Thermal Environment of Urban Schoolyards: Current and Future Design with Respect to Children’s Thermal Comfort
Abstract
:1. Introduction
2. Methodology
3. Human Biometeorological Aspects
3.1. General
3.2. Interactions between Meteorological Parameters and Human Body
3.3. Monitoring Outdoor Human Thermal Comfort—Human Thermal Indices
3.4. Thermal Perception of Children
4. The Biophysical Environment of Urban Schoolyards
5. Effects of Vegetation on Thermal Environment
6. Integrated, Landscape and Architectural Strategies to Improve the Thermal Environment of Schoolyards
6.1. General
6.2. Landscape Strategies to Improve Thermal Environment
6.2.1. Increase of Greening
6.2.2. Heat Stress Mitigation Measures Referring to Schoolyard Paving Materials
6.3. Architectural Heat Stress Mitigation Strategies
6.4. Greening a Schoolyard—Design Examples
7. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- United Nations Department of Economic and Social Affairs. Population Division World Urbanization Prospects 2018: Highlights (ST/ESA/SER.A/421); United Nations Department of Economic and Social Affairs: New York, NY, USA, 2019. [Google Scholar]
- Santos Nouri, A.; Charalampopoulos, I.; Matzarakis, A. Beyond singular climatic variables—Identifying the dynamics of wholesome thermo-physiological factors for existing/future human thermal comfort during hot dry mediterranean summers. Int. J. Environ. Res. Public Health 2018, 15, 23–62. [Google Scholar]
- Rowell, L.B. Human cardiovascular adjustments to exercise and thermal stress. Physiol. Rev. 1974, 54, 75–159. [Google Scholar]
- Laschewski, G.; Jendritzky, G. Effects of the thermal environment on human health: An investigation of 30 years of daily mortality data from SW Germany. Clim. Res. 2002, 21, 91–103. [Google Scholar]
- Morabito, M.; Crisci, A.; Messeri, A.; Capecchi, V.; Modesti, P.A.; Gensini, G.F.; Orlandini, S. Environmental temperature and thermal indices: What is the most effective predictor of heat-related mortality in different geographical contexts? Sci. World J. 2014, 2014, 1–15. [Google Scholar]
- Vanos, J.K. Children’s health and vulnerability in outdoor microclimates: A comprehensive review. Environ. Int. 2015, 76, 1–15. [Google Scholar]
- Antoniadis, D.; Katsoulas, N.; Kittas, C. Simulation of schoolyard’s microclimate and human thermal comfort under Mediterranean climate conditions: Effects of trees and green structures. Int. J. Biometeorol. 2018, 62, 2025–2036. [Google Scholar]
- Moogk-Soulis, C. Schoolyard heat islands: A case study in Waterloo, Ontario. In Proceedings of the 5th Canadian Urban Forestry Conference, York, ON, Canada, 7–9 October 2002; pp. 24–27. [Google Scholar]
- Antoniadis, D.; Katsoulas, N.; Papanastasiou, D.; Christidou, V.; Kittas, C. Evaluation of thermal perception in schoolyards under Mediterranean climate conditions. Int. J. Biometeorol. 2016, 60, 319–334. [Google Scholar]
- Shih, W.-M.; Lin, T.-P.; Tan, N.-X.; Liu, M.-H. Long-term perceptions of outdoor thermal environments in an elementary school in a hot-humid climate. Int. J. Biometeorol. 2017, 61, 1657–1666. [Google Scholar]
- Zhang, A.; Bokel, R.; van den Dobbelsteen, A.; Sun, Y.; Huang, Q.; Zhang, Q. An integrated school and schoolyard design method for summer thermal comfort and energy efficiency in Northern China. Build. Environ. 2017, 124, 369–387. [Google Scholar]
- Vanos, J.K.; McKercher, G.R.; Naughton, K.; Lochbaum, M. Schoolyard shade and sun exposure: Assessment of personal monitoring during children’s physical activity. Photochem. Photobiol. 2017, 93, 1123–1132. [Google Scholar]
- Vanos, J.K.; Middel, A.; McKercher, G.R.; Kuras, E.R.; Ruddell, B.L. Hot playgrounds and children’s health: A multiscale analysis of surface temperatures in Arizona, USA. Landsc. Urban Plan. 2016, 146, 29–42. [Google Scholar]
- Schulman, A.; Peters, C.A. GIS analysis of urban schoolyard landcover in three US cities. Urban Ecosyst. 2008, 11, 65–80. [Google Scholar]
- Jendritzky, G.; de Dear, R.; Havenith, G. UTCI—Why another thermal index? Int. J. Biometeorol. 2012, 56, 421–428. [Google Scholar]
- Taleghani, M. Outdoor thermal comfort by different heat mitigation strategies—A review. Renew. Sustain. Energy Rev. 2018, 81, 2011–2018. [Google Scholar]
- Fanger, O. Thermal Comfort; McGraw-Hill Book Company: New York, NY, USA, 1972. [Google Scholar]
