Mid-Century Changes in the Mean and Extreme Climate in the Kingdom of Saudi Arabia and Implications for Water Harvesting and Climate Adaptation
Abstract
:1. Introduction
2. Methodology and Experiments
2.1. Regional Climate Model Configuration
2.2. Numerical Experiments and Supporting Data
3. Results
3.1. Evaluation of the Downscaling Methodology
3.2. Projected Future Changes
3.2.1. Changes in the Mean Climate
3.2.2. Changes in the Extremes
3.2.3. Projected Changes in Climate at Local, City Levels
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alsarhan, A.; Zatari, T.; Al-Asaly, M.; Mirza, K.; Harthi, A.; Othman, M.; Babiker, M.; Khan, A.; Aljabr, A.; Albuqami, F.; et al. Third National Communication of the Kingdom of Saudi Arabia. 2016. Available online: https://unfccc.int/files/national_reports/non-annex_i_natcom/application/pdf/saudi_arabia_nc3_22_dec_2016.pdf (accessed on 19 September 2020).
- Rehman, S.; Al-Hadhrami, L. Extreme Temperature Trends on the West Coast of Saudi Arabia. Atmos. Clim. Sci. 2012, 2 No. 3, 351–361. [Google Scholar] [CrossRef] [Green Version]
- Almazroui, M.; Nazrul Islam, M.; Athar, H.; Jones, P.D.; Rahman, M.A. Recent climate change in the Arabian Peninsula: Annual rainfall and temperature analysis of Saudi Arabia for 1978–2009. Int. J. Clim. 2012, 32, 953–966. [Google Scholar] [CrossRef]
- Almazroui, M.; Islam, M.N.; Dambul, R.; Jones, P.D. Trends of temperature extremes in Saudi Arabia. Int. J. Clim. 2014, 34, 808–826. [Google Scholar] [CrossRef]
- Donat, M.G.; Peterson, T.C.; Brunet, M.; King, A.D.; Almazroui, M.; Kolli, R.K.; Boucherf, D.; Al-Mulla, A.Y.; Nour, A.Y.; Aly, A.A.; et al. Changes in extreme temperature and precipitation in the Arab region: Long-term trends and variability related to ENSO and NAO. Int. J. Clim. 2014, 34, 581–592. [Google Scholar] [CrossRef]
- Almazroui, M. Temperature Changes over the CORDEX-MENA Domain in the 21st Century Using CMIP5 Data Downscaled with RegCM4: A Focus on the Arabian Peninsula. Adv. Meteor. 2019, 2019, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Tarawneh, Q.Y.; Chowdhury, S. Trends of Climate Change in Saudi Arabia: Implications on Water Resources. Climate 2018, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Bucchignani, E.; Mercogliano, P.; Panitz, H.-J.; Montesarchio, M. Climate change projections for the Middle East–North Africa domain with COSMO-CLM at different spatial resolutions. Adv. Clim. Change. Res. 2018, 9, 66–80. [Google Scholar] [CrossRef]
- Syed, F.S.; Latif, M.; Al-Maashi, A.; Gluham, A. Regional climate model RCA4 simulations of temperature and precipitation over the Arabian Peninsula: Sensitivity to CORDEX domain and lateral boundary conditions. Clim. Dyn. 2019, 53, 7045–7064. [Google Scholar] [CrossRef]
- Buzan, J.R.; Huber, M. Moist Heat Stress on a Hotter Earth. Annu. Rev. Earth Planet. Sci. 2020, 48, 623–655. [Google Scholar] [CrossRef] [Green Version]
- Pal, J.; Eltahir, E. Future temperature in southwest Asia projected to exceed a threshold for human adaptability. Nat. Clim. Chang. 2011, 6, 197–200. [Google Scholar] [CrossRef]
- Mashat, A.; Basset, H.A. Analysis of Rainfall over Saudi Arabia, JKAU: Met. Env. Arid. Land. Agric. Sci. 2011, 22, 59–78. [Google Scholar] [CrossRef]
- Yesubabu, V.; Srinivas, C.V.; Langodan, S.; Hoteit, I. Predicting extreme rainfall events over Jeddah, Saudi Arabia: Impact of data assimilation with conventional and satellite observations. Q.J.R. Meteorol. Soc. 2016, 142, 327–348. [Google Scholar] [CrossRef] [Green Version]
