The Effect of the Covid-19 Lockdown on Air Quality in Three Italian Medium-Sized Cities
Abstract
:1. Introduction
2. Methods
2.1. Area of the Study
- Florence, the capital city of the Tuscany region and the Province of Florence, is the most populated, with about 372,000 inhabitants that live in the municipality, but over 1,520,000 that live in the greater metropolitan area;
- Pisa, the capital city of the Province of Pisa, has over 91,000 residents living in the municipality and about 200,000 living in the surrounding area;
- Lucca, the capital city of the Province of Lucca, which has more than 90,000 residents.
2.2. Air-Quality and Meteorological Data Collection and Processing
- [1 January–8 March 2019] vs. [1 January–8 March 2020] → pre-lockdown period;
- [9 March–3 June 2019] vs. [9 March–3 June 2020] → lockdown period;
- [4 June–12 August 2019] vs. [4 June–12 August 2020] → post-lockdown period.
3. Results and Discussion
3.1. Particulate Matter
3.2. Nitrogen Dioxide
3.3. Ozone
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Environment Agency. Air Quality in Europe 2019. Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2019 (accessed on 29 August 2020).
- Galindo, N.; Varea, M.; Gil-Molto, J.; Yubero, E.; Nicolas, J. The Influence of Meteorology on Particulate Matter Concentrations at an Urban Mediterranean Location. Water Air Soil Pollut. 2009, 215, 365–372. [Google Scholar] [CrossRef]
- Goldberg, D.L.; Anenberg, S.C.; Griffin, D.; McLinden, C.A.; Lu, Z.; Streets, D.G. Disentangling the Impact of the COVID-19 Lockdowns on Urban NO2 From Natural Variability. Geophys. Res. Lett. 2020, 47, e2020GL089269. [Google Scholar] [CrossRef] [PubMed]
- Camalier, L.; Cox, W.; Dolwick, P. The effects of meteorology on ozone in urban areas and their use in assessing ozone trends. Atmos. Environ. 2007, 41, 7127–7137. [Google Scholar] [CrossRef]
- Tomassetti, L.; Torre, M.; Tratzi, P.; Paolini, V.; Rizza, V.; Segreto, M.; Petracchini, F. Evaluation of air quality and mobility policies in 14 large Italian cities from 2006 to 2016. J. Environ. Sci. Health A Toxic Hazard. Subst. Environ. Eng. 2020, 55, 886–902. [Google Scholar] [CrossRef] [PubMed]
- Legambiente. Mal’Aria di Città; Legambiente: Rovigo, Italy, 2020. [Google Scholar]
- Cerami, C.; Santi, G.C.; Galandra, C.; Dodich, A.; Cappa, S.F.; Vecchi, T.; Crespi, C. Covid-19 Outbreak in Italy: Are We Ready for the Psychosocial and the Economic Crisis? Baseline Findings from the PsyCovid Study. Front. Psychiatry 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Favieri, F.; Forte, G.; Tambelli, R.; Casagrande, M. The Italians in the Time of Coronavirus: Psychosocial Aspects of Unexpected COVID-19 Pandemic; Social Science Research Network: Rochester, NY, USA, 2020. [Google Scholar]
- Aletta, F.; Brinchi, S.; Carrese, S.; Gemma, A.; Guattari, C.; Mannini, L.; Patella, S.M. Analysing urban traffic volumes and mapping noise emissions in Rome (Italy) in the context of containment measures for the COVID-19 disease. Noise Mapp. 2020, 7, 114–122. [Google Scholar] [CrossRef]
- Gazzetta Ufficiale della Republica Italiana n. 62, 09.03.2020. Covid-19, D.P.C.M. 09.03.2020. Available online: http://www.regioni.it/news/2020/03/12/covid-19-d-p-c-m-09-03-2020-pubblicato-nella-gazzetta-ufficiale-n-62-del-09-03-2020-607000/ (accessed on 29 August 2020).
- Gazzetta Ufficiale della Republica Italiana n. 76 del 22.03.2020. Covid-19, Ulteriori Disposizioni Attuative Dl 6/2020, DPCM 22.03.2020. Available online: http://www.regioni.it/news/2020/03/23/covid-19-ulteriori-disposizioni-attuative-dl-62020-dpcm-22-03-2020-gazzetta-ufficiale-n-76-del-22-03-2020-607770/ (accessed on 29 August 2020).
- ARPAT—Agenzia Regionale per la Protezione Ambientale della Toscana. Valori anomali di PM10 in Toscana il 28 e 29 marzo 2020. Available online: http://www.arpat.toscana.it/notizie/notizie-brevi/2020/valori-anomali-di-pm10-in-toscana-il-28-e-29-marzo (accessed on 29 August 2020).
