Air Quality Impacts of Smoke from Hazard Reduction Burns and Domestic Wood Heating in Western Sydney
Abstract
:1. Introduction
- How comparable is the chemical composition of smoke from domestic wood-heaters to that from hazard reduction burns?
- During the WASPSS-Auburn winter and spring of 2017, which of these sources of wood-smoke produced the greatest exposure to enhanced pollution levels in Auburn?
2. Methods
2.1. The Campaign
2.2. Instrumentation
2.2.1. The Long Open-Path FTIR Spectrometer
2.2.2. The Mobile Air Quality Station (MAQS)
- NO, NO, NOx and O analyser (Teledyne, T204)
- SO analyser (Teledyne, 100E)
- PM and PM analyser (Thermo Scientific, TEOM Series, 1405-DF)
- Temperature and humidity sensor (Vaisala, HMP155)
- Meteorology station (Met-One 50.5) for wind speed and wind direction.
2.3. Calculating Enhancement Ratios
3. Results
3.1. Smoke Events from Hazard Reduction Burns
3.2. Smoke Events from Domestic Wood Heating
3.3. Background Concentrations
- average concentrations throughout the campaign excluding the times when there was an identified event;
- average night-time (16:00–04:00) concentrations throughout the campaign excluding the times when there was an identified event;
- average daytime (04:00–16:00) concentrations throughout the campaign excluding the times when there was an identified event; and
- average night-time (16:00–04:00) concentrations during June and July excluding the nights when there was a domestic wood-heater smoke event
3.4. Enhanced Concentrations of Pollutants during Smoke Events
3.5. Cumulative Enhancements
3.6. Calculating Enhancement Ratios to Compare the Chemical Composition of Smoke from Different Sources
4. Discussion
4.1. Chemical Composition
4.2. Immediate and Cumulative Exposure
5. Summary and Conclusions
- How comparable is the chemical composition of smoke from domestic wood-heaters to that from hazard reduction burns?
- During the WASPSS-Auburn winter and spring of 2017, which of these sources of wood-smoke produced the greatest exposure to enhanced pollution levels in Auburn?
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
FTIR | Fourier Transform InfraRed |
ERs | Emission/Enhancement Ratios |
MAQS | Mobile Air Quality Station |
DWH | Domestic Wood HEating |
HRB | Hazard Reduction Burn |
Appendix A
Night Time | Day Time | DWH Period | ||
---|---|---|---|---|
Study | (16:00–4:00) | (4:00–16:00) | Night Time | |
No Event | No Event | No Event | No Event | |
CO | 220 ± 170 | 230 ± 170 | 220 ± 170 | 190 ± 90 |
CHOH (ppb) | 3 ± 1 | 3 ± 1 | 3 ± 1 | 3 ± 1 |
NH (ppb) | 3 ± 2 | 4 ± 2 | 3 ± 2 | 3 ± 2 |
CH (ppb) | 2 ± 1 | 1 ± 1 | 2 ± 1 | 1 ± 1 |
CH (ppb) | 3 ± 2 | 3 ± 2 | 3 ± 2 | 2 ± 1 |
CHO (ppb) | 4 ± 1 | 5 ± 1 | 4 ± 1 | 4.4 ± 0.9 |
NO (ppb) | 16 ± 30 | 12 ± 29 | 18 ± 30 | 8 ± 22 |