- Parsons, K. Human Thermal Environments: The Effects of Hot, Moderate, and Cold Environments on Human Health, Comfort, and Performance; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Vanos, J.K.; Warland, J.S.; Gillespie, T.J.; Kenny, N.A. Review of the physiology of human thermal comfort while exercising in urban landscapes and implications for bioclimatic design. Int. J. Biometeorol. 2010, 54, 319–334. [Google Scholar]
- Höppe, P.R. Heat balance modelling. Experientia 1993, 49, 741–746. [Google Scholar]
- Höppe, P. The physiological equivalent temperature–a universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar]
- Ashrae, A. Standard 55-2004 Thermal Environmental Conditions for Human Occupancy; American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.: Atlanta, GA, USA, 2004. [Google Scholar]
- Krüger, E.L.; Rossi, F.A. Effect of personal and microclimatic variables on observed thermal sensation from a field study in southern Brazil. Build. Environ. 2011, 46, 690–697. [Google Scholar]
- Shashua-Bar, L.; Pearlmutter, D.; Erell, E. The influence of trees and grass on outdoor thermal comfort in a hot-arid environment. Int. J. Climatol. 2011, 31, 1498–1506. [Google Scholar]
- Brotherhood, J.R. Heat stress and strain in exercise and sport. J. Sci. Med. Sport 2008, 11, 6–19. [Google Scholar]
- Takács, Á.; Kiss, M.; Hof, A.; Tanács, E.; Gulyás, Á.; Kántor, N. Microclimate modification by urban shade trees–an integrated approach to aid ecosystem service based decision-making. Procedia Environ. Sci. 2016, 32, 97–109. [Google Scholar]
- Hardin, A.; Vanos, J. The influence of surface type on the absorbed radiation by a human under hot, dry conditions. Int. J. Biometeorol. 2018, 62, 43–56. [Google Scholar]
- Li, H.; Wolter, M.; Wang, X.; Sodoudi, S. Impact of land cover data on the simulation of urban heat island for Berlin using WRF coupled with bulk approach of Noah-LSM. Theor. Appl. Climatol. 2018, 134, 67–81. [Google Scholar]
- Li, H.; Zhou, Y.; Wang, X.; Zhou, X.; Zhang, H.; Sodoudi, S. Quantifying urban heat island intensity and its physical mechanism using WRF/UCM. Sci. Total Environ. 2019, 650, 3110–3119. [Google Scholar]
- ASHRAE, A. Standard 55-2010: Thermal Environment Conditions for Human Occupancy; American Society of Heating, Ventilating and Air-Conditioning Engineers Inc.: Atlanta, GA, USA, 2012. [Google Scholar]
- Potchter, O.; Cohen, P.; Lin, T.-P.; Matzarakis, A. Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. Sci. Total Environ. 2018, 631, 390–406. [Google Scholar]
- Johansson, E.; Thorsson, S.; Emmanuel, R.; Krüger, E. Instruments and methods in outdoor thermal comfort studies–The need for standardization. Urban Clim. 2014, 10, 346–366. [Google Scholar]
- Kennedy, E.O.H.; Vanos, J. Thermally Comfortable Playgrounds: A review of literature and survey of experts. In Standards Council of Canada—National Program for Playground Safety; Technical Report—Project Number 2019-64; University of Northern Iowa: Cedar Falls, IA, USA, 2019. [Google Scholar]
- Charalampopoulos, I.; Santos Nouri, A. Investigating the behaviour of human thermal indices under divergent atmospheric conditions: A sensitivity analysis approach. Atmosphere 2019, 10, 580. [Google Scholar]
- Coccolo, S.; Kämpf, J.; Scartezzini, J.-L.; Pearlmutter, D. Outdoor human comfort and thermal stress: A comprehensive review on models and standards. Urban Clim. 2016, 18, 33–57. [Google Scholar]
- Jendritzky, G.; Nübler, W. A model analysing the urban thermal environment in physiologically significant terms. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 1981, 29, 313–326. [Google Scholar]
- Staiger, H.; Laschewski, G.; Grätz, A. The perceived temperature—A versatile index for the assessment of the human thermal environment. Part A: Scientific basics. Int. J. Biometeorol. 2012, 56, 165–176. [Google Scholar]
- Steadman, R.G. A universal scale of apparent temperature. J. Clim. Appl. Meteorol. 1984, 23, 1674–1687. [Google Scholar]
- Błażejczyk, K. New climatological and physiological model of the Human Heat Balance outdoor (MENEX) and its applications in bioclimatological studies in different scales. Zesz. Inst. Geogr. I Przestrz. Zagospod. Pan 1994, 28, 27–58. [Google Scholar]
- Blazejczyk, K. MENEX_2005-the updated version of man-environment heat exchange model. Available online: http://www.igipz.pan.pl/tl_files/igipz/ZGiK/opracowania/indywidualne/blazejczyk/MENEX_2005.pdf (accessed on 12 October 2020).
