Exposures to Carbon Monoxide in a Cookstove Intervention in Northern Ghana
Abstract
:1. Introduction
2. Methods
2.1. Calibration and Data Preparation Methods
2.2. Personal Exposure Mixed Effects Model Specification
3. Results
3.1. Personal CO Exposure Results
3.2. Relationship between 48 h Averaged CO and 48 h Cumulative Carbonaceous PM2.5 Exposure
4. Discussion
4.1. Contributing Factors to Personal CO Exposure
4.2. Observations from the Real-Time CO Exposure Time Series
4.3. Comparisons with Previous Personal CO Exposure Results
4.4. Relationship between Personal CO and Carbonaceous PM2.5
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Ethical Considerations
Acknowledgments
Conflicts of Interest
References
- Astrup, P. Some physiological and pathological effects of moderate carbon monoxide exposure. Br. Med. J. 1972, 4, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Longo, L.D. The biological effects of carbon monoxide on the pregnant woman, fetus, and newborn infant. Am. J. Obstet. Gynecol. 1977, 129, 69–103. [Google Scholar] [CrossRef]
- Smith, K.R.; Samet, J.M.; Romieu, I.; Bruce, N. Indoor air pollution in developing countries and acute lower respiratory infections in children. Thorax 2000, 55, 518–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naeher, L.P.; Brauer, M.; Lipsett, M.; Zelikoff, J.T.; Simpson, C.D.; Koenig, J.Q.; Smith, K.R. Woodsmoke Health Effects: A Review. Inhal. Toxicol. 2007, 19, 67–106. [Google Scholar] [CrossRef] [PubMed]
- Carter, E.; Norris, C.; Dionisio, K.L.; Balakrishnan, K.; Checkley, W.; Clark, M.L.; Ghosh, S.; Jack, D.W.; Kinney, P.L.; Marshall, J.D.; et al. Assessing Exposure to Household Air Pollution: A Systematic Review and Pooled Analysis of Carbon Monoxide as a Surrogate Measure of Particulate Matter. Environ. Health Perspect. 2017, 125, 076002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dionisio, K.L.; Howie, S.R.C.; Dominici, F.; Fornace, K.M.; Spengler, J.D.; Adegbola, R.A.; Ezzati, M. Household Concentrations and Exposure of Children to Particulate Matter from Biomass Fuels in The Gambia. Environ. Sci. Technol. 2012, 46, 3519–3527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dionisio, K.L.; Howie, S.R.C.; Dominici, F.; Fornace, K.M.; Spengler, J.D.; Donkor, S.; Chimah, O.; Oluwalana, C.; Ideh, R.C.; Ebruke, B.; et al. The exposure of infants and children to carbon monoxide from biomass fuels in The Gambia: A measurement and modeling study. J. Expo. Sci. Environ. Epidemiol. 2012, 22, 173–181. [Google Scholar] [CrossRef] [PubMed]
- McCracken, J.P.; Schwartz, J.; Diaz, A.; Bruce, N.; Smith, K.R. Longitudinal Relationship between Personal CO and Personal PM2.5 among Women Cooking with Woodfired Cookstoves in Guatemala. PLoS ONE 2013, 8, e55670. [Google Scholar] [CrossRef] [PubMed]
- Naeher, L.P.; Smith, K.R.; Leaderer, B.P.; Neufeld, L.M.; Mage, D.T. Carbon monoxide as a tracer for assessing exposures to particulate matter in wood and gas cookstove households of highland Guatemala. Environ. Sci. Technol. 2001, 35, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Northcross, A.; Chowdhury, Z.; McCracken, J.; Canuz, E.; Smith, K.R. Estimating personal PM2.5 exposures using CO measurements in Guatemalan households cooking with wood fuel. J. Environ. Monit. 2010, 12, 873. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, K.L.; Kanyomse, E.; Piedrahita, R.; Coffey, E.; Rivera, I.J.; Adoctor, J.; Alirigia, R.; Muvandimwe, D.; Dove, M.; Dukic, V.; et al. Research on emissions, air quality, climate, and cooking technologies in Northern Ghana (Reaccting): Study rationale and protocol. BMC Public Health 2015, 15, 126. [Google Scholar] [CrossRef] [PubMed]