NO (ppb) | 15 ± 12 | 18 ± 14 | 13 ± 10 | 16 ± 13 |
NOx (ppb) | 31 ± 38 | 30 ± 38 | 32 ± 37 | 24 ± 32 |
PM (g/m) | 6 ± 6 | 7 ± 6 | 6 ± 5 | 5 ± 4 |
PM (g/m) | 13 ± 8 | 12 ± 7 | 13 ± 9 | 11 ± 5 |
SO (ppb) | 0.9 ± 0.7 | 0.8 ± 0.7 | 0.9 ± 0.7 | 0.6 ± 0.6 |
Target | Domestic Wood Heating | Hazard Reduction Burns | ||||
---|---|---|---|---|---|---|
Species | ER | R | ER | ER | R | ER |
(Linear Fit) | (i/CO) | (Linear Fit) | (i/CO) | |||
CHOH | 0.005 ± 0.002 | 0.9 ± 0.1 | 0.005 ± 0.003 | 0.007 ± 0.002 | 0.8 ± 0.1 | 0.011 ± 0.008 |
NH | 0.009 ± 0.003 | 0.9 ± 0.1 | 0.009 ± 0.006 | 0.007 ± 0.003 | 0.7 ± 0.2 | 0.008 ± 0.009 |
CH | 0.004 ± 0.001 | 0.8 ± 0.1 | 0.003 ± 0.003 | 0.005 ± 0.003 | 0.6 ± 0.1 | 0.004 ± 0.005 |
CH | 0.009 ± 0.001 | 0.9 ± 0.1 | 0.009 ± 0.005 | 0.008 ± 0.001 | 0.9 ± 0.1 | 0.010 ± 0.009 |
CHO | 0.004 ± 0.002 | 0.8 ± 0.1 | 0.004 ± 0.003 | 0.006 ± 0.003 | 0.8 ± 0.1 | 0.007 ± 0.006 |
NO | 0.10 ± 0.03 | 0.7 ± 0.1 | 0.08 ± 0.08 | 0.14 ± 0.02 | 0.8 ± 0.2 | 0.1 ± 0.1 |
NO | 0.04 ± 0.02 | 0.7 ± 0.1 | 0.02 ± 0.03 | 0.04 ± 0.01 | 0.7 ± 0.1 | 0.04 ± 0.05 |
NOx | 0.12 ± 0.04 | 0.7 ± 0.1 | 0.1 ± 0.1 | 0.13 ± 0.05 | 0.7 ± 0.2 | 0.1 ± 0.2 |
PM | 0.02 ± 0.01 | 0.8 ± 0.1 | 0.03 ± 0.02 | 0.03 ± 0.01 | 0.6 ± 0.1 | 0.06 ± 0.04 |
PM | 0.03 ± 0.01 | 0.8 ± 0.1 | 0.03 ± 0.02 | 0.04 ± 0.01 | 0.7 ± 0.1 | 0.07 ± 0.05 |
SO | 0.002 ± 0.001 | 0.6 ± 0.1 | 0.002 ± 0.002 | 0.002 ± 0.001 | 0.7 ± 0.2 | 0.004 ± 0.003 |
References
- Johnston, F.; Hanigan, I.; Henderson, S.; Morgan, G.; Bowman, D. Extreme air pollution events from bushfires and dust storms and their association with mortality in Sydney, Australia 1994–2007. Environ. Res. 2011, 111, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Pitman, A.; Narisma, G.; McAneney, J. The impact of climate change on the risk of forest and grassland fires in Australia. Clim. Chang. 2007, 84, 383–401. [Google Scholar] [CrossRef]
- Bell, T.; Adams, M. Smoke from wildfires and prescribed burning in Australia: Effects on human health and ecosystems. Dev. Environ. Sci. 2008, 8, 289–316. [Google Scholar]
- Keywood, M.; Cope, M.; Meyer, C.M.; Iinuma, Y.; Emmerson, K. When smoke comes to town: The impact of biomass burning smoke on air quality. Atmos. Environ. 2015, 121, 13–21. [Google Scholar] [CrossRef]
- Rea, G.; Paton-Walsh, C.; Turquety, S.; Cope, M.; Griffith, D. Impact of the New South Wales fires during October 2013 on regional air quality in eastern Australia. Atmos. Environ. 2016, 131, 150–163. [Google Scholar] [CrossRef] [Green Version]
- Clean Air for NSW, published by NSW Environment Protection Authority and Office of Environment and Heritage. 2016. Available online: www.environment.nsw.gov.au/-/media/OEH/Corporate-Site/Documents/Air/clean-air-for-nsw-consultation-paper-160415.pdf (accessed on 27 May 2019).