- Fiala, D.; Havenith, G.; Bröde, P.; Kampmann, B.; Jendritzky, G. UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int. J. Biometeorol. 2012, 56, 429–441. [Google Scholar]
- Havenith, G.; Fiala, D.; Błazejczyk, K.; Richards, M.; Bröde, P.; Holmér, I.; Rintamaki, H.; Benshabat, Y.; Jendritzky, G. The UTCI-clothing model. Int. J. Biometeorol. 2012, 56, 461–470. [Google Scholar]
- Brown, R.; Gillespie, T. Estimating outdoor thermal comfort using a cylindrical radiation thermometer and an energy budget model. Int. J. Biometeorol. 1986, 30, 43–52. [Google Scholar]
- Kenny, N.A.; Warland, J.S.; Brown, R.D.; Gillespie, T.G. Part A: Assessing the performance of the COMFA outdoor thermal comfort model on subjects performing physical activity. Int. J. Biometeorol. 2009, 53, 415. [Google Scholar]
- Kenny, N.A.; Warland, J.S.; Brown, R.D.; Gillespie, T.G. Part B: Revisions to the COMFA outdoor thermal comfort model for application to subjects performing physical activity. Int. J. Biometeorol. 2009, 53, 429. [Google Scholar]
- Vanos, J.K.; Warland, J.S.; Gillespie, T.J.; Kenny, N.A. Thermal comfort modelling of body temperature and psychological variations of a human exercising in an outdoor environment. Int. J. Biometeorol. 2012, 56, 21–32. [Google Scholar]
- Höppe, P. Different aspects of assessing indoor and outdoor thermal comfort. Energy Build. 2002, 34, 661–665. [Google Scholar]
- Cheng, W.; Brown, R.D. An energy budget model for estimating the thermal comfort of children. Int. J. Biometeorol. 2020, 64, 1355–1366. [Google Scholar]
- Kántor, N.; Unger, J.; Gulyás, Á. Subjective estimations of thermal environment in recreational urban spaces—Part 2: International comparison. Int. J. Biometeorol. 2012, 56, 1089–1101. [Google Scholar]
- de Freitas, C.R.; Grigorieva, E.A. A comprehensive catalogue and classification of human thermal climate indices. Int. J. Biometeorol. 2015, 59, 109–120. [Google Scholar]
- de Freitas, C.R.; Grigorieva, E.A. A comparison and appraisal of a comprehensive range of human thermal climate indices. Int. J. Biometeorol. 2017, 61, 487–512. [Google Scholar]
- Gagge, A.P.; Fobelets, A.; Berglund, L. A standard predictive Index of human reponse to thermal enviroment. Trans. Am. Soc. Heat. Refrig. Air Cond. Eng. 1986, 92, 709–731. [Google Scholar]
- Mayer, H.; Höppe, P. Thermal comfort of man in different urban environments. Theor. Appl. Climatol. 1987, 38, 43–49. [Google Scholar]
- Kyle, W. The human bioclimate of Hong Kong. In Proceedings of the Contemporary Climatology Conference, Masaryk University, Brno, The Czech Republic, 15–20 August 1994; pp. 345–350. [Google Scholar]
- Staiger, H.; Bucher, K.; Jendritzky, G. Gefühlte Temperatur. Die physiologisch gerechte Bewertung von Wärmebelastung und Kältestress beim Aufenthalt im Freien in der Maßzahl Grad Celsius. Ann. Der Meteorol. 1997, 33, 100–107. [Google Scholar]
- Gonzalez, R.; Nishi, Y.; Gagge, A. Experimental evaluation of standard effective temperature a new biometeorological index of man’s thermal discomfort. Int. J. Biometeorol. 1974, 18, 1–15. [Google Scholar]
- Pickup, J.; de Dear, R. An outdoor thermal comfort index (OUT_SET*)-part I-the model and its assumptions. In Proceedings of the 5th International Congress of Biometeorology and International Conference on Urban Climatolog, Macquarie University, Sydney, Australia, 8–12 November 1999; pp. 279–283. [Google Scholar]
- Jendritzky, G.; Havenith, G.; Weihs, P.; Batchvarova, E. Towards a Universal Thermal Climate Index UTCI for assessing the thermal environment of the human being. Final Rep. Cost Action 2009, 730, 1–26. [Google Scholar]
- Hondula, D.M.; Balling, R.C.; Andrade, R.; Krayenhoff, E.S.; Middel, A.; Urban, A.; Georgescu, M.; Sailor, D.J. Biometeorology for cities. Int. J. Biometeorol. 2017, 61, 59–69. [Google Scholar]
- Matzarakis, A.; Mayer, H.; Iziomon, M.G. Applications of a universal thermal index: Physiological equivalent temperature. Int. J. Biometeorol. 1999, 43, 76–84. [Google Scholar]
- Thorsson, S.; Lindberg, F.; Eliasson, I.; Holmer, B. Different methods for estimating the mean radiant temperature in an outdoor urban setting. Int. J. Climatol. A J. R. Meteorol. Soc. 2007, 27, 1983–1993. [Google Scholar]
- Lin, T.-P.; Matzarakis, A.; Hwang, R.-L. Shading effect on long-term outdoor thermal comfort. Build. Environ. 2010, 45, 213–221. [Google Scholar]
- Cohen, P.; Potchter, O.; Matzarakis, A. Human thermal perception of Coastal Mediterranean outdoor urban environments. Appl. Geogr. 2013, 37, 1–10. [Google Scholar]
- Chen, Y.-C.; Matzarakis, A. Modification of physiologically equivalent temperature. J. Heat Isl. Inst. Int. 2014, 9, 26–32. [Google Scholar]
- Charalampopoulos, I.; Tsiros, I.; Chronopoulou-Sereli, A.; Matzarakis, A. A methodology for the evaluation of the human-bioclimatic performance of open spaces. Theor. Appl. Climatol. 2017, 128, 811–820. [Google Scholar]
- Błażejczyk, K.; Broede, P.; Fiala, D.; Havenith, G.; Holmér, I.; Jendritzky, G.; Kampmann, B.; Kunert, A. Principles of the new Universal Thermal Climate Index (UTCI) and its application to bioclimatic research in European scale. Misc. Geogr. 2010, 14, 91–102. [Google Scholar]
- Blazejczyk, K.; Epstein, Y.; Jendritzky, G.; Staiger, H.; Tinz, B. Comparison of UTCI to selected thermal indices. Int. J. Biometeorol. 2012, 56, 515–535. [Google Scholar]
- Bruse, M. Using ENVI-Met Met BioMet. 2014. Available online: https://envi-met.info/public/files/docs/Quickstart_biomet.pdf (accessed on 19 October 2020).
