Aerosol Characteristics in the Near-Ground Layer of the Atmosphere of the City of Tomsk in Different Types of Aerosol Weather
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of Measurement Site
2.2. Instrumentation and Techniques
- 2000–2017 for the angular scattering coefficient at the angle of 45°, the mass concentrations of aerosol and absorbing substance (soot, equivalent black carbon), the number, concentration, and particle size distribution function, the parameter of condensation activity;
- 2010–2017 for the angular scattering coefficients at small angles (1.2° to 20°);
- 2013–2017 for the size distribution of the absorbing substance (equivalent black carbon); and
- 2000–2006 for the aerosol extinction coefficients.
2.3. Aerosol Weather Classification Principle
3. Results and Discussion
3.1. Particle Size Distribution Function
3.1.1. A Technique for Correcting the Optical Counter Data Using the Aureole Scattering Phase Function Data
3.1.2. Analysis of The Parameters of The Particle Size Distributions in Different Types of Aerosol Weather
3.2. Analysis of the Size Distribution of the Absorbing Substance (Equivalent Black Carbon) Concentration in Different Types of Aerosol Weather
3.3. Aerosol Hygroscopic Properties in Different Types of Aerosol Weather
3.4. Spectral Transparency of The Near-Ground Atmosphere
3.5. General Remarks
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Season | Type of Aerosol Weather | Particle Size Distribution Function | Ratio of Angular Scattering Coefficients | |||||||
---|---|---|---|---|---|---|---|---|---|---|
rsub, μm | After Correction by Angular Scattering Coefficient | Before Correction | Nf/Nc | I(20°)/I(1.2°) | ||||||
rc, μm | lnSc | Vc/Vsub | rc, μm | lnSc | Vc/Vsub | |||||
Spring | Background | 0.03 (0.003) | 3.8 | 0.95 | 0.18 | 3.25 | 0.68 | 0.04 | 68 (50) | 0.068 (0.050) |
Haze-S | 0.039 (0.001) | 3.9 | 0.95 | 0.45 | 3.76 | 0.71 | 0.11 | 64 (51) | 0.056 (0.040) | |
Smoke haze | 0.05 (0.006) | 4.1 | 0.95 | 0.38 | 3.79 | 0.84 | 0.10 | 97 (57) | 0.116 (0.107) | |
Smog | 0.036 (0.003) | 4.1 | 0.95 | 0.14 | 4.14 | 0.81 | 0.04 | 100 (43) | 0.114 (0.072) | |
Summer | Background | 0.026 (0.005) | 3.5 | 0.90 | 0.12 | 3.24 | 0.64 | 0.024 | 60 (39) | 0.053 (0.023) |
Haze-S | 0.032 (0.011) | 3.6 | 0.87 | 0.38 | 3.20 | 0.60 | 0.06 | 48 (34) | 0.039 (0.016) | |
Smoke haze | 0.086 (0.012) | 3.3 | 0.90 | 0.16 | 2.53 | 0.62 | 0.313 | 93 (48) | 0.172 (0.106) | |
Smog | 0.042 (0.005) | 3.3 | 0.90 | 0.25 | 2.96 | 0.62 | 0.07 | 71 (33) | 0.068 (0.047) | |
Autumn | Background | 0.042 (0.003) | 3.2 | 0.90 | 0.26 | 2.79 | 0.60 | 0.06 | 83 (70) | 0.078 (0.035) |
Haze-S | 0.047 (0.007) | 3.4 | 0.90 | 0.48 | 3.09 | 0.63 | 0.15 | 75 (65) | 0.066 (0.044) | |
Smoke haze | 0.102 (0.02) | 2.8 | 0.95 | 0.28 | 3.58 | 0.93 | 0.35 | 96 (72) | 0.190 (0.078) | |