- Zelikoff, J.T.; Chen, L.C.; Cohen, M.D.; Schlesinger, R.B. The toxicology of inhaled woodsmoke. J. Toxicol. Environ. Health Part B: Crit. Rev. 2002, 5, 269–282. [Google Scholar] [CrossRef] [PubMed]
- Naeher, L.P.; Brauer, M.; Lipsett, M.; Zelikoff, J.T.; Simpson, C.D.; Koenig, J.Q.; Smith, K.R. Woodsmoke health effects: A review. Inhal. Toxicol. 2007, 19, 67–106. [Google Scholar] [CrossRef]
- Shah, A.S.; Langrish, J.P.; Nair, H.; McAllister, D.A.; Hunter, A.L.; Donaldson, K.; Newby, D.E.; Mills, N.L. Global association of air pollution and heart failure: A systematic review and meta-analysis. Lancet 2013, 382, 1039–1048. [Google Scholar] [CrossRef]
- Dennekamp, M.; Straney, L.D.; Erbas, B.; Abramson, M.J.; Keywood, M.; Smith, K.; Sim, M.R.; Glass, D.C.; Del Monaco, A.; Haikerwal, A.; et al. Forest fire smoke exposures and out-of-hospital cardiac arrests in Melbourne, Australia: A case-crossover study. Environ. Health Perspect. 2015, 123, 959–964. [Google Scholar] [CrossRef]
- Reid, C.E.; Brauer, M.; Johnston, F.H.; Jerrett, M.; Balmes, J.R.; Elliott, C.T. Critical review of health impacts of wildfire smoke exposure. Environ. Health Perspect. 2016, 124, 1334–1343. [Google Scholar] [CrossRef]
- Hurst, D.F.; Griffith, D.W.; Cook, G.D. Trace gas emissions from biomass burning in tropical Australian savannas. J. Geophys. Res. Atmos. 1994, 99, 16441–16456. [Google Scholar] [CrossRef]
- Paton-Walsh, C.; Jones, N.; Wilson, S.; Meier, A.; Deutscher, N.; Griffith, D.; Mitchell, R.; Campbell, S. Trace gas emissions from biomass burning inferred from aerosol optical depth. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Paton-Walsh, C.; Jones, N.B.; Wilson, S.R.; Haverd, V.; Meier, A.; Griffith, D.W.; Rinsland, C.P. Measurements of trace gas emissions from Australian forest fires and correlations with coincident measurements of aerosol optical depth. J. Geophys. Res. Atmos. 2005, 110, D24. [Google Scholar] [CrossRef]
- Paton-Walsh, C.; Wilson, S.R.; Jones, N.B.; Griffith, D.W. Measurement of methanol emissions from Australian wildfires by ground-based solar Fourier transform spectroscopy. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Paton-Walsh, C.; Deutscher, N.M.; Griffith, D.; Forgan, B.; Wilson, S.; Jones, N.; Edwards, D. Trace gas emissions from savanna fires in northern Australia. J. Geophys. Res. Atmos. 2010, 115, D16. [Google Scholar] [CrossRef]
- Paton-Walsh, C.; Emmons, L.; Wilson, S.R. Estimated total emissions of trace gases from the Canberra Wildfires of 2003: A new method using satellite measurements of aerosol optical depth & the MOZART chemical transport model. Atmos. Chem. Phys. 2010, 10, 5739–5748. [Google Scholar]
- Young, E.; Paton-Walsh, C. Emission ratios of the tropospheric ozone precursors nitrogen dioxide and formaldehyde from Australia’s Black Saturday fires. Atmosphere 2011, 2, 617–632. [Google Scholar] [CrossRef]
- Paton-Walsh, C.; Emmons, L.K.; Wiedinmyer, C. Australia’s Black Saturday fires–Comparison of techniques for estimating emissions from vegetation fires. Atmos. Environ. 2012, 60, 262–270. [Google Scholar] [CrossRef]