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments—Application of the RayMan model. Int. J. Biometeorol. 2007, 51, 323–334. [Google Scholar]
- Matzarakis, A. Linking urban micro scale models-The models RayMan and SkyHelios. Proceedings of ICUC8–8th International Conference on Urban Climates, UCD, Dublin, Ireland, 6–10 August 2012. [Google Scholar]
- Lindberg, F.; Holmer, B.; Thorsson, S.S. SOLWEIG1D. User Man. Version. 2015. Available online: https://www.gu.se/geovetenskaper/digitalAssets/1536/1536039_solweig1d-user-manual.pdf (accessed on 19 October 2020).
- Lindberg, F.; Grimmond, C.S.B.; Gabey, A.; Huang, B.; Kent, C.W.; Sun, T.; Theeuwes, N.E.; Järvi, L.; Ward, H.C.; Capel-Timms, I. Urban Multi-scale Environmental Predictor (UMEP): An integrated tool for city-based climate services. Environ. Model. Softw. 2018, 99, 70–87. [Google Scholar]
- Ansys Fluent. Available online: https://www.ansys.com/products/fluids/ansys-fluent (accessed on 12 October 2020).
- Bruse, M.; Fleer, H. Simulating surface–plant–air interactions inside urban environments with a three dimensional numerical model. Environ. Model. Softw. 1998, 13, 373–384. [Google Scholar]
- Huttner, S. Further Development and Application of the 3D Microclimate Simulation ENVI-Met. Ph.D. Thesis, University of Mainz, Mainz, Germany, 2012. [Google Scholar]
- Balbus, J.M.; Malina, C. Identifying vulnerable subpopulations for climate change health effects in the United States. J. Occup. Environ. Med. 2009, 51, 33–37. [Google Scholar]
- Fanger, P.O. Thermal comfort. In Analysis and Applications in Environmental Engineering; Technical University of Denmark, Laboratory of Heating and Air Conditioning, Danish Technical Press: Copenhagen, Denmark, 1970. [Google Scholar]
- Falk, B.; Bar-Or, O.; Calvert, R.; MacDougall, J.D. Sweat gland response to exercise in the heat among pre-, mid-, and late-pubertal boys. Med. Sci. Sports Exerc. 1992, 24, 313. [Google Scholar]
- Wenger, C.B. The regulation of body temperature. In Medical Physiology, 2nd ed.; Rhoades, R., Tanner, G., Eds.; Little Brown & Co.: Boston, MA, USA, 2003; pp. 527–550. [Google Scholar]
- Havenith, G. Metabolic rate and clothing insulation data of children and adolescents during various school activities. Ergonomics 2007, 50, 1689–1701. [Google Scholar]
- Stevens, C.; Kenneth, K.; Choo, J. Temperature sensitivity of the body surface over the life span. Somatosens. Mot. Res. 1998, 15, 13–28. [Google Scholar]
- Schellen, L.; van Marken Lichtenbelt, W.D.; Loomans, M.G.; Toftum, J.; De Wit, M.H. Differences between young adults and elderly in thermal comfort, productivity, and thermal physiology in response to a moderate temperature drift and a steady-state condition. Indoor Air 2010, 20, 273–283. [Google Scholar]
- Falk, B.; Dotan, R. Children’s thermoregulation during exercise in the heat—A revisit. Appl. Physiol. Nutr. Metab. 2008, 33, 420–427. [Google Scholar]
- Morrison, S.A.; Sims, S.T. Thermoregulation in children: Exercise, heat stress & fluid balance. Ann. Kinesiol. 2014, 5, 41–54. [Google Scholar]
- Tsuzuki-Hayakawa, K.; Tochihara, Y.; Ohnaka, T. Thermoregulation during heat exposure of young children compared to their mothers. Eur. J. Appl. Physiol. Occup. Physiol. 1995, 72, 12–17. [Google Scholar]
- Inbar, O.; Morris, N.; Epstein, Y.; Gass, G. Comparison of thermoregulatory responses to exercise in dry heat among prepubertal boys, young adults and older males. Exp. Physiol. 2004, 89, 691–700. [Google Scholar]
- Inoue, Y.; Kuwahara, T.; Araki, T. Maturation-and aging-related changes in heat loss effector function. J. Physiol. Anthropol. Appl. Hum. Sci. 2004, 23, 289–294. [Google Scholar]
- Leites, G.T.; Cunha, G.S.; Obeid, J.; Wilk, B.; Meyer, F.; Timmons, B.W. Thermoregulation in boys and men exercising at the same heat production per unit body mass. Eur. J. Appl. Physiol. 2016, 116, 1411–1419. [Google Scholar]
- Teli, D.; Jentsch, M.F.; James, P.A. Naturally ventilated classrooms: An assessment of existing comfort models for predicting the thermal sensation and preference of primary school children. Energy Build. 2012, 53, 166–182. [Google Scholar]
- Yun, H.; Nam, I.; Kim, J.; Yang, J.; Lee, K.; Sohn, J. A field study of thermal comfort for kindergarten children in Korea: An assessment of existing models and preferences of children. Build. Environ. 2014, 75, 182–189. [Google Scholar]
- Naughton, G.; Carlson, J.S. Reducing the risk of heat-related decrements to physical activity in young people. J. Sci. Med. Sport 2008, 11, 58–65. [Google Scholar]