- Oduro, A.R.; Wak, G.; Azongo, D.; Debpuur, C.; Wontuo, P.; Kondayire, F.; Welaga, P.; Bawah, A.; Nazzar, A.; Williams, J.; et al. Profile of the Navrongo Health and Demographic Surveillance System. Int. J. Epidemiol. 2012, 41, 968–976. [Google Scholar] [CrossRef] [Green Version]
- Piedrahita, R.; Kanyomse, E.; Coffey, E.; Xie, M.; Hagar, Y.; Alirigia, R.; Agyei, F.; Wiedinmyer, C.; Dickinson, K.L.; Oduro, A.; et al. Exposures to and origins of carbonaceous PM2.5 in a cookstove intervention in Northern Ghana. Sci. Total Environ. 2017, 576, 178–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piedrahita, R.; Dickinson, K.L.; Kanyomse, E.; Coffey, E.; Alirigia, R.; Hagar, Y.; Rivera, I.; Oduro, A.; Dukic, V.; Wiedinmyer, C.; et al. Assessment of cookstove stacking in Northern Ghana using surveys and stove use monitors. Energy Sustain. Dev. 2016, 34, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Dickinson, K.L.; Piedrahita, R.; Coffey, E.R.; Kanyomse, E.; Alirigia, R.; Molnar, T.; Hagar, Y.; Hannigan, M.P.; Oduro, A.R.; Wiedinmyer, C. Adoption of improved biomass stoves and stove/fuel stacking in the REACCTING intervention study in Northern Ghana. Energy Policy 2019, 130, 361–374. [Google Scholar] [CrossRef]
- Wiedinmyer, C.; Dickinson, K.; Piedrahita, R.; Kanyomse, E.; Coffey, E.; Hannigan, M.; Alirigia, R.; Oduro, A. Rural–urban differences in cooking practices and exposures in Northern Ghana. Environ. Res. Lett. 2017, 12, 065009. [Google Scholar] [CrossRef]
- Piedrahita, R.; Coffey, E.; Hagar, Y.; Kanyomse, E.; Verploeg, K.; Wiedinmyer, C.; Dickinson, K.L.; Oduro, A.R.; Hannigan, M.P. Attributing air pollution exposure to emission sources with proximity sensing. Atmosphere 2019, 10, 395. [Google Scholar] [CrossRef]
- Burton, P.; Gurrin, L.; Sly, P. Tutorial in biostatistics. Extending the simple linear regression model to account for correlated responses: An introduction to generalized estimating equations and multi-level mixed modeling. Stat. Med. 1998, 17, 1261–1291. [Google Scholar] [CrossRef]
- Peretz, C.; Goren, A.; Smid, T.; Kromhout, H. Application of Mixed-effects Models for Exposure Assessment. Ann. Occup. Hyg. 2002, 46, 69–77. [Google Scholar]
- Awini, E.; Mattah, P.; Sankoh, O.; Gyapong, M. Spatial variations in childhood mortalities at the Dodowa Health and Demographic Surveillance System site of the INDEPTH Network in Ghana. Trop. Med. Int. Health 2010, 15, 520–528. [Google Scholar] [CrossRef]
- Birch, M.E. Monitoring of diesel particulate exhaust in the workplace. NIOSH Man. Anal. Methods NMAM 2003, 2154, 229–259. [Google Scholar]
- Ofosu, F.G.; Hopke, P.K.; Aboh, I.J.K.; Bamford, S.A. Biomass burning contribution to ambient air particulate levels at Navrongo in the Savannah zone of Ghana. J. Air Waste Manag. Assoc. 2013, 63, 1036–1045. [Google Scholar] [CrossRef] [PubMed]
- Akagi, S.K.; Yokelson, R.J.; Wiedinmyer, C.; Alvarado, M.J.; Reid, J.S.; Karl, T.; Crounse, J.D.; Wennberg, P.O. Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys. 2011, 11, 4039–4072. [Google Scholar] [CrossRef] [Green Version]