Smog | 0.71 (0.011) | 3.2 | 0.90 | 0.55 | 3.24 | 0.66 | 0.29 | 78 (59) | 0.101 (0.078) | |
Winter | Background | 0.035 (0.004) | 3.0 | 1.25 | 0.1 | 2.95 | 0.77 | 0.03 | 108 (86) | 0.150 (0.068) |
Haze-S | 0.0435 (0.005) | 3.0 | 1.25 | 0.2 | 3.52 | 0.84 | 0.068 | 117 (128) | 0.135 (0.061) | |
Smoke haze | 0.043 (0.010) | 3.0 | 1.15 | 0.12 | 3.25 | 0.80 | 0.053 | 107 (45) | 0.154 (0.062) | |
Smog | 0.056 (0.008) | 3.1 | 1.3 | 0.19 | 3.61 | 0.93 | 0.094 | 131 (115) | 0.167 (0.047) |
Season | Type of Aerosol Weather | BC Size Distribution | Extinction Coefficients, Mm−1 | α | B | γ | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
DBC, nm | SBC | λ = 0.45 | λ = 0.55 | λ = 0.69 | λ = 1.06 | λ = 3.9 | |||||
Spring | Background | 175 (18.5) | 0.64 (0.16) | 204 (104) | 159 (78) | 122 (65) | 93 (56) | 69 (51) | 1,07 (0,45) | 96 (56) | 0.426 (0.12) |
Haze-S | 167 (16) | 0.67 (0.13) | 227 (113) | 180 (89) | 140 (78) | 114 (70) | 89 (69) | 1,00 (0,42) | 115 (71) | 0.305 (0.14) | |
Smoke haze | 192 (3.2) | 0.52 (0.05) | 367 (192) | 281 (148) | 204 (108) | 128 (67) | 78 (56) | 1,14 (0,36) | 161 (79) | 0.183 (0.040) | |
Smog | 175 (17.7) | 0.56 (0.11) | 373 (145) | 289 (114) | 218 (92) | 152 (79) | 115 (79) | 1,31 (0,41) | 138 (70) | 0.130 (0.060) | |
Summer | Background | 173 (18.1) | 0.66 (0.12) | 202 (76) | 166 (62) | 124 (52) | 95 (44) | 64 (26) | 1,02 (0,29) | 98 (45) | 0.230 (0.12) |
Haze-S | 163 (14.4) | 0.63 (0.11) | 213 (71) | 172 (58) | 134 (47) | 106 (41) | 76 (31) | 0,90 (0,27) | 109 (41) | 0.215 (0.10) | |
Smoke haze | 182 (20.4) | 0.71 (0.10) | 336 (129) | 268 (111) | 192 (77) | 135 (50) | 82 (28) | 1,15 (0,15) | 118 (28) | 0.066 (0.060) | |
Smog | 170 (20.5) | 0.72 (0.08) | 276 (46) | 215 (36) | 158 (21) | 117 (32) | 75 (15) | 1,17 (0,32) | 139 (51) | – | |
Autumn | Background | 169 (15.6) | 0.65 (0.09) | 237 (113) | 193 (85) | 150 (69) | 110 (62) | 85 (44) | 1,00 (0,38) | 116 (62) | 0.305 (0.16) |
Haze-S | 168 (13.6) | 0.61 (0.08) | 225 (113) | 180 (90) | 146 (73) | 118 (64) | 90 (46) | 0,81 (0,40) | 122 (64) | 0.302 (0.12) | |
Smoke haze | 178 (17.2) | 0.74 (0.10) | 434 (308) | 381 (295) | 283 (221) | 155 (92) | 86 (34) | 1,06 (0,33) | 175 (82) | 0.203 (0.063) | |
Smog | 167 (36) | 0.69 (0.15) | 386 (184) | 310 (157) | 238 (121) | 164 (79) | 110 (51) | 1,21 (0,35) | 172 (108) | 0.222 (0.082) | |
Winter | Background | 199 (24.8) | 0.60 (0.15) | – | – | – | – | – | – | – | 0.301 (0.11) |
Haze-S | 186 (24) | 0.65 (0.15) | – | – | – | – | – | – | – | 0.285 (0.11) | |
Smoke haze | 218 (7.10) | 0.55 (0.05) | – | – | – | – | – | – | – | 0.226 (0.061) | |
Smog | 188 (29) | 0.67 (0.14) | – | – | – | – | – | – | – | 0.216 (0.079) |
References
- Rosenberg, G.V. The properties of an atmospheric aerosol from optical data. Izv. Acad. Sci. USSR Atmos. Ocean. Phys. 1967, 3, 545–552. [Google Scholar]