- Inoue, Y.; Araki, T.; Tsujita, J. Thermoregulatory responses of prepubertal boys and young men in changing temperature linearly from 28 to 15 C. Eur. J. Appl. Physiol. Occup. Physiol. 1996, 72, 204–208. [Google Scholar]
- Falk, B. Effects of thermal stress during rest and exercise in the paediatric population. Sports Med. 1998, 25, 221–240. [Google Scholar]
- Bytomski, J.R.; Squire, D.L. Heat illness in children. Curr. Sports Med. Rep. 2003, 2, 320–324. [Google Scholar]
- Moogk-Soulis, C. Schoolyard heat islands: A case in Waterloo, Ontario. In Proceedings of the 5th Canadian Urban Forest Conference, Windsor, Sarnia, ON, Canada, 5–6 October 2010; pp. 24–27. [Google Scholar]
- Armstrong, L.E.; Casa, D.J.; Millard-Stafford, M.; Moran, D.S.; Pyne, S.W.; Roberts, W.O.; American College of Sports Medicine. American College of Sports Medicine position stand. Exertional heat illness during training and competition. Med. Sci. Sports Exerc. 2007, 39, 556. [Google Scholar]
- Vanos, J.; Fahy, K.; Tu, C.; Demolder, C.; Coleman, T. Impacts of Design on Children’s Personal Heat and Radiation Exposures during Outdoor Activity: A Case Study in San Diego, California. In Proceedings of the 10th International Conference on Urban Climate/14th Symposium on the Urban Environment, New York, NY, USA, 6–10 August 2018. [Google Scholar]
- Epstein, Y.; Moran, D.S. Thermal comfort and the heat stress indices. Ind. Health 2006, 44, 388–398. [Google Scholar]
- Sheffield, P.E.; Landrigan, P.J. Global climate change and children’s health: Threats and strategies for prevention. Environ. Health Perspect. 2011, 119, 291–298. [Google Scholar]
- Vanos, J.K.; Herdt, A.J.; Lochbaum, M.R. Effects of physical activity and shade on the heat balance and thermal perceptions of children in a playground microclimate. Build. Environ. 2017, 126, 119–131. [Google Scholar]
- Lai, D.; Guo, D.; Hou, Y.; Lin, C.; Chen, Q. Studies of outdoor thermal comfort in northern China. Build. Environ. 2014, 77, 110–118. [Google Scholar]
- Yang, B.; Olofsson, T.; Nair, G.; Kabanshi, A. Outdoor thermal comfort under subarctic climate of north Sweden—A pilot study in Umeå. Sustain. Cities Soc. 2017, 28, 387–397. [Google Scholar]
- Flax, L.; Altes, R.K.; Kupers, R.; Mons, B. Greening schoolyards—An urban resilience perspective. Cities 2020, 106, 1028–1090. [Google Scholar]
- Brown, R.D.; Corry, R.C. Evidence-Based Landscape Architecture for Human Health and Well-Being. Sustainability 2020, 12, 1360. [Google Scholar]
- El-Bardisy, W.M.; Fahmy, M.; El-Gohary, G.F. Climatic sensitive landscape design: Towards a better microclimate through plantation in public schools, Cairo, Egypt. Procedia Soc. Behav. Sci. 2016, 216, 206–216. [Google Scholar]
- Lim, J.-B.; Yu, J.; Lee, J.-Y.; Lee, K.-S. Comparison of thermal effects of different school ground surface materials-A case of Yooljeon elementary school. J. Korean Assoc. Geogr. Inf. Stud. 2015, 18, 28–44. [Google Scholar]
- Dimoudi, A.; Nikolopoulou, M. Vegetation in the urban environment: Microclimatic analysis and benefits. Energy Build. 2003, 35, 69–76. [Google Scholar]
- Oke, T.R. The micrometeorology of the urban forest. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1989, 324, 335–349. [Google Scholar]
- Shashua-Bar, L.; Potchter, O.; Bitan, A.; Boltansky, D.; Yaakov, Y. Microclimate modelling of street tree species effects within the varied urban morphology in the Mediterranean city of Tel Aviv, Israel. Int. J. Climatol. A J. R. Meteorol. Soc. 2010, 30, 44–57. [Google Scholar]
- Brown, R.; Gillespie, T. Estimating radiation received by a person under different species of shade trees. J. Arboric. 1990, 16, 158–161. [Google Scholar]
- Georgi, N.J.; Zafiriadis, K. The impact of park trees on microclimate in urban areas. Urban Ecosyst. 2006, 9, 195–209. [Google Scholar]
- Santamouris, M. Energy and Climate in the Urban Built Environment; Routledge: Abingdon, UK, 2013. [Google Scholar]
- Shashua-Bar, L.; Hoffman, M.E. Vegetation as a climatic component in the design of an urban street: An empirical model for predicting the cooling effect of urban green areas with trees. Energy Build. 2000, 31, 221–235. [Google Scholar]
- Shashua-Bar, L.; Tsiros, I.X.; Hoffman, M. Passive cooling design options to ameliorate thermal comfort in urban streets of a Mediterranean climate (Athens) under hot summer conditions. Build. Environ. 2012, 57, 110–119. [Google Scholar]
- De Abreu-Harbich, L.V.; Labaki, L.C.; Matzarakis, A. Effect of tree planting design and tree species on human thermal comfort in the tropics. Landsc. Urban Plan. 2015, 138, 99–109. [Google Scholar]
- Gulyás, Á.; Unger, J.; Matzarakis, A. Assessment of the microclimatic and human comfort conditions in a complex urban environment: Modelling and measurements. Build. Environ. 2006, 41, 1713–1722. [Google Scholar]
