lombardy Region
Abstract
:1. Introduction
2. Case Study and Modeling Setup
2.1. The “COVID” Case Study
- Pre-lockdown: NO2 daily means from 1 January to 7 March for years 2014 to 2020;
- Lockdown: NO2 daily means from 8 March to 30 April for years 2014 to 2020.
2.2. CAMx Configuration and Input Data
2.3. Emission Scenarios
3. Results
3.1. Meteorological Parameters
3.2. NO2 Concentration
- Calculating the difference between the BAU and lockdown scenarios, day by day, during all of the case study period;
- Estimating the impact of meteorological conditions on NO2 atmospheric concentration;
- Understanding what is the impact of reduced mobility with respect to the overall decrease in human activity;
- Performing sensitivity tests and calibrating CAMx simulations;
- Assessing the methodology implemented to calculate NO2 emissions during the lockdown.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fenger, J. Urban air quality. Atmos. Environ. 1999, 33, 4877–4900. [Google Scholar] [CrossRef]
- World Health Organization. Health Effects of Transport-Related Air Pollution; Krzyżanowski, M., Kuna-Dibbert, B., Schneider, J., Eds.; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- Hitchcock, G.; Conlan, B.; Kay, D.; Brannigan, C.; Newman, D. Air Quality and Road Transport Impacts and Solutions; RAC Foundation: London, UK, 2014. [Google Scholar]
- European Economic Area. Transport and Public Health. Available online: https://www.eea.europa.eu/downloads/b396ad0066184a778099dbf50a0c88d9/1606129104/transport-and-public-health.pdf (accessed on 25 November 2020).
- Tsakalidis, A.; van Balen, M.; Gkoumas, K.; Pekar, F. Catalyzing sustainable transport innovation through policy support and monitoring: The case of TRIMIS and the European green deal. Sustainability 2020, 12, 3171. [Google Scholar] [CrossRef] [Green Version]
- Bao, R.; Zhang, A. Does lockdown reduce air pollution? Evidence from 44 cities in northern China. Sci. Total Environ. 2020, 731, 139052. [Google Scholar] [CrossRef]
- Cole, M.A.; Elliott, R.J.R.; Liu, B. The Impact of the Wuhan Covid-19 Lockdown on Air Pollution and Health: A Machine Learning and Augmented Synthetic Control Approach. Environ. Resour. Econ. 2020, 76, 553–580. [Google Scholar] [CrossRef]
- Brimblecombe, P.; Lai, Y. Effect of sub-urban scale lockdown on air pollution in Beijing. Urban Clim. 2020, 34, 100725. [Google Scholar] [CrossRef]
- Silver, B.; He, X.; Arnold, S.R.; Spracklen, D.V. The impact of COVID-19 control measures on air quality in China. Environ. Res. Lett. 2020, 15, 084021. [Google Scholar] [CrossRef]
- Singh, R.P.; Chauhan, A. Impact of lockdown on air quality in India during COVID-19 pandemic. Air Qual. Atmos. Health 2020, 13, 921–928. [Google Scholar] [CrossRef]
- Berman, J.D.; Ebisu, K. Changes in U.S. air pollution during the COVID-19 pandemic. Sci. Total Environ. 2020, 739, 139864. [Google Scholar] [CrossRef]
- Sicard, P.; De Marco, A.; Agathokleous, E.; Feng, Z.; Xu, X.; Paoletti, E.; Rodriguez, J.J.D.; Calatayud, V. Amplified ozone pollution in cities during the COVID-19 lockdown. Sci. Total Environ. 2020, 735, 139542. [Google Scholar] [CrossRef]
- Zangari, S.; Hill, D.T.; Charette, A.T.; Mirowsky, J.E. Air quality changes in New York City during the COVID-19 pandemic. Sci. Total Environ. 2020, 742, 140496. [Google Scholar] [CrossRef]
- Jia, C.; Fu, X.; Bartelli, D.; Smith, L. Insignificant Impact of the “Stay-At-Home” Order on Ambient Air Quality in the Memphis Metropolitan Area, USA. Atmosphere 2020, 11, 630. [Google Scholar] [CrossRef]
- President of the Council of Ministers of the Italian Republic Decree of the President of the Council of Ministers of the Italian Republic of 1 March 2020—Further Implementing Provisions of the Decree-Law of 23 February 2020, n. 6, Containing Urgent Measures Regarding the Containment and Management of the Epidemiol. Available online: https://www.gazzettaufficiale.it/eli/id/2020/03/01/20A01381/sg (accessed on 25 November 2020).
