The Aerodynamic Gradient Method: Implications of Non-Simultaneous Measurements at Alternating Heights
Abstract
1. Introduction
2. Measurement Campaigns
3. The Aerodynamic Gradient Method
4. Simulation of Discontinuous AGM
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hensen, A.; Nemitz, E.; Flynn, M.J.; Blatter, A.; Jones, S.K.; Sørensen, L.L.; Hensen, B.; Pryor, S.C.; Jensen, B.; Otjes, R.P.; et al. Inter-comparison of ammonia fluxes obtained using the Relaxed. Biogeosciences 2009, 6, 2575–2588. [Google Scholar] [CrossRef]
- Spirig, C.; Flechard, C.R.; Ammann, C.; Neftel, A. The annual ammonia budget of fertilised cut grassland-Part 1: Micrometeorological flux measurements and emissions after slurry application. Biogeosciences 2010, 7, 521–536. [Google Scholar] [CrossRef]
- Sutton, M.A.; Milford, C.; Nemitz, E.; Theobald, M.R.; Hill, P.W.; Fowler, D.; Schjoerring, J.K.; Mattsson, M.E.; Nielsen, K.H.; Husted, S.; et al. Biosphere-atmosphere interactions of ammonia with grasslands: Experimental strategy and results from a new European initiative. Plant Soil 2001, 228, 131–145. [Google Scholar] [CrossRef]
- Nelson, A.J.; Lichiheb, N.; Koloutsou-Vakakis, S.; Rood, M.J.; Heuer, M.; Myles, L.T.; Joo, E.; Miller, J.; Bernacchi, C. Ammonia flux measurements above a corn canopy using relaxed eddy accumulation and a flux gradient system. Agric. For. Meteorol. 2019, 264, 104–113. [Google Scholar] [CrossRef]
- Kruit, R.R.W.; van Pul, W.A.J.; Otjes, R.P.; Hofschreuder, P.; Jacobs, A.F.G.; Holtslag, A.A.M. Ammonia fluxes and derived canopy compensation points over non-fertilized agricultural grassland in The Netherlands using the new gradient ammonia-high accuracy-monitor (GRAHAM). Atmos. Environ. 2007, 41, 1275–1287. [Google Scholar] [CrossRef]
- Tanimoto, H.; Kameyama, S.; Iwata, T.; Inomata, S.; Omori, Y. Measurement of air-sea exchange of dimethyl sulfide and acetone by PTR-MS coupled with gradient flux technique. Environ. Sci. Technol. 2014, 48, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Griffis, T.J.; Hu, C.; Baker, J.M.; Wood, J.D.; Millet, D.B.; Erickson, M.; Yu, Z.; Deventer, M.J.; Winker, C.; Chen, Z. Tall Tower Ammonia Observations and Emission Estimates in the U.S. Midwest. J. Geophys. Res. Biogeosciences 2019, 124, 3432–3447. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, M.; Xiao, W.; Wang, W.; Zhang, Z.; Yu, Z.; Xiao, Q.; Cao, Z.; Xu, J.; Zhang, X.; et al. An evaluation of the flux-gradient and the eddy covariance method to measure CH4, CO2, and H2O fluxes from small ponds. Agric. For. Meteorol. 2019, 275, 255–264. [Google Scholar] [CrossRef]
- Griffith, D.W.T.; Galle, B. Flux measurements of NH3, N2O and CO2 using dual beam FTIR spectroscopy and the flux–gradient technique. Atmos. Environ. 2000, 34, 1087–1098. [Google Scholar] [CrossRef]