- Andreae, M.O.; Merlet, P. Emission of trace gases and aerosols from biomass burning. Glob. Biogeochem. Cycles 2001, 15, 955–966. [Google Scholar] [CrossRef] [Green Version]
- Patterson, E.M.; McMahon, C.K.; Ward, D.E. Absorption properties and graphitic carbon emission factors of forest fire aerosols. Geophys. Res. Lett. 1986, 13, 129–132. [Google Scholar] [CrossRef] [Green Version]
- Atiku, F.A.; Mitchell, E.J.S.; Lea-Langton, A.R.; Jones, J.M.; Williams, A.; Bartle, K.D. The Impact of Fuel Properties on the Composition of Soot Produced by the Combustion of Residential Solid Fuels in a Domestic Stove. Fuel Process. Technol. 2016, 151, 117–125. [Google Scholar] [CrossRef]
- Coffey, E.R.; Muvandimwe, D.; Hagar, Y.; Wiedinmyer, C.; Kanyomse, E.; Piedrahita, R.; Dickinson, K.L.; Oduro, A.; Hannigan, M.P. New Emission Factors and Efficiencies from in-Field Measurements of Traditional and Improved Cookstoves and Their Potential Implications. Environ. Sci. Technol. 2017, 51, 12508–12517. [Google Scholar] [CrossRef]
- Bhattacharya, S.C.; Albina, D.O.; Myint Khaing, A. Effects of selected parameters on performance and emission of biomass-fired cookstoves. Biomass Bioenergy 2002, 23, 387–395. [Google Scholar] [CrossRef]
- L’Orange, C.; DeFoort, M.; Willson, B. Influence of testing parameters on biomass stove performance and development of an improved testing protocol. Energy Sustain. Dev. 2012, 16, 3–12. [Google Scholar] [CrossRef]
- Eilers, P.H.C.; Marx, B.D. Flexible smoothing with B-splines and penalties. Stat. Sci. 1996, 11, 89–121. [Google Scholar] [CrossRef]
- Morel, P. Gramm: Grammar of graphics plotting for Matlab. JOSS 2018. [Google Scholar] [CrossRef]
- Who Guidelines for Indoor Air Quality: Selected Pollutants; World Health Organization (Ed.) WHO: Copenhagen, Denmark, 2010; ISBN 978-92-890-0213-4. [Google Scholar]
- Burwen, J.; Levine, D.I. A rapid assessment randomized-controlled trial of improved cookstoves in rural Ghana. Energy Sustain. Dev. 2012, 16, 328–338. [Google Scholar] [CrossRef]
- Ochieng, C.A.; Vardoulakis, S.; Tonne, C. Are rocket mud stoves associated with lower indoor carbon monoxide and personal exposure in rural Kenya? Indoor Air 2013, 23, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.R.; Mccracken, J.P.; Thompson, L.; Edwards, R.; Shields, K.N.; Canuz, E.; Bruce, N. Personal child and mother carbon monoxide exposures and kitchen levels: Methods and results from a randomized trial of woodfired chimney cookstoves in Guatemala (RESPIRE). J. Expo. Sci. Environ. Epidemiol. 2009, 20, 406–416. [Google Scholar] [CrossRef] [PubMed]
- Gautam, S.; Pillarisetti, A.; Yadav, A.; Singh, D.; Arora, N.; Smith, K. Daily average exposures to carbon monoxide from combustion of biomass fuels in rural households of Haryana, India. Environ. Dev. Sustain. 2018, 1–9. [Google Scholar] [CrossRef]
- Roden, C.A.; Bond, T.C.; Conway, S.; Osorto Pinel, A.B.; MacCarty, N.; Still, D. Laboratory and field investigations of particulate and carbon monoxide emissions from traditional and improved cookstoves. Atmos. Environ. 2009, 43, 1170–1181. [Google Scholar] [CrossRef]
- Ezzati, M.; Mbinda, B.M.; Kammen, D.M. Comparison of Emissions and Residential Exposure from Traditional and Improved Cookstoves in Kenya. Environ. Sci. Technol. 2000, 34, 578–583. [Google Scholar] [CrossRef]
Control | Gyapa/Philips | Philips/Philips | Gyapa/Gyapa | ||
