The Aerodynamic Gradient Method: Implications of Non-Simultaneous Measurements at Alternating Heights
Abstract
:1. Introduction
2. Measurement Campaigns
3. The Aerodynamic Gradient Method
4. Simulation of Discontinuous AGM
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hensen, A.; Nemitz, E.; Flynn, M.J.; Blatter, A.; Jones, S.K.; Sørensen, L.L.; Hensen, B.; Pryor, S.C.; Jensen, B.; Otjes, R.P.; et al. Inter-comparison of ammonia fluxes obtained using the Relaxed. Biogeosciences 2009, 6, 2575–2588. [Google Scholar] [CrossRef] [Green Version]
- Spirig, C.; Flechard, C.R.; Ammann, C.; Neftel, A. The annual ammonia budget of fertilised cut grassland-Part 1: Micrometeorological flux measurements and emissions after slurry application. Biogeosciences 2010, 7, 521–536. [Google Scholar] [CrossRef] [Green Version]
- Sutton, M.A.; Milford, C.; Nemitz, E.; Theobald, M.R.; Hill, P.W.; Fowler, D.; Schjoerring, J.K.; Mattsson, M.E.; Nielsen, K.H.; Husted, S.; et al. Biosphere-atmosphere interactions of ammonia with grasslands: Experimental strategy and results from a new European initiative. Plant Soil 2001, 228, 131–145. [Google Scholar] [CrossRef]
- Nelson, A.J.; Lichiheb, N.; Koloutsou-Vakakis, S.; Rood, M.J.; Heuer, M.; Myles, L.T.; Joo, E.; Miller, J.; Bernacchi, C. Ammonia flux measurements above a corn canopy using relaxed eddy accumulation and a flux gradient system. Agric. For. Meteorol. 2019, 264, 104–113. [Google Scholar] [CrossRef]
- Kruit, R.R.W.; van Pul, W.A.J.; Otjes, R.P.; Hofschreuder, P.; Jacobs, A.F.G.; Holtslag, A.A.M. Ammonia fluxes and derived canopy compensation points over non-fertilized agricultural grassland in The Netherlands using the new gradient ammonia-high accuracy-monitor (GRAHAM). Atmos. Environ. 2007, 41, 1275–1287. [Google Scholar] [CrossRef]
- Tanimoto, H.; Kameyama, S.; Iwata, T.; Inomata, S.; Omori, Y. Measurement of air-sea exchange of dimethyl sulfide and acetone by PTR-MS coupled with gradient flux technique. Environ. Sci. Technol. 2014, 48, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Griffis, T.J.; Hu, C.; Baker, J.M.; Wood, J.D.; Millet, D.B.; Erickson, M.; Yu, Z.; Deventer, M.J.; Winker, C.; Chen, Z. Tall Tower Ammonia Observations and Emission Estimates in the U.S. Midwest. J. Geophys. Res. Biogeosciences 2019, 124, 3432–3447. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, M.; Xiao, W.; Wang, W.; Zhang, Z.; Yu, Z.; Xiao, Q.; Cao, Z.; Xu, J.; Zhang, X.; et al. An evaluation of the flux-gradient and the eddy covariance method to measure CH4, CO2, and H2O fluxes from small ponds. Agric. For. Meteorol. 2019, 275, 255–264. [Google Scholar] [CrossRef]
- Griffith, D.W.T.; Galle, B. Flux measurements of NH3, N2O and CO2 using dual beam FTIR spectroscopy and the flux–gradient technique. Atmos. Environ. 2000, 34, 1087–1098. [Google Scholar] [CrossRef]