- Bai, M.; Suter, H.; Lam, S.K.; Flesch, T.K.; Chen, D. Comparison of slant open-path flux gradient and static closed chamber techniques to measure soil N2O emissions. Atmos. Meas. Tech. 2019, 12, 1095–1102. [Google Scholar] [CrossRef]
- Omori, Y.; Tanimoto, H.; Inomata, S.; Ikeda, K.; Iwata, T.; Kameyama, S.; Uematsu, M.; Gamo, T.; Ogawa, H.; Furuya, K. Sea-to-air flux of dimethyl sulfide in the South and North Pacific Ocean as measured by proton transfer reaction-mass spectrometry coupled with the gradient flux technique. J. Geophys. Res. 2017, 122, 7216–7231. [Google Scholar] [CrossRef]
- Milford, C.; Theobald, M.R.; Nemitz, E.; Hargreaves, K.J.; Horvath, L.; Raso, J.; Dämmgen, U.; Neftel, A.; Jones, S.K.; Hensen, A.; et al. Ammonia fluxes in relation to cutting and fertilization of an intensively managed grassland derived from an inter-comparison of gradient measurements. Biogeosciences 2009, 6, 819–834. [Google Scholar] [CrossRef]
- Loubet, B.; Decuq, C.; Personne, E.; Massad, R.S.; Flechard, C.; Fanucci, O.; Mascher, N.; Gueudet, J.C.; Masson, S.; Durand, B.; et al. Investigating the stomatal, cuticular and soil ammonia fluxes over a growing tritical crop under high acidic loads. Biogeosciences 2012, 9, 1537–1552. [Google Scholar] [CrossRef]
- Personne, E.; Tardy, F.; Génermont, S.; Decuq, C.; Gueudet, J.C.; Mascher, N.; Durand, B.; Masson, S.; Lauransot, M.; Fléchard, C.; et al. Investigating sources and sinks for ammonia exchanges between the atmosphere and a wheat canopy following slurry application with trailing hose. Agric. For. Meteorol. 2015, 207, 11–23. [Google Scholar] [CrossRef]
- Wolff, V.; Trebs, I.; Ammann, C.; Meixner, F.X. Aerodynamic gradient measurements of the NH3-HNO3-NH4NO3 triad using a wet chemical instrument: An analysis of precision requirements and flux errors. Atmos. Meas. Tech. 2010, 3, 187–208. [Google Scholar] [CrossRef]
- Kamp, J.N.; Häni, C.; Nyord, T.; Feilberg, A.; Sørensen, L.L. Calculation of NH3 emissions, evaluation of backward Lagrangian stochastic dispersion model and aerodynamic gradient method. Agric. For. Meteorol. under review.
- Kamp, J.N.; Chowdhury, A.; Adamsen, A.P.S.; Feilberg, A. Negligible influence of livestock contaminants and sampling system on ammonia measurements with cavity ring-down spectroscopy. Atmos. Meas. Tech. 2019, 12, 2837–2850. [Google Scholar] [CrossRef]
- Edwards, G.C.; Rasmussen, P.E.; Schroeder, W.H.; Wallace, D.M.; Halfpenny-Mitchell, L.; Dias, G.M.; Kemp, R.J.; Ausma, S. Development and evaluation of a sampling system to determine gaseous Mercury fluxes using an aerodynamic micrometeorological gradient method. J. Geophys. Res. Atmos. 2005, 110, 1–11. [Google Scholar] [CrossRef]
- Businger, J.A. Evaluation of the accuracy with which dry deposition can be measured with current micrometeorological techniques. J. Clim. Appl. Meteorol. 1986, 25, 1100–1124. [Google Scholar] [CrossRef]