- Seinfield, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2006. [Google Scholar]
- Haywood, J.; Boucher, O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys. 2000, 38, 513–543. [Google Scholar] [CrossRef]
- Andrews, E.; Sheridan, P.J.; Ogren, J.A. Seasonal differences in the vertical profiles of aerosol optical properties over rural Oklahoma. Atmos. Chem. Phys. 2011, 11, 10661–10676. [Google Scholar] [CrossRef] [Green Version]
- Jaenicke, R. Atmospheric aerosol and global climate. J. Aerosol Sci. 1980, 11, 577–588. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. IPCC Fifth Assessment Report: Climate Change. 2013. Available online: http://www.ipcc.ch/report/ar5/ (accessed on 11 November 2019).
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar] [CrossRef] [Green Version]
- Hansen, J.; Sato, M.; Ruedy, R.; Nazarenko, L.; Lacis, A.; Schmidt, G.A.; Russell, G.; Aleinov, I.; Bauer, M.; Bauer, S.; et al. Efficacy of climate forcings. J. Geophys. Res. 2005, 110, D18104. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Yu, H.; Chin, Y.; Feingold, M.; Remer, G.; Anderson, L.; Balkanski, Y.; Bellouin, Y.; Boucher, O.; Christopher, S.; et al. A review of measurement based assessments of the aerosol direct radiative effect and forcing. Atmos. Chem. Phys. 2006, 6, 613–666. [Google Scholar] [CrossRef] [Green Version]
- Bates, T.S.; Anderson, T.L.; Baynard, T.; Bond, T.; Boucher, O.; Carmichael, G.; Clarke, A.; Erlick, C.; Guo, H.; Horowitz, L.; et al. Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: Estimates based on in-situ chemical and optical measurements and chemical transport modeling. Atmos. Chem. Phys. 2006, 6, 1657–1732. [Google Scholar] [CrossRef] [Green Version]
- Nasrtdinov, I.M.; Zhuravleva, T.B.; Chesnokova, T.Y. Estimation of direct radiative effects of background and smoke aerosol in the IR spectral region for Siberian summer conditions. Atmos. Ocean Opt. 2018, 31, 317–323. [Google Scholar] [CrossRef]
- Gorchakov, G.I. The light scattering matrix and types of optical weather. Izv. Acad. Sci. USSR Atmos. Ocean. Phys. 1973, 9, 113–116. [Google Scholar]
- Panchenko, M.V.; Pkhalagov, Y.A.; Rakhimov, R.F.; Sakerin, S.M.; Belan, B.D. Geophysical factors of the aerosol weather formation in the Western Siberia. Atmos. Ocean Opt. 1999, 12, 883–894. [Google Scholar]
- Panchenko, M.V.; Pol’kin, V.V.; Polkin, V.V.; Kozlov, V.S.; Yausheva, E.P.; Shmargunov, V.P. The size distribution of the “dry matter” of particles in the surface air layer in suburbs of Tomsk within the empirical classification of “aerosol weather” types. Atmos. Ocean Opt. 2019, 32, 655–662. [Google Scholar] [CrossRef]
- Online Monitoring Aerosol Station. Available online: http://aerosol.iao.ru (accessed on 11 November 2019).