- Bai, M.; Suter, H.; Lam, S.K.; Flesch, T.K.; Chen, D. Comparison of slant open-path flux gradient and static closed chamber techniques to measure soil N2O emissions. Atmos. Meas. Tech. 2019, 12, 1095–1102. [Google Scholar] [CrossRef] [Green Version]
- Omori, Y.; Tanimoto, H.; Inomata, S.; Ikeda, K.; Iwata, T.; Kameyama, S.; Uematsu, M.; Gamo, T.; Ogawa, H.; Furuya, K. Sea-to-air flux of dimethyl sulfide in the South and North Pacific Ocean as measured by proton transfer reaction-mass spectrometry coupled with the gradient flux technique. J. Geophys. Res. 2017, 122, 7216–7231. [Google Scholar] [CrossRef]
- Milford, C.; Theobald, M.R.; Nemitz, E.; Hargreaves, K.J.; Horvath, L.; Raso, J.; Dämmgen, U.; Neftel, A.; Jones, S.K.; Hensen, A.; et al. Ammonia fluxes in relation to cutting and fertilization of an intensively managed grassland derived from an inter-comparison of gradient measurements. Biogeosciences 2009, 6, 819–834. [Google Scholar] [CrossRef] [Green Version]
- Loubet, B.; Decuq, C.; Personne, E.; Massad, R.S.; Flechard, C.; Fanucci, O.; Mascher, N.; Gueudet, J.C.; Masson, S.; Durand, B.; et al. Investigating the stomatal, cuticular and soil ammonia fluxes over a growing tritical crop under high acidic loads. Biogeosciences 2012, 9, 1537–1552. [Google Scholar] [CrossRef] [Green Version]
- Personne, E.; Tardy, F.; Génermont, S.; Decuq, C.; Gueudet, J.C.; Mascher, N.; Durand, B.; Masson, S.; Lauransot, M.; Fléchard, C.; et al. Investigating sources and sinks for ammonia exchanges between the atmosphere and a wheat canopy following slurry application with trailing hose. Agric. For. Meteorol. 2015, 207, 11–23. [Google Scholar] [CrossRef]
- Wolff, V.; Trebs, I.; Ammann, C.; Meixner, F.X. Aerodynamic gradient measurements of the NH3-HNO3-NH4NO3 triad using a wet chemical instrument: An analysis of precision requirements and flux errors. Atmos. Meas. Tech. 2010, 3, 187–208. [Google Scholar] [CrossRef] [Green Version]
- Kamp, J.N.; Häni, C.; Nyord, T.; Feilberg, A.; Sørensen, L.L. Calculation of NH3 emissions, evaluation of backward Lagrangian stochastic dispersion model and aerodynamic gradient method. Agric. For. Meteorol. under review.
- Kamp, J.N.; Chowdhury, A.; Adamsen, A.P.S.; Feilberg, A. Negligible influence of livestock contaminants and sampling system on ammonia measurements with cavity ring-down spectroscopy. Atmos. Meas. Tech. 2019, 12, 2837–2850. [Google Scholar] [CrossRef] [Green Version]
- Edwards, G.C.; Rasmussen, P.E.; Schroeder, W.H.; Wallace, D.M.; Halfpenny-Mitchell, L.; Dias, G.M.; Kemp, R.J.; Ausma, S. Development and evaluation of a sampling system to determine gaseous Mercury fluxes using an aerodynamic micrometeorological gradient method. J. Geophys. Res. Atmos. 2005, 110, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Businger, J.A. Evaluation of the accuracy with which dry deposition can be measured with current micrometeorological techniques. J. Clim. Appl. Meteorol. 1986, 25, 1100–1124. [Google Scholar] [CrossRef] [Green Version]