- Possell, M.; Bell, T.L. The influence of fuel moisture content on the combustion of Eucalyptus foliage. Int. J. Wildland Fire 2013, 22, 343–352. [Google Scholar] [CrossRef]
- Paton-Walsh, C.; Smith, T.E.L.; Young, E.L.; Griffith, D.W.T.; Guérette, É.A. New emission factors for Australian vegetation fires measured using open-path Fourier transform infrared spectroscopy–Part 1: Methods and Australian temperate forest fires. Atmos. Chem. Phys. 2014, 14, 11313–11333. [Google Scholar] [CrossRef]
- Smith, T.; Paton-Walsh, C.; Meyer, C.; Cook, G.; Maier, S.W.; Russell-Smith, J.; Wooster, M.; Yates, C. New emission factors for Australian vegetation fires measured using open-path Fourier transform infrared spectroscopy-Part 2: Australian tropical savanna fires. Atmos. Chem. Phys. 2014, 14, 11335–11352. [Google Scholar] [CrossRef]
- Lawson, S.; Keywood, M.; Galbally, I.; Gras, J.; Cainey, J.; Cope, M.; Krummel, P.; Fraser, P.; Steele, L.; Bentley, S.; et al. Biomass burning emissions of trace gases and particles in marine air at Cape Grim, Tasmania. Atmos. Chem. Phys. 2015, 15, 13393–13411. [Google Scholar] [CrossRef] [Green Version]
- Possell, M.; Jenkins, M.; Bell, T.L.; Adams, M.A. Emissions from prescribed fires in temperate forest in south-east Australia: Implications for carbon accounting. IBiogeosciences 2015, 12, 257–268. [Google Scholar] [CrossRef]
- Desservettaz, M.; Paton-Walsh, C.; Griffith, D.W.; Kettlewell, G.; Keywood, M.D.; Vanderschoot, M.V.; Ward, J.; Mallet, M.D.; Milic, A.; Miljevic, B.; et al. Emission factors of trace gases and particles from tropical savanna fires in Australia. J. Geophys. Res. Atmos. 2017, 122, 6059–6074. [Google Scholar] [CrossRef]
- Mallet, M.D.; Desservettaz, M.J.; Miljevic, B.; Milic, A.; Ristovski, Z.D.; Alroe, J.; Cravigan, L.T.; Jayaratne, E.R.; Paton-Walsh, C.; Griffith, D.W.; et al. Biomass burning emissions in north Australia during the early dry season: An overview of the 2014 SAFIRED campaign. Atmos. Chem. Phys. 2017, 17, 13681–13697. [Google Scholar] [CrossRef]
- Milic, A.; Mallet, M.D.; Cravigan, L.T.; Alroe, J.; Ristovski, Z.D.; Selleck, P.; Lawson, S.J.; Ward, J.; Desservettaz, M.J.; Paton-Walsh, C.; et al. Biomass burning and biogenic aerosols in northern Australia during the SAFIRED campaign. Atmos. Chem. Phys. 2017, 17, 3945–3961. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Thai, P.K.; Mallet, M.; Desservettaz, M.; Hawker, D.W.; Keywood, M.; Miljevic, B.; Paton-Walsh, C.; Gallen, M.; Mueller, J.F. Emissions of selected semivolatile organic chemicals from forest and savannah fires. Environ. Sci. Technol. 2017, 51, 1293–1302. [Google Scholar] [CrossRef] [PubMed]
- Guérette, E.A.; Paton-Walsh, C.; Desservettaz, M.; Smith, T.E.L.; Volkova, L.; Weston, C.J.; Meyer, C.P. Emissions of trace gases from Australian temperate forest fires: emission factors and dependence on modified combustion efficiency. Atmos. Chem. Phys. 2018, 18, 3717–3735. [Google Scholar] [CrossRef] [Green Version]