- President of the Council of Ministers of the Italian Republic Decree of the President of the Council of Ministers of the Italian Republic of 8 March 2020—Further Implementing Provisions of the Decree-Law of 23 February 2020, n. 6, Containing Urgent Measures Regarding the Containment and Management of the Epidemiological Emergency from COVID-19. Available online: https://www.gazzettaufficiale.it/eli/id/2020/03/08/20A01522/sg (accessed on 25 November 2020). (In Italian).
- President of the Council of Ministers of the Italian Republic Decree of the President of the Council of Ministers of the Italian Republic of 11 March 2020—Further Implementing Provisions of the Decree-Law of 23 February 2020, n. 6, Containing Urgent Measures Regarding the Containment and Management of the Epidemiological Emergency from COVID-19. Available online: https://www.gazzettaufficiale.it/eli/id/2020/03/11/20A01605/sg (accessed on 25 November 2020). (In Italian).
- President of the Council of Ministers of the Italian Republic Decree of the President of the Council of Ministers of the Italian Republic of 22 March 2020—Further Implementing Provisions of the Decree-Law of 23 February 2020, n. 6, Containing Urgent Measures Regarding the Containment and Management of the Epidemiological Emergency from COVID-19. Available online: https://www.gazzettaufficiale.it/eli/id/2020/03/22/20A01807/sg (accessed on 25 November 2020). (In Italian).
- Collivignarelli, M.C.; Abbà, A.; Bertanza, G.; Pedrazzani, R.; Ricciardi, P.; Carnevale Miino, M. Lockdown for CoViD-2019 in Milan: What are the effects on air quality? Sci. Total Environ. 2020, 732, 1–9. [Google Scholar] [CrossRef]
- Carugno, M.; Consonni, D.; Bertazzi, P.A.; Biggeri, A.; Baccini, M. Temporal trends of PM10 and its impact on mortality in Lombardy, Italy. Environ. Pollut. 2017, 227, 280–286. [Google Scholar] [CrossRef]
- Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Boys, B.L. Use of Satellite Observations for Long-Term Exposure Assessment of Global Concentrations of Fine Particulate Matter. Environ. Health Perspect. 2015, 123, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Caserini, S.; Giani, P.; Cacciamani, C.; Ozgen, S.; Lonati, G. Influence of climate change on the frequency of daytime temperature inversions and stagnation events in the Po Valley: Historical trend and future projections. Atmos. Res. 2017, 184, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Pernigotti, D.; Georgieva, E.; Thunis, P.; Cuvelier, C.; de Meij, A. The Impact of Meteorology on Air Quality Simulations over the Po Valley in Northern Italy; Springer: Dordrecht, The Netherlands, 2011; pp. 485–490. [Google Scholar]
- Perrino, C.; Catrambone, M.; Dalla Torre, S.; Rantica, E.; Sargolini, T.; Canepari, S. Seasonal variations in the chemical composition of particulate matter: A case study in the Po Valley. Part I: Macro-components and mass closure. Environ. Sci. Pollut. Res. 2014, 21, 3999–4009. [Google Scholar] [CrossRef]
- Larsen, B.R.; Gilardoni, S.; Stenström, K.; Niedzialek, J.; Jimenez, J.; Belis, C.A. Sources for PM air pollution in the Po Plain, Italy: II. Probabilistic uncertainty characterization and sensitivity analysis of secondary and primary sources. Atmos. Environ. 2012, 50, 203–213. [Google Scholar] [CrossRef]
- Kukkonen, J.; Pohjola, M.; Sokhi, R.S.; Luhana, L.; Kitwiroon, N.; Fragkou, L.; Rantamäki, M.; Berge, E.; Ødegaard, V.; Slørdal, L.H.; et al. Analysis and evaluation of selected local-scale PM10 air pollution episodes in four European cities: Helsinki, London, Milan and Oslo. Atmos. Environ. 2005, 39, 2759–2773. [Google Scholar] [CrossRef]