- Panchenko, M.V.; Pol’kin, V.V. Microstructure of tropospheric aerosol in Siberia as judged from photoelectric particle-counter measurements. Atmos. Ocean Opt. 2001, 14, 478–488. [Google Scholar]
- Kozlov, V.S.; Shmargunov, V.P.; Panchenko, M.V.; Chernov, D.G.; Kozlov, A.S.; Malyshkin, S.B. Seasonal variability of Black Carbon size distribution in the atmospheric aerosol. Russ. Phys. J. 2016, 58, 1804–1810. [Google Scholar] [CrossRef]
- Kozlov, V.S.; Shmargunov, V.P.; Panchenko, M.V. Modified aethalometer for monitoring of black carbon concentration in atmospheric aerosol and technique for correction of the spot loading effect. Proceed. SPIE 2016. [Google Scholar] [CrossRef]
- Pkhalagov, Y.A.; Uzhegov, V.N.; Shchelkanov, N.N. Automated multiwave meter of spectral transmission of the ground layer of the atmosphere. Atmos. Ocean Opt. 1992, 5, 423–425. [Google Scholar]
- Panchenko, M.V.; Sviridenkov, M.A.; Terpugova, S.A.; Kozlov, V.S. Active spectral nephelometry as a method for the study of submicrometer atmospheric aerosols. Atmos. Ocean Opt. 2004, 17, 378–386. [Google Scholar]
- Kozlov, V.S.; Panchenko, M.V.; Yausheva, E.P. Mass fraction of Black Carbon in submicron aerosol as an indicator of influence of smokes from remote forest fires in Siberia. Atmos. Environ. 2008, 42, 2611–2620. [Google Scholar] [CrossRef]
- Gorchakov, G.I.; Yemilenko, A.S.; Sviridenkov, M.A. One-parameter model of aerosol at the surface. Izv. Acad. Sci. USSR Atmos. Ocean. Phys. 1981, 17, 27–34. [Google Scholar]
- Cooke, D.; Kerker, M. Response calculations for light-scattering aerosol particle counters. Appl. Opt. 1975, 14, 734–739. [Google Scholar] [CrossRef]
- Kecorius, S.; Madueño, L.; Vallar, E.; Alas, H.; Betito, G.; Birmili, W.; Cambaliza, M.O.; Catipay, G.; Gonzaga-Cayetano, M.; Galvez, M.C.; et al. Aerosol particle mixing state, refractory particle number size distributions and emission factors in a polluted urban environment: Case study of Metro Manila, Philippines. Atmos. Environ. 2017, 170, 169–183. [Google Scholar] [CrossRef]
- Pol’kin, V.V.; Panchenko, M.V. Fitting of the particle size distributions by lognormal functions in the frameworks of empirical classification of the “aerosol weather” types. Proceed. SPIE 2019, 11208, 47. [Google Scholar]
- Strapp, J.W.; Leaitch, W.R.; Liu, P.S.K. Hydrated and dried aerosol size distribution measurements from the particle measuring systems FSSP-300 probe and the deiced PCASP-100X probe. J. Atmos. Ocean. Technol. 1992, 9, 548–555. [Google Scholar] [CrossRef] [Green Version]
- Panchenko, M.V.; Zhuravleva, T.B.; Terpugova, S.A.; Polkin, V.V.; Kozlov, V.S. An empirical model of optical and radiative characteristics of the tropospheric aerosol over West Siberia in summer. Atmos. Meas. Tech. 2012, 5, 1513–1527. [Google Scholar] [CrossRef] [Green Version]
- Sakerin, S.M.; Beresnev, S.A.; Gorda, S.Y.; Kabanov, D.M.; Kornienko, G.I.; Markelov, Y.I.; Mikhalev, A.V.; Nikolashkin, S.V.; Panchenko, M.V.; Poddubnyi, V.A.; et al. Characteristics of the annual behavior of the spectral aerosol optical depth of the atmosphere under conditions of Siberia. Atmos Ocean Opt. 2009, 22, 446–456. [Google Scholar] [CrossRef]