- Duc, H.N.; Chang, L.T.C.; Azzi, M.; Jiang, N. Smoke aerosols dispersion and transport from the 2013 New South Wales (Australia) bushfires. Environ. Monit. Assess. 2018, 190, 428. [Google Scholar] [CrossRef]
- Reisen, F.; Meyer, C.M.; McCaw, L.; Powell, J.C.; Tolhurst, K.; Keywood, M.D.; Gras, J.L. Impact of smoke from biomass burning on air quality in rural communities in southern Australia. Atmos. Environ. 2011, 45, 3944–3953. [Google Scholar] [CrossRef]
- Johnston, F.H.; Hanigan, I.C.; Henderson, S.B.; Morgan, G.G. Evaluation of interventions to reduce air pollution from biomass smoke on mortality in Launceston, Australia: Retrospective analysis of daily mortality, 1994–2007. BMJ 2013, 346, e8446. [Google Scholar] [CrossRef]
- Reisen, F.; Meyer, C.P.; Keywood, M.D. Impact of biomass burning sources on seasonal aerosol air quality. Atmos. Environ. 2013, 67, 437–447. [Google Scholar] [CrossRef]
- Chang, L.T.C.; Scorgie, Y.; Duc, H.N.; Monk, K.; Fuchs, D.; Trieu, T. Major Source Contributions to Ambient PM2. 5 and Exposures within the New South Wales Greater Metropolitan Region. Atmosphere 2019, 10, 138. [Google Scholar] [CrossRef]
- Simmons, J.B.; Paton-Walsh, C.; Phillips, F.; Naylor, T.; Guérette, É.A.; Burden, S.; Dominick, D.; Forehead, H.; Graham, J.; Keatley, T.; et al. Understanding Spatial Variability of Air Quality in Sydney: Part 1—A Suburban Balcony Case Study. Atmosphere 2019, 10, 181. [Google Scholar] [CrossRef]
- Phillips, F.A.; Naylor, T.; Forehead, H.; Griffith, D.W.; Kirkwood, J.; Paton-Walsh, C. Vehicle Ammonia Emissions Measured in An Urban Environment in Sydney, Australia, Using Open Path Fourier Transform Infra-Red Spectroscopy. Atmosphere 2019, 10, 208. [Google Scholar] [CrossRef]
- Wadlow, I.; Paton-Walsh, C.; Forehead, H.; Perez, P.; Amirghasemi, M.; Guérette, É.A.; Gendek, O.; Kumar, P. Understanding Spatial Variability of Air Quality in Sydney: Part 2—A Roadside Case Study. Atmosphere 2019, 10, 217. [Google Scholar] [CrossRef]
- Keywood, M.; Selleck, P.; Galbally, I.; Lawson, S.; Powell, J.; Cheng, M.; Gillett, R.; Ward, J.; Harnwell, J.; Dunne, E.; et al. Sydney Particle Study 1–Aerosol and Gas Data Collection v3. 2016. Available online: https://data.csiro.au/dap/landingpage?pid=csiro:18210&v=3&d=true (accessed on 8 July 2019).
- Keywood, M.; Selleck, P.; Galbally, I.; Lawson, S.; Powell, J.; Cheng, M.; Gillett, R.; Ward, J.; Harnwell, J.; Dunne, E.; et al. Sydney Particle Study 2–Aerosol and Gas Data Collection v1. 2016. Available online: https://data.csiro.au/dap/landingpage?pid=csiro:18311&v=1&d=true (accessed on 8 July 2019).
- Paton-Walsh, C.; Guérette, É.A.; Kubistin, D.C.; Humphries, R.S.; Wilson, S.R.; Dominick, D.; Galbally, I.E.; Buchholz, R.R.; Bhujel, M.; Chambers, S.; et al. The MUMBA campaign: Measurements of urban, marine and biogenic air. Earth Syst. Sci. Data 2017, 9, 349–362. [Google Scholar] [CrossRef]