- Li, H.; Wang, A.; Yuan, F.; Guan, D.; Jin, C.; Wu, J.; Zhao, T. Evapotranspiration dynamics over a temperate meadow ecosystem in eastern Inner Mongolia, China. Environ. Earth Sci. 2016, 75, 978. [Google Scholar]
- Antoniadis, D. Investigation of the Effect of Vegetation and Green Infrastructures on Outdoor Bioclimatology: The Case Study of the Environment of Urban School Buildings. Ph.D. Thesis, Univestity Thessaly, Volos, Greece, 2018. [Google Scholar]
- Santos Nouri, A.; Fröhlich, D.; Matos Silva, M.; Matzarakis, A. The impact of Tipuana tipu species on local human thermal comfort thresholds in different urban canyon cases in Mediterranean climates: Lisbon, Portugal. Atmosphere 2018, 9, 12. [Google Scholar]
- Lin, B.-S.; Lin, Y.-J. Cooling effect of shade trees with different characteristics in a subtropical urban park. HortScience 2010, 45, 83–86. [Google Scholar]
- Brown, R.D.; Gillespie, T.J. Microclimatic Landscape Design: Creating Thermal Comfort and Energy Efficiency; Wiley: New York, NY, USA, 1995; Volume 1. [Google Scholar]
- Moser, A.; Rötzer, T.; Pauleit, S.; Pretzsch, H. Structure and ecosystem services of small-leaved lime (Tilia cordata Mill.) and black locust (Robinia pseudoacacia L.) in urban environments. Urban For. Urban Green. 2015, 14, 1110–1121. [Google Scholar]
- Fahmy, M.; Sharples, S.; Yahiya, M. LAI based trees selection for mid latitude urban developments: A microclimatic study in Cairo, Egypt. Build. Environ. 2010, 45, 345–357. [Google Scholar]
- Tanaka, K.; Hashimoto, S. Plant canopy effects on soil thermal and hydrological properties and soil respiration. Ecol. Model. 2006, 196, 32–44. [Google Scholar]
- Shashua-Bar, L.; Pearlmutter, D.; Erell, E. The cooling efficiency of urban landscape strategies in a hot dry climate. Landsc. Urban Plan. 2009, 92, 179–186. [Google Scholar]
- Bréda, N.; Granier, A. Intra-and interannual variations of transpiration, leaf area index and radial growth of a sessile oak stand (Quercus petraea). Ann. Sci. For. 1996, 53, 521–536. [Google Scholar]
- Rey, J.M. Modelling potential evapotranspiration of potential vegetation. Ecol. Model. 1999, 123, 141–159. [Google Scholar]
- Skelhorn, C.; Lindley, S.; Levermore, G. The impact of vegetation types on air and surface temperatures in a temperate city: A fine scale assessment in Manchester, UK. Landsc. Urban Plan. 2014, 121, 129–140. [Google Scholar]
- Streiling, S.; Matzarakis, A. Influence of single and small clusters of trees on the bioclimate of a city: A case study. J. Arboric. 2003, 29, 309–316. [Google Scholar]
- Coutts, A.M.; White, E.C.; Tapper, N.J.; Beringer, J.; Livesley, S.J. Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments. Theor. Appl. Climatol. 2016, 124, 55–68. [Google Scholar]
- Nikolopoulou, M.; Lykoudis, S. Thermal comfort in outdoor urban spaces: Analysis across different European countries. Build. Environ. 2006, 41, 1455–1470. [Google Scholar]
- Nikolopoulou, M.; Steemers, K. Thermal comfort and psychological adaptation as a guide for designing urban spaces. Energy Build. 2003, 35, 95–101. [Google Scholar]
- Nikolopoulou, M. Designing Open Spaces in the Urban Environment: A Bioclimatic Approach; RUROS—Rediscovering the Urban Realm and Open Spaces; Centre for Renewable Energy Sources (CRES): Athens, Greece, 2004; Available online: http://www.cres.gr/kape/education/1.design_guidelines_en.pdf (accessed on 19 October 2020).
- Lai, D.; Liu, W.; Gan, T.; Liu, K.; Chen, Q. A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Sci. Total Environ. 2019, 661, 337–353. [Google Scholar]
- Bechtel, B.; Alexander, P.J.; Böhner, J.; Ching, J.; Conrad, O.; Feddema, J.; Mills, G.; See, L.; Stewart, I. Mapping local climate zones for a worldwide database of the form and function of cities. ISPRS Int. J. Geo-Inf. 2015, 4, 199–219. [Google Scholar]
- Cityofboise.org. Tree Selection Guide. 2018. Available online: https://www.cityofboise.org/departments/parks-and-recreation/community-forestry/forestry-programs-and-education/tree-selection-guide/ (accessed on 12 October 2020).
- May, P.B.; Livesley, S.J.; Shears, I. Managing and monitoring tree health and soil water status during extreme drought in Melbourne, Victoria. Arboric. Urban 2013, 39, 136–145. [Google Scholar]
- Shade Guidelines. Available online: https://www.sunsmart.com.au/publications-posters/search.asp?ConfirmationFormSubmitted=true&FormSubmitted=true&FormName=resourcessearchform&CurrentPage=1&ContainerId=resource_order_form_resources&ContentType=resource&Keywords=&category=all&Field010=%5B--0--%5D&Field010=all (accessed on 12 October 2020).