- Dyer, A.J.; Hicks, B.B. Flux-gradient relationships in the constant flux layer. Q. J. R. Meteorol. Soc. 1970, 96, 715–721. [Google Scholar] [CrossRef]
AGM | 7.5 min UH | 7.5 min LH | 5 min UH | 5 min LH | |
---|---|---|---|---|---|
May | 8.7 | 8.7 | 8.7 | 9.1 | 8.5 |
August | 13.1 | 12.9 | 13.2 | 13.1 | 13.2 |
7.5 min UH | 7.5 min LH | 5 min UH | 5 min LH | |
---|---|---|---|---|
May | −0.20 | −0.12 | 3.62 | −3.26 |
August | −2.13 | 0.50 | −0.08 | 0.37 |
7.5 min UH | 7.5 min LH | 5 min UH | 5 min LH | |
---|---|---|---|---|
May | −6.78 | 3.91 | 0.41 | −5.01 |
August | −3.61 | 4.14 | −3.11 | 2.73 |
All Data | First 48 h | After 48 h | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Interval | Slope | Intercept | R2 | Slope | Intercept | R2 | Slope | Intercept | R2 | |
M A Y | 7.5 min UH | 1.02 ± 0.02 | −0.01 ± 0.04 | 0.91 | 0.98 ± 0.02 | 0.00 ± 0.01 | 0.93 | 1.03 ± 0.04 | −0.01 ± 0.1 | 0.87 |
7.5 min LH | 0.99 ± 0.02 | 0.00 ± 0.03 | 0.93 | 1.02 ± 0.02 | −0.01 ± 0.01 | 0.95 | 0.99 ± 0.02 | 0.00 ± 0.03 | 0.90 | |
5 min UH | 0.95 ± 0.01 | 0.01 ± 0.02 | 0.96 | 0.98 ± 0.01 | 0.00 ± 0.01 | 0.97 | 0.95 ± 0.03 | 0.02 ± 0.07 | 0.94 | |
5 min LH | 1.03 ± 0.01 | 0.00 ± 0.02 | 0.96 | 1.01 ± 0.01 | 0.00 ± 0.01 | 0.97 | 1.02 ± 0.03 | 0.03 ± 0.08 | 0.94 | |
A U G | 7.5 min UH | 0.96 ± 0.01 | 0.03 ± 0.03 | 0.95 | 0.97 ± 0.01 | 0.00 ± 0.00 | 0.98 | 0.94 ± 0.03 | 0.01 ± 0.15 | 0.91 |
7.5 min LH | 1.01 ± 0.01 | −0.01 ± 0.03 | 0.96 | 1.03 ± 0.01 | 0.00 ± 0.00 | 0.98 | 1.03 ± 0.03 | −0.09 ± 0.16 | 0.92 | |
5 min UH | 1.00 ± 0.01 | −0.00 ± 0.03 | 0.95 | 0.99 ± 0.01 | 0.00 ± 0.00 | 0.99 | 1.00 ± 0.03 | −0.01 ± 0.16 | 0.91 | |
5 min LH | 1.01 ± 0.01 | −0.01 ± 0.03 | 0.96 | 1.01 ± 0.01 | 0.00 ± 0.00 | 0.99 | 1.02 ± 0.03 | −0.05 ± 0.15 | 0.92 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamp, J.N.; Häni, C.; Nyord, T.; Feilberg, A.; Sørensen, L.L. The Aerodynamic Gradient Method: Implications of Non-Simultaneous Measurements at Alternating Heights. Atmosphere 2020, 11, 1067. https://doi.org/10.3390/atmos11101067
Kamp JN, Häni C, Nyord T, Feilberg A, Sørensen LL. The Aerodynamic Gradient Method: Implications of Non-Simultaneous Measurements at Alternating Heights. Atmosphere. 2020; 11(10):1067. https://doi.org/10.3390/atmos11101067
Chicago/Turabian StyleKamp, Jesper Nørlem, Christoph Häni, Tavs Nyord, Anders Feilberg, and Lise Lotte Sørensen. 2020. "The Aerodynamic Gradient Method: Implications of Non-Simultaneous Measurements at Alternating Heights" Atmosphere 11, no. 10: 1067. https://doi.org/10.3390/atmos11101067
APA StyleKamp, J. N., Häni, C., Nyord, T., Feilberg, A., & Sørensen, L. L. (2020). The Aerodynamic Gradient Method: Implications of Non-Simultaneous Measurements at Alternating Heights. Atmosphere, 11(10), 1067. https://doi.org/10.3390/atmos11101067