- Deserti, M.; Raffaelli, K.; Ramponi, L.; Carbonara, C. Studio Preliminare Degli Effetti Delle Misure COVID-19 Sulle Emissioni in Atmosfera E Sulla Qualità Dell’aria nel Bacino Padano; ARPAE Emilia-Romagna: Emilia-Romagna, Italy, 2020. [Google Scholar]
- Cameletti, M. The Effect of Corona Virus Lockdown on Air Pollution: Evidence from the City of Brescia in Lombardia Region (Italy). Atmos. Environ. 2020, 239, 117794. [Google Scholar] [CrossRef]
- Rossi, R.; Ceccato, R.; Gastaldi, M. Effect of Road Traffic on Air Pollution. Experimental Evidence from COVID-19 Lockdown. Sustainability 2020, 12, 8984. [Google Scholar] [CrossRef]
- SNPA Pianura Padana, Graduale Riduzione Della Concentrazione di Biossido di Azoto (NO2) Nelle Ultime Settimane—SNPA—Sistema Nazionale Protezione Ambiente. Available online: https://www.snpambiente.it/2020/03/23/pianura-padana-biossido-di-azoto-no2-graduale-riduzione-della-concentrazione-nelle-ultime-settimane/ (accessed on 24 September 2020).
- Menut, L.; Bessagnet, B.; Siour, G.; Mailler, S.; Pennel, R.; Cholakian, A. Impact of lockdown measures to combat Covid-19 on air quality over western Europe. Sci. Total Environ. 2020, 741, 140426. [Google Scholar] [CrossRef]
- Guevara, M.; Jorba, O.; Soret, A.; Petetin, H.; Bowdalo, D.; Serradell, K.; Tena, C.; Denier van der Gon, H.; Kuenen, J.; Peuch, V.-H.; et al. Time-resolved emission reductions for atmospheric chemistry modelling in Europe during the COVID-19 lockdowns. Atmos. Chem. Phys. 2020, 1–37. [Google Scholar] [CrossRef]
- R Core Team R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Kassambara, A. Rstatix: Pipe-Friendly Framework for Basic Statistical Tests. 2020. Available online: https://github.com/kassambara/rstatix (accessed on 5 December 2020).
- Environ CAMx User Guide v6.3; Ramboll Environ: Novato, CA, USA, 2016; 273p.
- Meroni, A.; Pirovano, G.; Gilardoni, S.; Lonati, G.; Colombi, C.; Gianelle, V.; Paglione, M.; Poluzzi, V.; Riva, G.M.; Toppetti, A. Investigating the role of chemical and physical processes on organic aerosol modelling with CAMx in the Po Valley during a winter episode. Atmos. Environ. 2017, 171, 126–142. [Google Scholar] [CrossRef]
- Giani, P.; Balzarini, A.; Pirovano, G.; Gilardoni, S.; Paglione, M.; Colombi, C.; Gianelle, V.L.; Belis, C.A.; Poluzzi, V.; Lonati, G. Influence of semi- and intermediate-volatile organic compounds (S/IVOC) parameterizations, volatility distributions and aging schemes on organic aerosol modelling in winter conditions. Atmos. Environ. 2019, 213, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Strader, R.; Lurmann, F.; Pandis, S.N. Evaluation of secondary organic aerosol formation in winter. Atmos. Environ. 1999, 33, 4849–4863. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J. A Description of the Advanced Research WRF Version 3. Tech. Note NCAR/TN-475+STR 2008. [Google Scholar] [CrossRef]
- Von Storch, H.; Langenberg, H.; Feser, F. A spectral nudging technique for dynamical downscaling purposes. Mon. Weather Rev. 2000, 128, 3664–3673. [Google Scholar] [CrossRef]
- Liu, P.; Tsimpidi, A.P.; Hu, Y.; Stone, B.; Russell, A.G.; Nenes, A. Differences between downscaling with spectral and grid nudging using WRF. Atmos. Chem. Phys. 2012, 12, 3601–3610. [Google Scholar] [CrossRef] [Green Version]
- Istituto Superiore per la Protezione e la Ricerca Ambientale. Italian Emission Inventory 1990–2018; Informative Inventory Report 2020; ISPRA: Roma, Italy, 2020; ISBN 978-88-448-0994-2.