- De Vries, A.J.; Feldstein, S.B.; Riemer, M.; Tyrlis, E.; Sprenger, M.; Baumgart, M.; Fnais, M.; Lelieveld, J. Dynamics of tropical–extratropical interactions and extreme precipitation events in Saudi Arabia in autumn, winter and spring. Q. J. R. Meteorol. Soc. 2016, 142, 1862–1880. [Google Scholar] [CrossRef]
- Momani, N.M.; Fadil, A.S. Changing public policy due to Saudi city of Jeddah flood disaster. J. Soci. Sci. 2010, 6, 424–428. [Google Scholar] [CrossRef]
- Daoudi, M.; Niang, A.J. Flood Risk and Vulnerability of Jeddah City, Saudi Arabia, Recent Advances in Flood Risk Management; Intech Open: London, UK, 2018; pp. 634–654. [Google Scholar]
- Şen, Z.; Al Alsheikh, A.; Al-Turbak, A.S.A.M.; Al-Bassam, A.M.; Al-Dakheel, L. Climate change impact and runoff harvesting in arid regions. Arab. J. Geosci. 2013, 6, 287–295. [Google Scholar] [CrossRef]
- Sebai, Z.A. Malaria in Saudi Arabia. Trop. Doc. 1998, 18, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Almazroui, M. Simulation of present and future climate of Saudi Arabia using a regional climate model (PRECIS). Int. J. Clim. 2013, 33, 2247–2259. [Google Scholar] [CrossRef]
- Deng, L.; McCabe, M.F.; Stenchikov, G.; Evans, J.P.; Kucera, P.A. Simulation of Flash-Flood-Producing Storm Events in Saudi Arabia Using the Weather Research and Forecasting Model. J. Hydrometeor. 2015, 16, 615–630. [Google Scholar] [CrossRef] [Green Version]
- Alsarraf, H.; Broeke, M.V.D. Using the WRF Regional Climate Model to Simulate Future Summertime Wind Speed Changes over the Arabian Peninsula. J. Clim. Weather Forecast. 2015, 3, 144. [Google Scholar] [CrossRef]
- Komurcu, M.; Emanuel, K.A.; Huber, M.; Acosta, R.P. High-resolution climate projections for the northeastern United States using dynamical downscaling at convection-permitting scales. Earth Space Sci. 2018, 5, 801–826. [Google Scholar] [CrossRef] [Green Version]
- Almazroui, M. Calibration of TRMM rainfall climatology over Saudi Arabia during 1998–2009. Atmos Res. 2011, 99, 400–414. [Google Scholar] [CrossRef]
- Bruyère, C.L.; Done, J.M.; Holland, G.J.; Fredrick, S. Bias corrections of global models for regional climate simulations of high-impact weather. Clim. Dynam. 2014, 43, 1847–1856. [Google Scholar] [CrossRef] [Green Version]
- Bruyère, C.L.; Monaghan, A.J.; Steinhoff, D.F.; Yates, D. Bias-Corrected CMIP5 CESM Data in WRF/MPAS Intermediate File Format; (Technical Report TN-515+STR, 27); National Center for Atmospheric Research: Boulder, CO, USA, 2015. [Google Scholar]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.; Huang, X.-Y.; Wang, W. A Description of the Advanced Research WRF Version 3; (Technical Note NCAR/TN-475+STR); National Center for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- Dezfuli, A.K.; Zaitchik, B.F.; Badr, H.S.; Evans, J.; Peters-Lidard, C.D. The Role of Low-Level, Terrain-Induced Jets in Rainfall Variability in Tigris–Euphrates Headwaters. J. Hydrometeor. 2017, 18, 819–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prein, A.; Rasmussen, R.M.; Ikeda, K.; Liu, C.; Klark, M.P.; Holland, G.J. The future intensification of hourly extremes. Nat. Clim. Change 2017, 7, 48–52. [Google Scholar] [CrossRef]
- Attada, R.; Dasari, H.P.; Kunchala, R.K.; Langodan, S.; Niranjan Kumar, K.; Knio, O.; Hoteit, I. Evaluating Cumulus Parameterization Schemes for the Simulation of Arabian Peninsula Winter Rainfall. J. Hydrometeor. 2012, 21, 1089–1114. [Google Scholar] [CrossRef] [Green Version]
- Kain, J.S. The Kain–Fritsch convective parameterization: An update. J. Appl. Meteorol. Climatol. 2004, 43, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Lim, J. The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). J. Korean Meteorol. Soci. 2006, 42, 129–151. [Google Scholar]