- Shade Guidelines. Available online: https://www.publichealthgreybruce.on.ca/Portals/0/Topics/FamilyHealth/Sunsense/shade_guidelines.pdf (accessed on 12 October 2020).
- Guidelines for Shade Planning and Design. Available online: https://cancernz.org.nz/assets/Sunsmart/Sunsmart-resources/Guidelines-Under-Cover (accessed on 12 October 2020).
- CPSC. Handbook for Public Playground Safety; U.S. Consumer Product Safety Commission: Washington, DC, USA, 2010. Available online: https://www.ihs.gov/headstart/documents/HandbookforPlaygroundSafety.pdf (accessed on 19 October 2020).
- Zinzi, M. Optical and thermal characterisation of cool asphalts to mitigate urban temperatures and building cooling demand. Build. Environ. 2013, 60, 56–65. [Google Scholar]
- Doulos, L.; Santamouris, M.; Livada, I. Passive cooling of outdoor urban spaces. The role of materials. Sol. Energy 2004, 77, 231–249. [Google Scholar]
- Erell, E.; Pearlmutter, D.; Boneh, D.; Kutiel, P.B. Effect of high-albedo materials on pedestrian heat stress in urban street canyons. Urban Clim. 2014, 10, 367–386. [Google Scholar]
- Lindberg, F.; Onomura, S.; Grimmond, C. Influence of ground surface characteristics on the mean radiant temperature in urban areas. Int. J. Biometeorol. 2016, 60, 1439–1452. [Google Scholar]
- Taleghani, M.; Sailor, D.; Ban-Weiss, G.A. Micrometeorological simulations to predict the impacts of heat mitigation strategies on pedestrian thermal comfort in a Los Angeles neighborhood. Environ. Res. Lett. 2016, 11, 1–12. [Google Scholar]
- Li, H.; Sodoudi, S.; Liu, J.; Tao, W. Temporal variation of urban aerosol pollution island and its relationship with urban heat island. Atmos. Res. 2020, 241, 104957. [Google Scholar]
- Huang, J.; Zhou, C.; Zhuo, Y.; Xu, L.; Jiang, Y. Outdoor thermal environments and activities in open space: An experiment study in humid subtropical climates. Build. Environ. 2016, 103, 238–249. [Google Scholar]
- Varras, G.; Vozikis, K.-T.; Myriounis, C.; Tsirogiannis, I.L.; Kitta, E. Design of extensive green roofs for the major school plants of Piraeus. In Proceedings of the II International Symposium on Horticulture in 2nd Symposium on Horticulture in Europe, Angers, France, 1–5 July 2012; Volume 2015, pp. 959–966. [Google Scholar]
- Kumar, R.; Kaushik, S. Performance evaluation of green roof and shading for thermal protection of buildings. Build. Environ. 2005, 40, 1505–1511. [Google Scholar]
- Tsirogiannis, I.; Karras, G.; Lambraki, E.; Varras, G.; Savvas, D.; Castellano, S. Evaluation of a plastic tube based hydroponic system for horizontal and vertical green surfaces on buildings. In Proceedings of the XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014), Brisbane, Australia, 17 August 2014; Volume 1108, pp. 323–330. [Google Scholar]
- Katsoulas, N.; Antoniadis, D.; Tsirogiannis, I.; Labraki, E.; Bartzanas, T.; Kittas, C. Microclimatic effects of planted hydroponic structures in urban environment: Measurements and simulations. Int. J. Biometeorol. 2017, 61, 943–956. [Google Scholar]
- Bianco, L.; Serra, V.; Larcher, F.; Perino, M. Thermal behaviour assessment of a novel vertical greenery module system: First results of a long-term monitoring campaign in an outdoor test cell. Energy Effic. 2017, 10, 625–638. [Google Scholar]
- Medl, A.; Stangl, R.; Florineth, F. Vertical greening systems–A review on recent technologies and research advancement. Build. Environ. 2017, 125, 227–239. [Google Scholar]
- Montero, J.; Salas, M.; Mellado, P. Hydroponic pergola as an example of living furniture in urban landscape. In Proceedings of the II International Conference on Landscape and Urban Horticulture, Bologna, Italy, 9–13 June 2010; Volume 881, p. 355. [Google Scholar]
- Danks, S.G. Asphalt to Ecosystems: Design Ideas for Schoolyard Transformation; New Village Press: New York, NY, USA, 2010. [Google Scholar]
- Danks, S.G. The Green Schoolyard Movement: Gaining Momentum Around the World. Retrieved 8 April 2019, from Children & Nature Network. 2014. Available online: https://www.childrenandnature.org/2014/02/06/greenschoolyardsnearby-nature-access-for-all/.nat (accessed on 12 October 2020).
- Bush, J.; Doyon, A. Building urban resilience with nature-based solutions: How can urban planning contribute? Cities 2019, 95, 102483. [Google Scholar]
- Paris OASIS—School yards, P.O.-S. 2019. Available online: https://www.uia-initiative.eu/en/uia-cities/paris-call3 (accessed on 12 October 2020).
- Space to Grow: Greening Chicago Schoolyards. 2019. Available online: https://www.spacetogrowchicago.org/ (accessed on 12 October 2020).
- Green Schoolyards America Program. Available online: https://www.greenschoolyards.org/news/2016/7/14/the-green-schoolyard-movement-gaining-momentum-around-the-world (accessed on 12 October 2020).