- Paton-Walsh, C.; Guérette, É.A.; Emmerson, K.; Cope, M.; Kubistin, D.; Humphries, R.; Wilson, S.; Buchholz, R.; Jones, N.; Griffith, D.; et al. Urban air quality in a coastal city: Wollongong during the MUMBA campaign. Atmosphere 2018, 9, 500. [Google Scholar] [CrossRef]
- Guérette, É.A.; Paton-Walsh, C.; Galbally, I.; Molloy, S.; Lawson, S.; Kubistin, D.; Buchholz, R.; Griffith, D.W.; Langenfelds, R.L.; Krummel, P.B.; et al. Composition of Clean Marine Air and Biogenic Influences on VOCs during the MUMBA Campaign. Atmosphere 2019, 10, 383. [Google Scholar] [CrossRef]
- Chang, L.; Duc, H.; Scorgie, Y.; Trieu, T.; Monk, K.; Jiang, N. Performance evaluation of CCAM-CTM regional airshed modelling for the New South Wales Greater Metropolitan Region. Atmosphere 2018, 9, 486. [Google Scholar] [CrossRef]
- Nguyen Duc, H.; Chang, L.; Trieu, T.; Salter, D.; Scorgie, Y. Source Contributions to Ozone Formation in the New South Wales Greater Metropolitan Region, Australia. Atmosphere 2018, 9, 443. [Google Scholar] [CrossRef]
- Utembe, S.; Rayner, P.; Silver, J.; Guérette, E.A.; Fisher, J.; Emmerson, K.; Cope, M.; Paton-Walsh, C.; Griffiths, A.; Duc, H.; et al. Hot summers: Effect of extreme temperatures on ozone in Sydney, Australia. Atmosphere 2018, 9, 466. [Google Scholar] [CrossRef]
- Chambers, S.D.; Guérette, E.A.; Monk, K.; Griffiths, A.D.; Zhang, Y.; Duc, H.; Cope, M.; Emmerson, K.M.; Chang, L.T.; Silver, J.D.; et al. Skill-testing chemical transport models across contrasting atmospheric mixing states using radon-222. Atmosphere 2019, 10, 25. [Google Scholar] [CrossRef]
- Zhang, Y.; Jena, C.; Wang, K.; Paton-Walsh, C.; Guérette, É.A.; Utembe, S.; Silver, J.D.; Keywood, M. Multiscale Applications of Two Online-Coupled Meteorology-Chemistry Models during Recent Field Campaigns in Australia, Part I: Model Description and WRF/Chem-ROMS Evaluation Using Surface and Satellite Data and Sensitivity to Spatial Grid Resolutions. Atmosphere 2019, 10, 189. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, K.; Jena, C.; Paton-Walsh, C.; Guérette, É.A.; Utembe, S.; Silver, J.D.; Keywood, M. Multiscale Applications of Two Online-Coupled Meteorology-Chemistry Models during Recent Field Campaigns in Australia, Part II: Comparison of WRF/Chem and WRF/Chem-ROMS and Impacts of Air-Sea Interactions and Boundary Conditions. Atmosphere 2019, 10, 210. [Google Scholar] [CrossRef]
- Monk, K.; Guérette, E.A.; Paton-Walsh, C.; Silver, J.D.; Emmerson, K.M.; Utembe, S.R.; Zhang, Y.; Griffiths, A.D.; Chang, L.T.C.; Duc, H.N.; et al. Evaluation of Regional Air Quality Models over Sydney and Australia: Part 1—Meteorological Model Comparison. Atmosphere 2019, 10, 374. [Google Scholar] [CrossRef]
- Griffith, D.W.T. Synthetic calibration and quantitative analysis of gas-phase FT-IR spectra. Appl. Spectrosc. 1996, 50, 59–70. [Google Scholar] [CrossRef]
- Griffith, D.W.T.; Deutscher, N.M.; Caldow, C.; Kettlewell, G.; Riggenbach, M.; Hammer, S. A Fourier transform infrared trace gas and isotope analyser for atmospheric applications. Atmos. Meas. Tech. 2012, 5, 2481–2498. [Google Scholar] [CrossRef] [Green Version]