- Oleson, K.W.; Lawrence, D.M.; Bonan, G.B.; Flanner, M.G.; Kluzek, E.; Lawrence, P.J.; Levis, S.; Swenson, S.C.; Thornton, P.J.; Dai, A.; et al. Technical Description of Version 4 of the Community Land Model (CLM); (Technical Note NCAR/TN–478+STR); National Center for Atmospheric Research: Boulder, CO, USA, 2010. [Google Scholar]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophy. Res. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Monaghan, A.J.; Steinhoff, D.F.; Bruyere, C.L.; Yates, D. NCAR CESM Global Bias-Corrected CMIP5 Output to Support WRF/MPAS Research. Research Data Archive at the National Center for Atmospheric Research. Computational and Information Systems Laboratory. 2014. Available online: https://doi.org/10.5065/D6DJ5CN4 (accessed on 19 September 2020).
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmasedo, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Royal. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- European Centre for Medium-Range Weather Forecasts. ERA-Interim Project, Single Parameter 6-Hourly Surface Analysis and Surface Forecast Time Series. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. 2012. Available online: https://doi.org/10.5065/D64747WN (accessed on 7 January 2020).
- Lorenz, C.; Kunstmann, H. The hydrological cycle in three state-of-the-art reanalyses: Intercomparison and performance analysis. J. Hydrometeor. 2012, 13, 1397–1420. [Google Scholar] [CrossRef] [Green Version]
- Soares, P.M.M.; Cardoso, R.M.; Miranda, P.M.A.; de Medeiros, J.; Belo-Pereira, M.; Espirito-Santo, F. WRF high resolution dynamical downscaling of ERA-Interim for Portugal. Clim. Dynam. 2012, 39, 2497–2522. [Google Scholar] [CrossRef]
- Bieniek, P.A.; Bhatt, U.S.; Walsh, J.E.; Rupp, T.S.; Zhang, J.; Krieger, J.R.; Lader, R. Dynamical downscaling of ERA-Interim temperature and precipitation for Alaska. J. Appl. Meteorol. Clim. 2015, 55, 635–654. [Google Scholar] [CrossRef]
- Almazroui, M. RegCM4 in climate simulation over CORDEX-MENA/Arab domain: Selection of suitable domain, convection and land-surface schemes. Int. J. Clim. 2016, 36, 236–251. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.-L. A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophy. 2018, 56, 79–107. [Google Scholar] [CrossRef] [Green Version]
- Flato, G.; Marotzke, J.; Abiodun, B.; Braconnot, P.; Chou, S.C.; Collins, W.; Cox, P.; Driouech, F.; Emori, S.; Eyring, V.; et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (9); Cambridge University Press: Cambridge, UK, 2013; pp. 741–866. [Google Scholar]
- Hartmann, D.L.; Klein Tank, A.M.G.; Rusticucci, M.; Alexander, L.V.; Broönnimann, S.; Charabi, Y.; Dentener, F.J.; Dlugokencky, E.J.; Easterling, D.R.; Kaplan, A.; et al. Observations: Atmosphere and Surface. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; Volume 96, pp. 159–254. [Google Scholar]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Iguchi, T. The global precipitation measurement mission. Bull. Amer. Meteorol. Soci. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Munoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soci. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Huffman, G.J.; Stocker, E.F.; Bolvin, D.T.; Nelkin, E.J.; Jackson, T. GPM IMERG Final Precipitation L3 1 day 0.1 degree × 0.1 degree V06; Savtchenko, A., Ed.; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2019. Available online: https://doi.org/10.5067/gpm/imergdf/day/06 (accessed on 19 September 2020).