- Dobson, R.; Semple, S. Changes in outdoor air pollution due to COVID-19 lockdowns differ by pollutant: Evidence from Scotland. Occup. Environ. Med. 2020. [Google Scholar] [CrossRef]
- Giani, P.; Castruccio, S.; Anav, A.; Howard, D.; Hu, W.; Crippa, P. Short-term and long-term health impacts of air pollution reductions from COVID-19 lockdowns in China and Europe: A modelling study. Lancet Planet. Health 2020. [Google Scholar] [CrossRef]
- Kumar, P.; Hama, S.; Omidvarborna, H.; Sharma, A.; Sahani, J.; Abhijith, K.V.; Debele, S.E.; Zavala-Reyes, J.C.; Barwise, Y.; Tiwari, A. Temporary reduction in fine particulate matter due to ‘anthropogenic emissions switch-off’ during COVID-19 lockdown in Indian cities. Sustain. Cities Soc. 2020, 62, 102382. [Google Scholar] [CrossRef]
- Abdullah, S.; Mansor, A.A.; Napi, N.N.L.M.; Mansor, W.N.W.; Ahmed, A.N.; Ismail, M.; Ramly, Z.T.A. Air quality status during 2020 Malaysia Movement Control Order (MCO) due to 2019 novel coronavirus (2019-nCoV) pandemic. Sci. Total Environ. 2020, 729, 139022. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Bertanza, G.; Pedrazzani, R.; Ricciardi, P.; Carnevale Miino, M. Lockdown for CoViD-2019 in Milan: What are the effects on air quality? Sci. Total Environ. 2020, 732, 139280. [Google Scholar] [CrossRef] [PubMed]
- Mahato, S.; Pal, S.; Ghosh, K.G. Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India. Sci. Total Environ. 2020, 730, 139086. [Google Scholar] [CrossRef] [PubMed]
- Dantas, G.; Siciliano, B.; França, B.B.; da Silva, C.M.; Arbilla, G. The impact of COVID-19 partial lockdown on the air quality of the city of Rio de Janeiro, Brazil. Sci. Total Environ. 2020, 729, 139085. [Google Scholar] [CrossRef]
- Karar, K.; Gupta, A.K.; Kumar, A.; Biswas, A.K. Seasonal Variations of PM10 and TSP in Residential and Industrial Sites in an Urban Area of Kolkata, India. Environ. Monit. Assess. 2006, 118, 369–381. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Zhang, M.; Gao, J.A.; Zhang, H.; Kota, S.H. Effect of restricted emissions during COVID-19 on air quality in India. Sci. Total Environ. 2020, 728, 138878. [Google Scholar] [CrossRef]
- Nakada, L.Y.K.; Urban, R.C. COVID-19 pandemic: Impacts on the air quality during the partial lockdown in São Paulo state, Brazil. Sci. Total Environ. 2020, 730, 139087. [Google Scholar] [CrossRef]
- Li, L.; Li, Q.; Huang, L.; Wang, Q.; Zhu, A.; Xu, J.; Liu, Z.; Li, H.; Shi, L.; Li, R.; et al. Air quality changes during the COVID-19 lockdown over the Yangtze River Delta Region: An insight into the impact of human activity pattern changes on air pollution variation. Sci. Total Environ. 2020, 732, 139282. [Google Scholar] [CrossRef] [PubMed]
- Bao, R.; Zhang, A. Does lockdown reduce air pollution? Evidence from 44 cities in northern China. Sci. Total Environ. 2020, 731, 139052. [Google Scholar] [CrossRef]
- Cori, L.; Donzelli, G.; Gorini, F.; Bianchi, F.; Curzio, O. Risk Perception of Air Pollution: A Systematic Review Focused on Particulate Matter Exposure. Int. J. Environ. Res. Public Health 2020, 17, 6424. [Google Scholar] [CrossRef]
- Baldasano, J.M. COVID-19 lockdown effects on air quality by NO2 in the cities of Barcelona and Madrid (Spain). Sci. Total Environ. 2020, 741, 140353. [Google Scholar] [CrossRef]
- Nitrogen Dioxide. Available online: http://www.tropomi.eu/data-products/nitrogen-dioxide (accessed on 29 August 2020).