- Dyer, A.J.; Hicks, B.B. Flux-gradient relationships in the constant flux layer. Q. J. R. Meteorol. Soc. 1970, 96, 715–721. [Google Scholar] [CrossRef]
AGM | 7.5 min UH | 7.5 min LH | 5 min UH | 5 min LH | |
---|---|---|---|---|---|
May | 8.7 | 8.7 | 8.7 | 9.1 | 8.5 |
August | 13.1 | 12.9 | 13.2 | 13.1 | 13.2 |
7.5 min UH | 7.5 min LH | 5 min UH | 5 min LH | |
---|---|---|---|---|
May | −0.20 | −0.12 | 3.62 | −3.26 |
August | −2.13 | 0.50 | −0.08 | 0.37 |
7.5 min UH | 7.5 min LH | 5 min UH | 5 min LH | |
---|---|---|---|---|
May | −6.78 | 3.91 | 0.41 | −5.01 |
August | −3.61 | 4.14 | −3.11 | 2.73 |
All Data | First 48 h | After 48 h | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Interval | Slope | Intercept | R2 | Slope | Intercept | R2 | Slope | Intercept | R2 | |
M A Y | 7.5 min UH | 1.02 ± 0.02 | −0.01 ± 0.04 | 0.91 | 0.98 ± 0.02 | 0.00 ± 0.01 | 0.93 | 1.03 ± 0.04 | −0.01 ± 0.1 | 0.87 |
7.5 min LH | 0.99 ± 0.02 | 0.00 ± 0.03 | 0.93 | 1.02 ± 0.02 | −0.01 ± 0.01 | 0.95 | 0.99 ± 0.02 | 0.00 ± 0.03 | 0.90 | |
5 min UH | 0.95 ± 0.01 | 0.01 ± 0.02 | 0.96 | 0.98 ± 0.01 | 0.00 ± 0.01 | 0.97 | 0.95 ± 0.03 | 0.02 ± 0.07 | 0.94 | |
5 min LH | 1.03 ± 0.01 | 0.00 ± 0.02 | 0.96 | 1.01 ± 0.01 | 0.00 ± 0.01 | 0.97 | 1.02 ± 0.03 | 0.03 ± 0.08 | 0.94 | |
A U G | 7.5 min UH | 0.96 ± 0.01 | 0.03 ± 0.03 | 0.95 | 0.97 ± 0.01 | 0.00 ± 0.00 | 0.98 | 0.94 ± 0.03 | 0.01 ± 0.15 | 0.91 |
7.5 min LH | 1.01 ± 0.01 | −0.01 ± 0.03 | 0.96 | 1.03 ± 0.01 | 0.00 ± 0.00 | 0.98 | 1.03 ± 0.03 | −0.09 ± 0.16 | 0.92 | |
5 min UH | 1.00 ± 0.01 | −0.00 ± 0.03 | 0.95 | 0.99 ± 0.01 | 0.00 ± 0.00 | 0.99 | 1.00 ± 0.03 | −0.01 ± 0.16 | 0.91 | |
5 min LH | 1.01 ± 0.01 | −0.01 ± 0.03 | 0.96 | 1.01 ± 0.01 | 0.00 ± 0.00 | 0.99 | 1.02 ± 0.03 | −0.05 ± 0.15 | 0.92 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamp, J.N.; Häni, C.; Nyord, T.; Feilberg, A.; Sørensen, L.L. The Aerodynamic Gradient Method: Implications of Non-Simultaneous Measurements at Alternating Heights. Atmosphere 2020, 11, 1067. https://doi.org/10.3390/atmos11101067
Kamp JN, Häni C, Nyord T, Feilberg A, Sørensen LL. The Aerodynamic Gradient Method: Implications of Non-Simultaneous Measurements at Alternating Heights. Atmosphere. 2020; 11(10):1067. https://doi.org/10.3390/atmos11101067
Chicago/Turabian StyleKamp, Jesper Nørlem, Christoph Häni, Tavs Nyord, Anders Feilberg, and Lise Lotte Sørensen. 2020. "The Aerodynamic Gradient Method: Implications of Non-Simultaneous Measurements at Alternating Heights" Atmosphere 11, no. 10: 1067. https://doi.org/10.3390/atmos11101067
APA StyleKamp, J. N., Häni, C., Nyord, T., Feilberg, A., & Sørensen, L. L. (2020). The Aerodynamic Gradient Method: Implications of Non-Simultaneous Measurements at Alternating Heights. Atmosphere, 11(10), 1067. https://doi.org/10.3390/atmos11101067