- Sakerin, S.M.; Beresnev, S.A.; Kabanov, D.M.; Kornienko, G.I.; Nikolashkin, S.V.; Poddubny, V.A.; Tashchilin, M.A.; Turchinovich, Y.S.; Holben, B.N.; Smirnov, A. Analysis of Approaches to Modeling the Annual and Spectral Behaviors of Atmospheric Aerosol Optical Depth in Siberia and Primorye. Atmos. Ocean Opt. 2015, 28, 145–157. [Google Scholar] [CrossRef]
- Kabanov, D.M.; Beresnev, S.A.; Gorda, S.Y.; Kornienko, G.I.; Nikolashkin, S.V.; Sakerin, S.M.; Tashchilin, M.A. Diurnal Behavior of Aerosol Optical Depth of the Atmosphere in a Few Regions of Asian Part of Russia. Atmos. Ocean Opt. 2013, 26, 466–472. [Google Scholar] [CrossRef]
- King, M.D.; Byrne, D.M.; Herman, B.M.; Reagan, J.A. Aerosol size distributions obtained by inversion of spectral optical depth measurements. J. Atmos. Sci. 1978, 35, 2153–2167. [Google Scholar] [CrossRef]
- Collins, D.R.; Jonsson, H.H.; Seinfeld, J.H.; Flagan, R.C.; Gasso, S.; Hegg, D.A.; Russell, P.B.; Schmid, B.; Livingston, J.M.; Ostrom, E.; et al. In-situ aerosol size distributions and clear column radiative closure during ACE-2. Tellus 2000, 498–525. [Google Scholar] [CrossRef] [Green Version]
- Haywood, J.; Francis, P.; Dubovik, O.; Glew, M.; Holben, B. Comparison of aerosol size distributions, radiative properties, and optical depths determined by aircraft observations and Sun photometers during SAFARI 2000. J. Geophys. Res. 2003, 108, 8471. [Google Scholar] [CrossRef]
- Pol’kin, V.V.; Pol’kin, V.V.; Panchenko, M.V. Particle size distribution function of photoelectric counter and closed volume aureole photometer (seasonal variations and inter-annual differences). Proc. SPIE 2017. [Google Scholar] [CrossRef]
- Lurton, T.; Renard, J.-B.; Vignelles, D.; Jeannot, M.; Akiki, R.; Mineau, J.-L.; Tonnelier, T. Light scattering at small angles by atmospheric irregular particles: Modeling and laboratory measurements. Atmos. Meas. Tech. 2014, 7, 931–939. [Google Scholar] [CrossRef] [Green Version]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; Deangelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Gelencser, A. Carbonaceous Aerosol; Springer: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Vinogradova, A.A.; Vasileva, A.V. Black Carbon in air over northern regions of Russia: Sources and spatiotemporal variations. Atmos. Ocean. Opt. 2017, 30, 533–541. [Google Scholar] [CrossRef]
- Gorchakov, G.I.; Karpov, A.V.; Vasiliev, A.V.; Gorchakova, I.A. Brown carbon and black carbon in megacity smogs. Atmos. Ocean. Opt. 2017, 30, 248–254. [Google Scholar] [CrossRef]
- Pokhrel, R.P.; Beamesderfer, E.R.; Wagner, N.L.; Langridge, J.M.; Lack, D.A.; Jayarathne, T.; Stone, E.A.; Stockwell, C.E.; Yokelson, R.J.; Murphy, S.M. Relative importance of black carbon, brown carbon, and absorption enhancement from clear coatings in biomass burning emissions. Atmos. Chem. Phys. 2017, 17, 5063–5078. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Wu, D.; Yu, J.Z. Quantifying black carbon light absorption enhancement with a novel statistical approach. Atmos. Chem. Phys. 2018, 18, 289–309. [Google Scholar] [CrossRef] [Green Version]