- European Centre for Medium-Range Weather Forecasts. Updated Monthly. ERA5 Reanalysis (0.25 Degree Latitude-Longitude Grid). Research Data Archive at the National Center for Atmospheric Research. Computational and Information Systems Laboratory. 2019. Available online: https://doi.org/10.5065/BH6N-5N20 (accessed on 19 September 2020).
- Kahn, B.H.; Irion, F.W.; Dang, V.T.; Manning, E.M.; Nasiri, S.L.; Naud, C.M.; Blaisdel, J.M.; Schreier, M.M.; Yue, Q.; Bowman, K.W.; et al. The Atmospheric Infrared Sounder Version 6 Cloud Products. Atoms. Chem. Phys. 2014, 1. [Google Scholar] [CrossRef] [Green Version]
- AIRS Science Team/Joao Teixeira. AIRS/Aqua L3 Monthly Standard Physical Retrieval (AIRS-only) 1 degree × 1 degree V006; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2013. Available online: https://disc.gsfc.nasa.gov/datasets/AIRS3STD_006/summary (accessed on 19 September 2020).
- Buzan, J.R.; Oleson, K.; Huber, M. Implementation of a suite of heat stress metrics within the Community Land Model version 4.5. Geosi. Model Dev. 2015, 8, 151–170. [Google Scholar] [CrossRef] [Green Version]
- Steadman, T.G. The assessment of sultriness, Part I: A temperature-humidity index based on human physiology and clothing science. J. Appl. Meteorol. 1979, 18. [Google Scholar] [CrossRef] [Green Version]
- Rothfusz, L.P. National Weather Service Technical Attachment (SR 90-24). 1990. Available online: https://www.weather.gov/media/wrh/online_publications/TAs/ta9024.pdf (accessed on 19 September 2020).
Experiment | Experiment Description | Experiment Duration |
---|---|---|
WRF-ERA | ERA-Interim driven WRF simulations | 2008–2017 |
WRF-PD | CESM RCP8.5 driven WRF Historical simulations | 2008–2017 |
WRF-MC | CESM RCP8.5 driven Mid-Century simulations | 2041–2050 |
November | Daily Mean T2 (°C) | 99th Percentile of T2 (°C) | # of Days Where T2 ≥ p99 of PD | |||
---|---|---|---|---|---|---|
Local Site | PD | MC | PD | MC | PD | MC |
Riyadh | 23.6 ± 0.8 | 25.1 ± 1.3 | 29.3 | 30.1 | 0.3 ± 0.7 | 1.2 ± 1.6 |
Jeddah | 29.1 ± 0.3 | 30.3 ± 0.4 | 31.8 | 33 | 0.3 ± 0.5 | 2.6 ± 1.6 |
Makkah | 27.4 ± 0.6 | 28.6 ± 0.6 | 30.5 | 32.5 | 0.3 ± 0.5 | 3.6 ± 2.1 |
Madinah | 24.5 ± 0.6 | 25.8 ± 1 | 28.4 | 30.9 | 0.3 ± 0.8 | 3.9 ± 2.4 |
Tabuk | 20 ± 0.9 | 21.3 ± 0.6 | 25.7 | 28.7 | 0.3 ± 0.5 | 2.5 ± 2.3 |
August | Daily Mean T2 (°C) | 99th Percentile of T2 (°C) | # of Days Where T2 ≥ p99 of PD | |||
Local Site | PD | MC | PD | MC | PD | MC |
Riyadh | 37.4 ± 0.5 | 38.7 ± 0.6 | 40.4 | 41.3 | 0.3 ± 0.5 | 4.4 ± 2.9 |
Jeddah | 32.8 ± 0.4 | 33.6 ± 0.3 | 34.7 | 35.7 | 0.3 ± 0.5 | 3 ± 2.3 |
Makkah | 32 ± 1.0 | 32.6 ± 0.7 | 35.8 | 37 | 0.3 ± 0.3 | 1.8 ± 1.7 |