Study Category | Keywords | Number of Relevant Manuscripts Found |
---|---|---|
Studies which assessed human thermal perception in outdoor urban environments and the monitoring of outdoor human thermal comfort | “human thermal comfort” and “outdoor” and “urban” and “human thermal index” | 66 |
Studies that linked heat perception and thermal comfort to the age group of children | “thermal comfort” and children, “heat stress” and “mortality”, “morbidity” or “thermal perception” and “children” | 34 |
Studies that described the design of urban schoolyards and its impact on the biometeorological conditions especially on sunny days in warm or hot climates | “school*” and “design” and “thermal conditions” and “heat stress” | 16 |
Selection of studies that focused mainly on the cooling impact of vegetation on the thermal environment of urban outdoor spaces. | “thermal comfort” and “urban” and “trees” and “vegetation” | 30 |
Studies that proposed strategies to mitigate the heat stress and improve schoolyards thermal environment of schoolyards users, together with the movement “Greening Schoolyards” | “mitigation strategies” and “heat stress” and “School*” and “design”, “greening Schoolyards” | 51 |
Physical Parameter | Children | Effect | Reference |
---|---|---|---|
Surface area-to-body mass ratio | Higher | Higher heat absorption | [78,79] |
Metabolic rate | Higher | Higher heat production | [48,79] |
Height | Lower height. Body closer to the ground | Thermal impacts of long-wave heat fluxes of high surface temperatures | [6,33,95] |
Skin | More sensitive | [33] | |
Physical activity | Higher | Higher metabolic heat production | [96,97] |
Heat loss | Dry convective compared to adults evaporative heat loss | [93] | |
Thermoregulation | Inferior | [83,84,85,86] | |
Undeveloped sweat gland capacity | [78,85,87,88] | ||
Lower sweat rate | [83,84,94] | ||
Lower evaporation heat exchange | [12,48,89,90] | ||
Adaptive behaviour | Less adaptive | Less knowledge for sun protection | [33] |
Heat exchanges | Rapid | Establishment of heat stress condition in short time | [6,48,87,91,92] |
Thermal perception | Inferior | [12,48,89,90] |
Under the Tree Crown | |||
---|---|---|---|
Effects | Tree Characteristics | Mechanism | References |
Reduction of Tair | [12,26,62,109,111,112,120,121,122,123,124,125,126,127,128,130] | ||
Light green leaf colour | Increased solar reflectance | ||
Larger foliage density (larger Leaf Area Index, LAI) | Larger amount of leaves thus, larger amount of evapotranspiration that dissipate more heat through latent cooling | ||
Leaf thickness | The thinner the leaf is, the less is the cooling effect | ||
Leaf surface roughness | The rougher the leaf the less absorbs solar radiation | ||
Increase of RH | Larger Foliage density (LAI index) | Larger amount of leaves, thus larger amount of evapotranspiration and water vapour loss to the microenvironment | [26,111,114,115,116,120,122,126,127] |
Reduction of incident solar radiation | [9,26,110,111,115,116,118,120,122,123,124,125,126,129] | ||
Larger Foliage density (LAI index) | Reduce the permeability of the crown to solar radiation | ||
Light green leaf colour | Increased solar reflectance | ||
Crown absorbance and reflectance of solar radiation | Reduce the infrared emissivity and the crown heat capacity | ||
Different tree species and at different ages and seasons | Differences in shade pattern | ||
Tree’s configuration | Clusters of trees at small distances increase the effects | ||
Modify the wind properties | Crown width and trunk and branches structure | Reduce wind flow and increase wind turbulence | [108,124] |
Reduction of surface temperatures | Increased tree’s shading | Tree shade reduce the surface temperature as less solar energy reach the ground, reduce the heat energy that is trapped into the body of the surface and reduce the emission of long-wave radiation from the surface | [7,9,12,115,120,124,128] |
Improve the human thermal comfort | Reduced radiative budget | Reduce Tmrt and thermal comfort indices | [9,24,114,115,116,119,129,130] |
Over vegetated surface cover | |||
Low grass albedo | Drives the reflected short-wave radiation and the convective heat removal that affects evaporative cooling | [24] | |
Irrigated grass | Reduce emission of long-wave radiation | [24] | |
Shaded grass | Greater cooling effect | [125] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antoniadis, D.; Katsoulas, N.; Papanastasiou, D.Κ. Thermal Environment of Urban Schoolyards: Current and Future Design with Respect to Children’s Thermal Comfort. Atmosphere 2020, 11, 1144. https://doi.org/10.3390/atmos11111144
Antoniadis D, Katsoulas N, Papanastasiou DΚ. Thermal Environment of Urban Schoolyards: Current and Future Design with Respect to Children’s Thermal Comfort. Atmosphere. 2020; 11(11):1144. https://doi.org/10.3390/atmos11111144
Chicago/Turabian StyleAntoniadis, Dimitrios, Nikolaos Katsoulas, and Dimitris Κ. Papanastasiou. 2020. "Thermal Environment of Urban Schoolyards: Current and Future Design with Respect to Children’s Thermal Comfort" Atmosphere 11, no. 11: 1144. https://doi.org/10.3390/atmos11111144
APA StyleAntoniadis, D., Katsoulas, N., & Papanastasiou, D. Κ. (2020). Thermal Environment of Urban Schoolyards: Current and Future Design with Respect to Children’s Thermal Comfort. Atmosphere, 11(11), 1144. https://doi.org/10.3390/atmos11111144