- Semoutnikova, E.G.; Gorchakov, G.I.; Sitnov, S.A.; Kopeikin, V.M.; Karpov, A.V.; Gorchakova, I.A.; Ponomareva, T.Y.; Isakov, A.A.; Gushchin, R.A.; Datsenko, O.I.; et al. Siberian smoke haze over European territory of Russia in July 2016: Atmospheric pollution and radiative effects. Atmos. Ocean. Opt. 2018, 31, 171–180. [Google Scholar] [CrossRef]
- Stone, R.S.; Sharma, S.; Herber, A.; Eleftheriadis, K.; Nelson, D.W. A characterization of Arctic aerosols on the basis of aerosol optical depth and black carbon measurements. Elem. Sci. Anthr. 2014, 2, 27. [Google Scholar] [CrossRef] [Green Version]
- Schulz, H.; Zanatta, M.; Bozem, H.; Leaitch, W.R.; Herber, A.B.; Burkart, J.; Willis, M.D.; Kunkel, D.; Hoor, P.M.; Abbatt, J.P.D.; et al. High Arctic aircraft measurements characterising black carbon vertical variability in spring and summer. Atmos. Chem. Phys. 2019, 19, 2361–2384. [Google Scholar] [CrossRef] [Green Version]
- Taketani, F.; Miyakawa, T.; Takashima, H.; Komazaki, Y.; Pan, X.; Kanaya, Y.; Inoue, J. Shipborne observations of atmospheric black carbon aerosol particles over the Arctic Ocean, Bering Sea, and North Pacific Ocean during September 2014. J. Geophys. Res.-Atmos. 2016, 121, 1914–1921. [Google Scholar] [CrossRef] [Green Version]
- Butcher, S.S.; College, B.; Charlson, R.J. An Introduction to Air Chemistry; Academic Press: New York, NY, USA; London, UK, 1972. [Google Scholar]
- Sheridan, P.J.; Arnott, W.P.; Ogren, J.A.; Andrews, E.; Atkinson, D.B.; Covert, D.S.; Moosmuller, H. The Reno Aerosol Optics Study: An evaluation of aerosol absorption measurement methods. Aerosol Sci. Technol. 2005, 39, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.-H.; Liao, C.-W.; Liu, Z.-S.; Tsai, C.-J.; His, H.-C. A size-segregation method for monitoring the diurnal characteristics of atmospheric black carbon size distribution at urban traffic sites. Atmos. Environ. 2014, 90, 78–86. [Google Scholar] [CrossRef]
- Höller, R.; Tohno, S.; Kasahara, M.; Hitzenberger, R. Long–term characterization of carboneous aerosol in Uji, Japan. Atmos. Environ. 2002, 36, 1267–1275. [Google Scholar] [CrossRef]
- Ning, Z.; Chan, K.L.; Wong, K.C.; Westerdahl, D.; Mocnik, G.; Zhou, J.H.; Cheung, C.S. Black carbon mass size distributions of diesel exhaust and urban aerosols measured using differential mobility analyzer in tandem with Aethalometer. Atmos. Environ. 2013, 80, 31–40. [Google Scholar] [CrossRef]
- Schwarz, J.P.; Gao, R.S.; Spackman, J.R.; Watts, L.A.; Thomson, D.S.; Fahey, D.W.; Ryerson, T.B.; Peischl, J.; Holloway, J.S.; Trainer, M.; et al. Measurement of the mixing state, mass, and optical size of individual black carbon particles in urban and biomass burning emissions. J. Geophys. Res. Lett. 2008, 35, L13810. [Google Scholar] [CrossRef]
- Kondo, Y.; Sahu, L.; Moteki, N.; Khan, F.; Takegawa, N.; Liu, X.; Koike, M.; Miyakawa, T. Consistency and traceability of black carbon measurements made by laser-induced incandescence, thermal-optical transmittance, and filter-based photo-absorption techniques. Aerosol Sci. Technol. 2011, 45, 295–312. [Google Scholar] [CrossRef]