Madinah | 34.6 ± 0.8 | 35.2 ± 0.5 | 39.5 | 39.7 | 0.3 ± 0.7 | 0.4 ± 0.6 |
Tabuk | 32.8 ± 0.8 | 34.1 ± 0.6 | 37.7 | 38.9 | 0.3 ± 0.5 | 1.9 ± 1.4 |
November | Daily Precipitation Rate [mm/day] | 99th Percentile of Daily Precipitation [mm/day] | # of Days Where Precipitation Rate ≥ p99 of PD | |||
---|---|---|---|---|---|---|
Local Site | PD | MC | PD | MC | PD | MC |
Riyadh | 0.9 ± 0.8 | 1.1 ± 1.2 | 20.1 | 29.6 | 0.3 ± 0.3 | 0.6 ± 0.7 |
Jeddah | 1.5 ± 1.2 | 0.9 ± 1.0 | 24.6 | 25.4 | 0.3 ± 0.4 | 0.3 ± 0.5 |
Makkah | 1.2 ± 0.7 | 1.0 ± 0.5 | 22.9 | 14.5 | 0.3 ± 0.3 | 0 ± 0 |
Madinah | 0.4 ± 0.2 | 0.5 ± 0.4 | 8.9 | 12.4 | 0.3 ± 0.5 | 0.5 ± 0.7 |
Tabuk | 0.5 ± 0.5 | 0.2 ± 0.3 | 16.2 | 6.2 | 0.3 ± 0.3 | 0.1 ± 0.2 |
August | Daily Precipitation Rate [mm/day] | 99th Percentile of Daily Precipitation [mm/day] | # of Days Where Precipitation Rates ≥ p99 of PD | |||
Local Site | PD | MC | PD | MC | PD | MC |
Riyadh | 0.02 ± 0.03 | 0.3 ± 0.4 | 0.42 | 8.72 | 0.3 ± 0.5 | 1 ± 1.1 |
Jeddah | 0.2 ± 0.3 | 0.8 ± 0.6 | 9.1 | 21.1 | 0.3 ± 0.7 | 1 ± 0.7 |
Makkah | 1.0 ± 1.4 | 1.8 ± 0.9 | 22.32 | 33.35 | 0.3 ± 0.5 | 0.8 ± 0.6 |
Madinah | 0.2 ± 0.3 | 0.6 ± 0.4 | 6.9 | 13.7 | 0.3 ± 0.5 | 1.1 ± 0.5 |
Tabuk | 0.02 ± 0.03 | 0.1 ± 0.1 | 0.9 | 4.64 | 0.3 ± 0.5 | 0.6 ± 0.6 |
August | Mean of Daily Maximum August NWSHeat Index (AHI) [°C] | Frequency of Days Daily Max AHI > 54 °C | ||
---|---|---|---|---|
Local Site | PD | MC | PD | MC |
Riyadh | 43.5 ± 0.8 | 45.6 ± 0.8 | 0 | 0 |
Jeddah | 46.6 ± 1.1 | 44.1 ± 1.1 | 0.1 ± 0.2 | 1.5 ± 1.9 |
Makkah | 42 ± 1.2 | 44.3 ± 0.7 | 0 | 0 |
Madinah | 42.4 ± 1.2 | 44 ± 0.8 | 0 | 0 |
Tabuk | 38.9 ± 1.2 | 40.6 ± 1 | 0 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komurcu, M.; Schlosser, C.A.; Alshehri, I.; Alshahrani, T.; Alhayaza, W.; AlSaati, A.; Strzepek, K. Mid-Century Changes in the Mean and Extreme Climate in the Kingdom of Saudi Arabia and Implications for Water Harvesting and Climate Adaptation. Atmosphere 2020, 11, 1068. https://doi.org/10.3390/atmos11101068
Komurcu M, Schlosser CA, Alshehri I, Alshahrani T, Alhayaza W, AlSaati A, Strzepek K. Mid-Century Changes in the Mean and Extreme Climate in the Kingdom of Saudi Arabia and Implications for Water Harvesting and Climate Adaptation. Atmosphere. 2020; 11(10):1068. https://doi.org/10.3390/atmos11101068
Chicago/Turabian StyleKomurcu, Muge, C. Adam Schlosser, Ibtihal Alshehri, Tariq Alshahrani, Waleed Alhayaza, Adnan AlSaati, and Kenneth Strzepek. 2020. "Mid-Century Changes in the Mean and Extreme Climate in the Kingdom of Saudi Arabia and Implications for Water Harvesting and Climate Adaptation" Atmosphere 11, no. 10: 1068. https://doi.org/10.3390/atmos11101068