- Jarvis, D.J.; Adamkiewicz, G.; Heroux, M.-E.; Rapp, R.; Kelly, F.J. Nitrogen Dioxide; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Hamra, G.B.; Laden, F.; Cohen, A.J.; Raaschou-Nielsen, O.; Brauer, M.; Loomis, D. Lung Cancer and Exposure to Nitrogen Dioxide and Traffic: A Systematic Review and Meta-Analysis. Environ. Health Perspect. 2015, 123, 1107–1112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Guan, Y.; Leaderer, B.P.; Holford, T.R. Estimating Daily Nitrogen Dioxide Level: Exploring Traffic Effects. Ann. Appl. Stat. 2013, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilbert, N.L.; Woodhouse, S.; Stieb, D.M.; Brook, J.R. Ambient nitrogen dioxide and distance from a major highway. Sci. Total Environ. 2003, 312, 43–46. [Google Scholar] [CrossRef]
- Sicard, P.; De Marco, A.; Agathokleous, E.; Feng, Z.; Xu, X.; Paoletti, E.; Rodriguez, J.J.D.; Calatayud, V. Amplified ozone pollution in cities during the COVID-19 lockdown. Sci. Total Environ. 2020, 735, 139542. [Google Scholar] [CrossRef] [PubMed]
- Agudelo–Castaneda, D.M.; Calesso Teixeira, E.; Norte Pereira, F. Time–series analysis of surface ozone and nitrogen oxides concentrations in an urban area at Brazil. Atmos. Pollut. Res. 2014, 5, 411–420. [Google Scholar] [CrossRef] [Green Version]
Air-Monitoring Station | City | Station Type | Area Type | Pollutants | |||
---|---|---|---|---|---|---|---|
PM10 | PM2.5 | NO2 | O3 | ||||
FI-GRAMSCI | Florence | Traffic | Urban | ✓ | ✓ | ✓ | |
FI-BASSI | Florence | Background | Urban | ✓ | ✓ | ✓ | |
FI-MOSSE | Florence | Traffic | Urban | ✓ | ✓ | ||
FI-SETTIGNANO | Florence | Background | Suburban | ✓ | |||
PI-BORGHETTO | Pisa | Traffic | Urban | ✓ | ✓ | ✓ | |
PI-PASSI | Pisa | Background | Urban | ✓ | ✓ | ✓ | ✓ |
LU-MICHELETTO | Lucca | Traffic | Urban | ✓ | ✓ | ||
LU-CARIGNANO | Lucca | Background | Rural | ✓ | |||
LU-SAN-CONCORDIO | Lucca | Background | Urban | ✓ | ✓ |
First Period 1 January–8 March | Second Period (Lockdown) 9 March–3 June | Third Period 4 June–12 August | |||||||
---|---|---|---|---|---|---|---|---|---|
Mean (SD) 2019 | Mean (SD) 2020 | p-Value | Mean (SD) 2019 | Mean (SD) 2020 | p-Value | Mean (SD) 2019 | Mean (SD) 2020 | p-Value | |
FI-GRAMSCI | 37 (16) | 36 (15) | 0.635 | 23 (7) | 16 (6) | <0.001 | 24 (9) | 17 (4) | <0.001 |
FI-BASSI | 23 (16) | 28 (14) | 0.300 | 14 (7) | 15 (6) | 0.186 | 19 (7) | 15 (4) | 0.002 |
FI-MOSSE | 30 (18) | 32 (16) | 0.427 | 14 (8) | 15 (5) | 0.269 | 21 (8) | 15 (4) | <0.001 |
PI-BORGHETTO | 39 (17) | 36 (17) | 0.237 | 19 (8) | 18 (7) | 0.255 | 26 (9) | 18 (4) | <0.001 |
PI-PASSI | 35 (17) | 33 (16) | 0.223 | 16 (7) | 17 (6) | 0.982 | 22 (7) | 15 (4) | <0.001 |
LU-MICHELETTO | 42 (20) | 42 (25) | 0.996 | 17 (7) | 19 (9) | 0.141 | 20 (7) | 18 (7) | 0.131 |
LU-SAN-CONCORDIO | 40 (18) | 37 (21) | 0.322 | 15 (7) | 18 (8) | 0.037 | 21 (7) | 15 (4) | <0.001 |
First Period 1 January–8 March | Second Period (Lockdown) 9 March–3 June | Third Period 4 June–12 August | |||||||
---|---|---|---|---|---|---|---|---|---|
Mean (SD) 2019 | Mean (SD) 2020 | p-Value | Mean (SD) 2019 | Mean (SD) 2020 | p-Value | Mean (SD) 2019 | Mean (SD) 2020 | p-Value | |
FI-GRAMSCI | 24 (12) | 21 (13) | 0.207 | 12 (4) | 10 (4) | 0.045 | 14 (3) | 10 (3) | <0.001 |