- Georgievskiy, Y.S.; Rosenberg, G.V. Humidity as a factor in aerosol variability. Izv. Acad. Sci. USSR Atmos. Ocean. Phys. 1973, 9, 66–72. [Google Scholar]
- Kabanov, D.M.; Kurbangaliev, T.R.; Rasskazchikova, T.M.; Sakerin, S.M.; Khutorova, O.G. The Influence of Synoptic Factors on Variations of Atmospheric Aerosol Optical Depth under Siberian Conditions. Atmos. Ocean Opt. 2011, 24, 543–553. [Google Scholar] [CrossRef]
- Antokhina, O.Y.; Antokhin, P.N.; Arshinova, V.G.; Arshinov, M.Y.; Belan, B.D.; Davydov, D.K.; Dudorova, N.V.; Ivlev, G.A.; Kozlov, A.V.; Rasskazchikova, T.M.; et al. Study of Air Composition in Different Air Masses. Atmos. Ocean Opt. 2019, 32, 72–79. [Google Scholar] [CrossRef]
- Sklyadneva, T.K.; Belan, B.D.; Rasskazchikova, T.M.; Arshinova, V.G. Change in the Synoptic Regime of Tomsk in the Late 20th–Early 21st Centuries. Atmos. Oceanic Opt. 2019, 32, 171–176. [Google Scholar] [CrossRef]
- Ryshkevich, T.I.; Mironov, G.N.; Mironova, S.Y.; Vlasenko, S.S.; Mikhailov, E.F.; Chi, X.; Andreae, M.O. Comparative analysis of hygroscopic properties of atmospheric aerosols at ZOTTO Siberian background station during summer and winter campaigns of 2011. Izv. Atmos. Ocean. Phys. 2015, 51, 512–519. [Google Scholar] [CrossRef]
- Liu, Q.; Jing, B.; Peng, C.; Tong, S.; Wang, W.; Ge, M. Hygroscopicity of internally mixed multi-component aerosol particles of atmospheric relevance. Atmosp. Environ. 2016, 125, 69–77. [Google Scholar] [CrossRef]
- Wang, Z.; Cheng, Y.; Ma, N.; Mikhailov, E.F.; Pöschl, U.; Su, H. Dependence of the hygroscopicity parameter κ on particle size, humidity and solute concentration: Implications for laboratory experiments, field measurements and model studies. Atmos. Chem. Phys. Discuss. 2017. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, D.B.; Radney, J.G.; Lum, J.; Kolesar, K.R.; Cappa, C.D.; Cziczo, D.J.; Pekour, M.S.; Zelenyuk, A.; Zhang, Q.; Setyan, A. Aerosol optical hygroscopicity measurements during the 2010 Cares campaign. Atmos. Chem. Phys. 2015, 15, 4045–4061. [Google Scholar] [CrossRef] [Green Version]
- Rovelli, G.; Miles, R.E.H.; Reid, J.P.; Clegg, S.L. Accurate measurements of aerosol hygroscopic growth over a wide range in relative humidity. J. Phys. Chem. 2016, 120, 4376–4388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasso, S.; Hegg, D.A.; Covert, D.S.; Noone, K.J.; Ostrom, E.; Schmid, B.; Russell, P.B.; Livingston, J.M.; Durkee, P.A.; Jonsson, H.H. Influence of humidity on the aerosol scattering coefficient and its effect on the upwelling radiance during ACE-2. Tellus 2000, 52B, 546–567. [Google Scholar] [CrossRef]
- Isakov, A.A.; Tikhonov, A.V. Relationship between aerosol parameters and air masses in central Russia. Atmos. Ocean Opt. 2014, 27, 475–478. [Google Scholar] [CrossRef]
- Gruzdev, A.N.; Isakov, A.A.; Shukurova, L.M. Analysis of relationship between condensation activity of surface aerosol and its chemical composition and relative air humidity according to measurements at the Zvenigorod Scientific Station. Atmos. Ocean Opt. 2014, 27, 169–175. [Google Scholar] [CrossRef]