- Rothman, L.S.; Gordon, I.E.; Babikov, Y.; Barbe, A.; Benner, D.C.; Bernath, P.F.; Birk, M.; Bizzocchi, L.; Boudon, V.; Brown, L.R.; et al. The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2013, 130, 4–50. [Google Scholar] [CrossRef]
- Wooster, M.J.; Freeborn, P.H.; Archibald, S.; Oppenheimer, C.; Roberts, G.J.; Smith, T.E.L.; Govender, N.; Burton, M.; Palumbo, I. Field determination of biomass burning emission ratios and factors via open-path FTIR spectroscopy and fire radiative power assessment: Headfire, backfire and residual smouldering combustion in African savannahs. Atmos. Chem. Phys. 2011, 11, 11591–11615. [Google Scholar] [CrossRef]
- Akagi, S.; Yokelson, R.J.; Wiedinmyer, C.; Alvarado, M.; Reid, J.; Karl, T.; Crounse, J.; Wennberg, P. Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys. 2011, 11, 4039–4072. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, J.; Woodruff, T.; Morello-Frosch, R.; Axelrad, D. Application of health information to hazardous air pollutants modeled in EPA’s Cumulative Exposure Project. Toxicol. Ind. Health 1998, 14, 429–454. [Google Scholar] [CrossRef] [PubMed]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367. [Google Scholar] [CrossRef] [PubMed]
- Vyskocil, A.; Drolet, D.; Viau, C.; Lemay, F.; Lapointe, G.; Tardif, R.; Truchon, G.; Baril, M.; Gagnon, N.; Gagnon, F.; et al. A web tool for the identification of potential interactive effects of chemical mixtures. J. Occup. Environ. Hyg. 2007, 4, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Reisen, F.; Powell, J.; Dennekamp, M.; Johnston, F.; Wheeler, A. Is remaining indoors an effective way of reducing exposure to fine particulate matter during biomass burning events? J. Air Waste Manag. Assoc. 2019, 69, 611–622. [Google Scholar] [CrossRef] [PubMed]
Target Gas Species | Micro-Window Wavelength Limits (cm) | Interfering Species |
---|---|---|
CO, CO | 2150–2280 | HO, NO |
CHOH | 2010–1060 | NH, O, HO |
NH | 900–945, 955–995 | HO |
CH | 710–760 | HCN, HO |
CH | 3001–3140 | HO |
CHO | 2730–2840 | CH, HCl, HO |
Date | Fire Name (No) | Area (ha) | Distance (Bearing) from Site (km) |
---|---|---|---|
13–15 August | HAW Ripple Creek HR (HR16070877281) | 2661 | 45 (W) |
20–23 August | HAW Burralow Road East HR (HR16090177857) | 409 | 49 (NW) |
26–27 August | HAW Campfire Creek HR (HR15120875086) | 467 | 40 (W) |
1–3 September | Moores Rd HR (HR14040968100) | 267 | 28 (N) |
9–13 September | Deep Bay HR (HR14042368385b) | 429 | 31 (NNE) |
Study | DWH | HRB | |||
---|---|---|---|---|---|
No Event | Event | Event | DWH | HRB | |
CO (ppb) | 220 ± 170 | 640 ± 420 | 500 ± 290 | 420 ± 170 | 280 ± 170 |
CHOH (ppb) | 3 ± 1 | 5 ± 2 | 6 ± 3 | 2 ± 1 | 3 ± 1 |
NH (ppb) | 3 ± 2 | 7 ± 4 | 6 ± 4 | 4 ± 2 | 2 ± 2 |
CH (ppb) | 2 ± 1 | 3 ± 2 | 3 ± 2 | 1 ± 1 | 1 ± 1 |
CH (ppb) | 3 ± 2 | 7 ± 4 | 6 ± 3 | 4 ± 2 | 3 ± 2 |
CHO (ppb) | 4 ± 1 | 6 ± 2 | 6 ± 2 | 2 ± 1 | 2 ± 1 |