---|---|---|---|---|---|
Sample overview | Total days deployed * | 256 | 239 | 278 | 210 |
Non-flagged days deployed (retained for analysis) | 207 (81% of total days deployed) | 201 (84%) | 212 (76%) | 166 (79%) | |
Duration hours (mean (SD)) | 23.1 (1.3) | 23.1 (1.2) | 23.1 (1.4) | 23.3 (1.1) | |
Days duplicate monitor were deployed | 42 | 24 | 32 | 43 | |
Unique participants | 62 | 73 | 68 | 64 | |
Gender covariates | Primary cook Females (person-days) | 113 | 97 | 105 | 111 |
Non-primary cook females (person-days) | 51 | 46 | 60 | 34 | |
Non-primary cook males (person-days) | 43 | 58 | 47 | 21 | |
Female age in years (med, SD, min, max) | 27.4, 18.7, 1.2, 75.4 | 33.4, 15.9, 2.4, 63.4 | 24.5, 16, 1.2, 53.4 | 30.4, 16.8, 2.1, 63.4 | |
Male age in years (med, SD, min, max) | 4.2, 4.2, 1.3, 13.8 | 4.5, 17.1, 1.4, 61.4 | 6.4, 2.8, 1.1, 11.6 | 3.9, 2.8, 1.1, 10 | |
SES ** (person-days) | Least poor | 22 | 39 | 40 | 39 |
Less poor | 37 | 46 | 38 | 33 | |
Poor | 63 | 41 | 65 | 45 | |
Poorer | 22 | 45 | 28 | 40 | |
Poorest | 63 | 30 | 41 | 9 | |
Seasons *** (person-days) | Harmattan/bush burning | 85 | 91 | 94 | 53 |
Transition | 20 | 20 | 16 | 18 | |
Light Rainy | 14 | 26 | 30 | 32 | |
Heavy Rainy | 60 | 34 | 45 | 32 | |
Hot dry | 28 | 30 | 27 | 31 |
Stove groups | Equation 1 | % Change from Reference | Expected Exposure (ppm) (95% CI) | P Value |
Control | Reference group | 0.55 (0.34, 0.90) | ||
Gyapa/Philips | −10.2 | 0.5 (0.33, 0.75) | 0.61 | |
Philips/Philips | −30.3 | 0.39 (0.26, 0.58) | 0.08 | |
Gyapa/Gyapa | −10.5 | 0.49 (0.32, 0.77) | 0.62 | |
Gender | Primary cook females | Reference group | ||
Non-primary cook females | −33.2 | 0.37 (0.26, 0.53) | 0.03 | |
Non-primary cook males | −36.7 | 0.35 (0.24, 0.51) | 0.02 | |
SES | Least poor | −38.6 | 0.34 (0.21, 0.55) | 0.05 |
Less poor | −29.1 | 0.39 (0.24, 0.64) | 0.17 | |
Poor | −7.5 | 0.51 (0.32, 0.82) | 0.74 | |
Poorer | 3.5 | 0.57 (0.37, 0.89) | 0.88 | |
Poorest | Reference group | |||
Seasons | Harmattan | Reference group | ||
Transition | −14.5 | 0.47 (0.31, 0.73) | 0.48 | |
Light rainy | 59.0 | 0.88 (0.6, 1.28) | 0.02 | |
Heavy rainy | 15.5 | 0.64 (0.46, 0.88) | 0.38 | |
Hot dry | −30.1 | 0.39 (0.27, 0.56) | 0.06 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piedrahita, R.; Coffey, E.R.; Hagar, Y.; Kanyomse, E.; Wiedinmyer, C.; Dickinson, K.L.; Oduro, A.; Hannigan, M.P. Exposures to Carbon Monoxide in a Cookstove Intervention in Northern Ghana. Atmosphere 2019, 10, 402. https://doi.org/10.3390/atmos10070402
Piedrahita R, Coffey ER, Hagar Y, Kanyomse E, Wiedinmyer C, Dickinson KL, Oduro A, Hannigan MP. Exposures to Carbon Monoxide in a Cookstove Intervention in Northern Ghana. Atmosphere. 2019; 10(7):402. https://doi.org/10.3390/atmos10070402
Chicago/Turabian StylePiedrahita, Ricardo, Evan R. Coffey, Yolanda Hagar, Ernest Kanyomse, Christine Wiedinmyer, Katherine L. Dickinson, Abraham Oduro, and Michael P. Hannigan. 2019. "Exposures to Carbon Monoxide in a Cookstove Intervention in Northern Ghana" Atmosphere 10, no. 7: 402. https://doi.org/10.3390/atmos10070402
APA StylePiedrahita, R., Coffey, E. R., Hagar, Y., Kanyomse, E., Wiedinmyer, C., Dickinson, K. L., Oduro, A., & Hannigan, M. P. (2019). Exposures to Carbon Monoxide in a Cookstove Intervention in Northern Ghana. Atmosphere, 10(7), 402. https://doi.org/10.3390/atmos10070402