- Iarocci, G.; Cocchiara, R.A.; Sestili, C.; Del Cimmuto, A.; La Torre, G. Variation of atmospheric emissions within the road transport sector in Italy between 1990 and 2016. Sci. Total Environ. 2019, 692, 1276–1281. [Google Scholar] [CrossRef]
- UNC SMOKE v3.5 User’s Manual. Available online: http://www.smoke-model.org/index.cfm (accessed on 3 December 2020).
- Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar] [CrossRef] [Green Version]
- Environ, R. Seasalt Guide Version 3.2; Seasalt Cornwall: Falmouth, UK, 2015. [Google Scholar]
- Gong, S.L. A parameterization of sea-salt aerosol source function for sub- and super-micron particles. Glob. Biogeochem. Cycles 2003, 17. [Google Scholar] [CrossRef]
- Institut National de l’EnviRonnement Industriel et des RisqueS (INERIS) PREV’AIR. Available online: http://www2.prevair.org/ (accessed on 24 September 2020).
- Marongiu, A.; Angelino, E.; Fossati, G.; Moretti, M.; Peroni, E.; Pantaleo, A.; Malvestiti, G.; Abbattista, M. Stima Preliminare Delle Emissioni in Lombardia Durante L’emergenza COVID-19; ARPA Lombardia—Agenzia Regionale per la Protezione dell’Ambiente della Lombardia: Milano, Italy, 2020.
- Move-In Regione Lombardia. Available online: https://www.movein.regione.lombardia.it/movein/#/index (accessed on 9 October 2020).
- Osservatorio del Traffico|Anas S.p.a. Available online: https://www.stradeanas.it/it/le-strade/osservatorio-del-traffico (accessed on 9 October 2020).
- Total Load—Terna S.p.a. Available online: https://www.terna.it/it/sistema-elettrico/transparency-report/total-load (accessed on 9 October 2020).
- SNAM. Available online: https://www.snam.it/it/trasporto/dati-operativi-business/2_Andamento_dal_2005/ (accessed on 9 October 2020).
- Inemar (Inemar. HomeLombardia). Available online: https://www.inemar.eu/xwiki/bin/view/Inemar/HomeLombardia (accessed on 9 October 2020).
- AMAT. Monitoraggio sistemi di mobilità durante l’emergenza Coronavirus—Agenzia Mobilità Ambiente Territorio. Available online: https://www.amat-mi.it/it/progetti/monitoraggio-mobilita-coronavirus/ (accessed on 24 September 2020).
- ARPA Lombardia Dati Sensori Aria|Open Data Regione Lombardia. Available online: https://www.dati.lombardia.it/Ambiente/Dati-sensori-aria/nicp-bhqi (accessed on 24 September 2020).
- Anttila, P.; Tuovinen, J.P.; Niemi, J.V. Primary NO2 emissions and their role in the development of NO2 concentrations in a traffic environment. Atmos. Environ. 2011, 45, 986–992. [Google Scholar] [CrossRef]
- European Environment Agency. Air Quality in Europe 2018; European Environment Agency: Copenhagen, Denmark, 2018. [Google Scholar]
- Settore Statistica Comune di Milano. Analisi del pendolarismo per studio e per lavoro a Milano; Settore Statistica Comune di Milano: Milano, Italia, 2020.