FI-BASSI | 19 (13) | 20 (14) | 0.552 | 9 (4) | 10 (4) | 0.056 | 12 (3) | 9 (3) | <0.001 |
PI-BORGHETTO | 25 (14) | 22 (15) | 0.179 | 8 (3) | 11 (5) | <0.001 | 11 (3) | 8 (3) | <0.001 |
PI-PASSI | 29 (15) | 26 (17) | 0.245 | 11 (4) | 12 (6) | 0.437 | 15 (4) | 10 (3) | <0.001 |
First Period 1 January–8 March | Second Period (Lockdown) 9 March–3 June | Third Period 4 June–12 August | |||||||
---|---|---|---|---|---|---|---|---|---|
Mean (SD) 2019 | Mean (SD) 2020 | p-Value | Mean (SD) 2019 | Mean (SD) 2020 | p-Value | Mean (SD) 2019 | Mean (SD) 2020 | p-Value | |
FI-GRAMSCI | 117 (22) | 110 (21) | 0.081 | 98 (18) | 60 (22) | <0.001 | 94 (22) | 76 (13) | <0.001 |
FI-BASSI | 61 (23) | 60 (18) | 0.856 | 36 (18) | 25 (15) | <0.001 | 31 (9) | 22 (8) | <0.001 |
FI-MOSSE | 89 (23) | 79 (18) | 0.005 | 59 (16) | 36 (16) | <0.001 | 46 (15) | 34 (8) | <0.001 |
PI-BORGHETTO | 85 (14) | 76 (16) | 0.003 | 58 (18) | 35 (15) | <0.001 | 48 (13) | 34 (11) | <0.001 |
PI-PASSI | 64 (15) | 55 (15) | 0.001 | 34 (15) | 20 (11) | <0.001 | 24 (6) | 16 (4) | <0.001 |
LU-MICHELETTO | 69 (12) | 58 (12) | <0.001 | 45 (15) | 29 (11) | <0.001 | 35 (11) | 27 (8) | <0.001 |
LU-CARIGNANO | 77 (17) | 62 (13) | <0.001 | 46 (18) | 28 (14) | <0.001 | 36 (10) | 26 (8) | <0.001 |
First Period 2020 vs. 2019 1 January–8 March | Second Period 2020 vs. 2019 9 March–3 June | Third Period 2020 vs. 2019 4 June–12 August | |
---|---|---|---|
FI-GRAMSCI | 5.7% | 38.5% | 19.6% |
FI-BASSI | 1.0% | 32.1% | 28.3% |
FI-MOSSE | 11.3% | 39.4% | 26.2% |
PI-BORGHETTO | 9.7% | 40.1% | 29.4% |
PI-PASSI | 13.2% | 41.6% | 33.1% |
LU-MICHELETTO | 17.1% | 35.0% | 23.3% |
LU-CARIGNANO | 19.6% | 39.4% | 25.9% |
Pre-Lockdown | Lockdown | Post-Lockdown | |||||||
---|---|---|---|---|---|---|---|---|---|
Mean (SD) 2019 | Mean (SD) 2020 | p-Value | Mean (SD) 2019 | Mean (SD) 2020 | p-Value | Mean (SD) 2019 | Mean (SD) 2020 | p-Value | |
FI-SETTIGNANO | 70 (17) | 66 (16) | 0.067 | 100 (15) | 100 (17) | 0.939 | 128 (23) | 116 (25) | 0.007 |
PI-PASSI | 61 (19) | 62 (20) | 0.886 | 92 (12) | 95 (14) | 0.198 | 107 (16) | 99 (15) | 0.008 |
LU-CARIGNANO | 80 (19) | 70 (17) | <0.001 | 100 (14.0) | 98.42 (17) | 0.423 | 129 (23) | 108 (18) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donzelli, G.; Cioni, L.; Cancellieri, M.; Llopis Morales, A.; Morales Suárez-Varela, M.M. The Effect of the Covid-19 Lockdown on Air Quality in Three Italian Medium-Sized Cities. Atmosphere 2020, 11, 1118. https://doi.org/10.3390/atmos11101118
Donzelli G, Cioni L, Cancellieri M, Llopis Morales A, Morales Suárez-Varela MM. The Effect of the Covid-19 Lockdown on Air Quality in Three Italian Medium-Sized Cities. Atmosphere. 2020; 11(10):1118. https://doi.org/10.3390/atmos11101118
Chicago/Turabian StyleDonzelli, Gabriele, Lorenzo Cioni, Mariagrazia Cancellieri, Agustin Llopis Morales, and Maria M. Morales Suárez-Varela. 2020. "The Effect of the Covid-19 Lockdown on Air Quality in Three Italian Medium-Sized Cities" Atmosphere 11, no. 10: 1118. https://doi.org/10.3390/atmos11101118
APA StyleDonzelli, G., Cioni, L., Cancellieri, M., Llopis Morales, A., & Morales Suárez-Varela, M. M. (2020). The Effect of the Covid-19 Lockdown on Air Quality in Three Italian Medium-Sized Cities. Atmosphere, 11(10), 1118. https://doi.org/10.3390/atmos11101118