- Kasten, F. Visibility forecast in the phase of precondensation. Tellus 1969, 21, 631–635. [Google Scholar] [CrossRef] [Green Version]
- Hänel, G. The properties of atmospheric aerosol particles as function of relative humidity at the thermodynamic equilibrium with surrounding moist air. Adv. Geophys. 1976, 19, 73–188. [Google Scholar]
- Terpugova, S.A.; Panchenko, M.V.; Sviridenkov, M.A.; Yausheva, E.P. Different types of dependence of aerosol properties upon relative humidity. J. Aerosol Sci. 2004, 35, S1043–S1044. [Google Scholar] [CrossRef]
- Terpugova, S.A.; Pol’kin, V.V.; Chernov, D.G.; Yausheva, E.P.; Pol’kin, V.V.; Kozlov, V.S. Aerosol condensation activity in the region of Tomsk in different types of “aerosol weather”. In Proceedings of the 25th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Novosibirsk, Russia, 30 June–5 July 2019; Romanovskii, O.A., Matvienko, G.G., Eds.; SPIE: Bellingham, WA, USA, 2019. [Google Scholar]
- Sakerin, S.M.; Kabanov, D.M. Fine and Coarse Components of Atmospheric Aerosol Optical Depth in Maritime and Polar Regions. Atmos. Ocean Opt. 2015, 28, 510–517. [Google Scholar] [CrossRef]
Parameter | Winter | Spring | Summer | Autumn |
---|---|---|---|---|
Nf/Nc | ✓ | ✓ | ✓ | 0.90 < p < 0.95 |
I20/I1.2 | ✓ | ✓ | ✓ | 0.90 < p < 0.95 |
DBC | ✓ | ✘ | ✓ | ✘ |
SBC | 0.90 < p < 0.95 | 0.90 < p < 0.95 | 0.90 < p < 0.95 | ✓ |
CD = β(3.9)/β(0.55) | – | ✓ | ✓ | ✓ |
α | – | ✓ | ✓ | ✓ |
γ | ✘ | ✓ | ✘ | ✘ |
proportion of hygrograms with phase transition | ✓ | ✘ | ✘ | ✘ |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panchenko, M.V.; Kozlov, V.S.; Polkin, V.V.; Terpugova, S.A.; Polkin, V.V.; Uzhegov, V.N.; Chernov, D.G.; Shmargunov, V.P.; Yausheva, E.P.; Zenkova, P.N. Aerosol Characteristics in the Near-Ground Layer of the Atmosphere of the City of Tomsk in Different Types of Aerosol Weather. Atmosphere 2020, 11, 20. https://doi.org/10.3390/atmos11010020
Panchenko MV, Kozlov VS, Polkin VV, Terpugova SA, Polkin VV, Uzhegov VN, Chernov DG, Shmargunov VP, Yausheva EP, Zenkova PN. Aerosol Characteristics in the Near-Ground Layer of the Atmosphere of the City of Tomsk in Different Types of Aerosol Weather. Atmosphere. 2020; 11(1):20. https://doi.org/10.3390/atmos11010020
Chicago/Turabian StylePanchenko, Mikhail V., Valerii S. Kozlov, Victor V. Polkin, Svetlana A. Terpugova, Vasily V. Polkin, Victor N. Uzhegov, Dmitry G. Chernov, Vladimir P. Shmargunov, Elena P. Yausheva, and Polina N. Zenkova. 2020. "Aerosol Characteristics in the Near-Ground Layer of the Atmosphere of the City of Tomsk in Different Types of Aerosol Weather" Atmosphere 11, no. 1: 20. https://doi.org/10.3390/atmos11010020
APA StylePanchenko, M. V., Kozlov, V. S., Polkin, V. V., Terpugova, S. A., Polkin, V. V., Uzhegov, V. N., Chernov, D. G., Shmargunov, V. P., Yausheva, E. P., & Zenkova, P. N. (2020). Aerosol Characteristics in the Near-Ground Layer of the Atmosphere of the City of Tomsk in Different Types of Aerosol Weather. Atmosphere, 11(1), 20. https://doi.org/10.3390/atmos11010020