Emissions | Concentration | |||
---|---|---|---|---|
Week | Road Transport | Combustion in Manufacturing Industries | Production Processes | NO2 (LOCK_ALL Scenario) |
1 (24 February–01 March) | −12% | - | - | −4.3% |
2 (02 March–08 March) | −14% | - | - | −5.3% |
3 (09 March–15 March) | −43% | - | - | −19.2% |
4 (16 March–22 March) | −63% | −26% | −15% | −31.1% |
5 (23 March–29 March) | −74% | −39% | −20% | −33.7% |
Emissions | Concentration | ||||
---|---|---|---|---|---|
Week | Private Road Transport | Heavy- and Light-Duty Vehicles, Buses | Combustion in Manufacturing Industries | Production Processes | NO2 (LOCK_ALL Scenario) |
1 (24 February–01 March) | −18% | −6% | - | - | −3.3% |
2 (02 March–08 March) | −17% | −5% | - | - | −3.5% |
3 (09 March–15 March) | −53% | −32% | - | - | −14.5% |
4 (16 March–22 March) | −71% | −54% | −26% | −15% | −23.9% |
5 (23 March–29 March) | −77% | −66% | −39% | −20% | −33.3% |
NAME | CITY | LAT | LON | AREA | TYPE |
---|---|---|---|---|---|
Milano—Viale Marche | Milano, MI | 45.496 | 9.191 | Urban | Traffic |
Milano—Viale Liguria | Milano, MI | 45.444 | 9.167 | Urban | Traffic |
Rho—Via Statuto | Rho, MI | 45.523 | 9.045 | Urban | Background |
Bergamo—via Garibaldi | Bergamo, BG | 45.695 | 9.661 | Urban | Traffic |
Treviglio | Treviglio, BG | 45.519 | 9.592 | Urban | Traffic |
Brescia—Broletto | Brescia, BS | 45.540 | 10.220 | Urban | Traffic |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piccoli, A.; Agresti, V.; Balzarini, A.; Bedogni, M.; Bonanno, R.; Collino, E.; Colzi, F.; Lacavalla, M.; Lanzani, G.; Pirovano, G.; et al. Modeling the Effect of COVID-19 Lockdown on Mobility and NO2 Concentration in the Lombardy Region. Atmosphere 2020, 11, 1319. https://doi.org/10.3390/atmos11121319
Piccoli A, Agresti V, Balzarini A, Bedogni M, Bonanno R, Collino E, Colzi F, Lacavalla M, Lanzani G, Pirovano G, et al. Modeling the Effect of COVID-19 Lockdown on Mobility and NO2 Concentration in the Lombardy Region. Atmosphere. 2020; 11(12):1319. https://doi.org/10.3390/atmos11121319
Chicago/Turabian StylePiccoli, Andrea, Valentina Agresti, Alessandra Balzarini, Marco Bedogni, Riccardo Bonanno, Elena Collino, Filippo Colzi, Matteo Lacavalla, Guido Lanzani, Guido Pirovano, and et al. 2020. "Modeling the Effect of COVID-19 Lockdown on Mobility and NO2 Concentration in the Lombardy Region" Atmosphere 11, no. 12: 1319. https://doi.org/10.3390/atmos11121319
APA StylePiccoli, A., Agresti, V., Balzarini, A., Bedogni, M., Bonanno, R., Collino, E., Colzi, F., Lacavalla, M., Lanzani, G., Pirovano, G., Riva, F., Riva, G. M., & Toppetti, A. M. (2020). Modeling the Effect of COVID-19 Lockdown on Mobility and NO2 Concentration in the Lombardy Region. Atmosphere, 11(12), 1319. https://doi.org/10.3390/atmos11121319