NO | 16 ± 30 | 50 ± 58 | 37 ± 43 | 34 ± 30 | 22 ± 30 |
NO (ppb) | 15 ± 12 | 25 ± 12 | 27 ± 13 | 10 ± 12 | 12 ± 12 |
NOx | 31 ± 38 | 77 ± 68 | 64 ± 52 | 46 ± 38 | 33 ± 38 |
PM (g/m) | 6 ± 6 | 17 ± 11 | 22 ± 17 | 11 ± 6 | 15 ± 6 |
PM (g/m) | 13 ± 8 | 26 ± 14 | 31 ± 19 | 13 ± 8 | 19 ± 8 |
SO (ppb) | 0.9 ± 0.7 | 2 ± 1 | 2 ± 1 | 0.7 ± 0.7 | 1.0 ± 0.7 |
Species | DWH (426 h) | DWH:HRB | HRB (234 h) |
---|---|---|---|
CO (ppb·h) | 178,920 | 2.7:1 | 65,520 |
CHOH (ppb·h) | 852 | 1.2:1 | 702 |
NH (ppb·h) | 1704 | 3.6:1 | 468 |
CH (ppb·h) | 426 | 1.8:1 | 234 |
CH (ppb·h) | 1704 | 2.4:1 | 702 |
CHOH (ppb·h) | 852 | 1.8:1 | 468 |
NO (ppb·h) | 14,484 | 2.8:1 | 5148 |
NO (ppb·h) | 4260 | 1.5:1 | 2808 |
NOx (ppb·h) | 19,596 | 2.5:1 | 7722 |
PM (g·h/m) | 4686 | 1.3:1 | 3510 |
PM (g·h/m) | 5538 | 1.2:1 | 4446 |
SO (ppb·h) | 298 | 1.3:1 | 234 |
Target | Domestic Wood Heating | Hazard Reduction Burns | Australian Forest Fires | ||
---|---|---|---|---|---|
Species | ER | R | ER | R | [21,23,29,33] |
CHOH | 0.005 ± 0.002 | 0.9 ± 0.1 | 0.007 ± 0.002 | 0.8 ± 0.1 | 0.017 ± 0.005 |
NH3 | 0.009 ± 0.003 | 0.9 ± 0.1 | 0.007 ± 0.003 | 0.7 ± 0.2 | 0.023 ± 0.006 |
CH | 0.004 ± 0.001 | 0.8 ± 0.1 | 0.005 ± 0.003 | 0.6 ± 0.1 | not reported |
CH | 0.009 ± 0.001 | 0.9 ± 0.1 | 0.008 ± 0.001 | 0.9 ± 0.1 | 0.016 ± 0.008 |
CHO | 0.004 ± 0.002 | 0.8 ± 0.1 | 0.006 ± 0.003 | 0.8 ± 0.1 | 0.023 ± 0.007 |
NO | 0.10 ± 0.03 | 0.7 ± 0.1 | 0.14 ± 0.02 | 0.8 ± 0.2 | not reported |
NO | 0.04 ± 0.02 | 0.7 ± 0.1 | 0.04 ± 0.01 | 0.7 ± 0.1 | not reported |
NOx | 0.12 ± 0.04 | 0.7 ± 0.1 | 0.13 ± 0.05 | 0.7 ± 0.2 | not reported |
PM | 0.02 ± 0.01 | 0.8 ± 0.1 | 0.03 ± 0.01 | 0.6 ± 0.1 | not reported |
PM | 0.03 ± 0.01 | 0.8 ± 0.1 | 0.04 ± 0.01 | 0.7 ± 0.1 | not reported |
SO | 0.002 ± 0.001 | 0.6 ± 0.1 | 0.002 ± 0.001 | 0.7 ± 0.2 | not reported |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Desservettaz, M.; Phillips, F.; Naylor, T.; Price, O.; Samson, S.; Kirkwood, J.; Paton-Walsh, C. Air Quality Impacts of Smoke from Hazard Reduction Burns and Domestic Wood Heating in Western Sydney. Atmosphere 2019, 10, 557. https://doi.org/10.3390/atmos10090557
Desservettaz M, Phillips F, Naylor T, Price O, Samson S, Kirkwood J, Paton-Walsh C. Air Quality Impacts of Smoke from Hazard Reduction Burns and Domestic Wood Heating in Western Sydney. Atmosphere. 2019; 10(9):557. https://doi.org/10.3390/atmos10090557
Chicago/Turabian StyleDesservettaz, Maximilien, Frances Phillips, Travis Naylor, Owen Price, Stephanie Samson, John Kirkwood, and Clare Paton-Walsh. 2019. "Air Quality Impacts of Smoke from Hazard Reduction Burns and Domestic Wood Heating in Western Sydney" Atmosphere 10, no. 9: 557. https://doi.org/10.3390/atmos10090557
APA StyleDesservettaz, M., Phillips, F., Naylor, T., Price, O., Samson, S., Kirkwood, J., & Paton-Walsh, C. (2019). Air Quality Impacts of Smoke from Hazard Reduction Burns and Domestic Wood Heating in Western Sydney. Atmosphere, 10(9), 557. https://doi.org/10.3390/atmos10090557