Modeling Investigation of Diurnal Variations in Water Flux and Its Components with Stable Isotopic Tracers
Abstract
:1. Introduction
2. Experiments
2.1. Study Site and Routine Water and Heat Observation
2.2. In Situ Isotopic and Supporting Dataset Measurements
2.3. Iso-SPAC Model
2.4. Sensitivity Analysis of Iso-SPAC Model
3. Results
3.1. Energy and Water Fluxes
3.2. Isotope Composition in Water Flux
3.3. Transpiration Fraction
3.4. Diurnal Controls of Transpiration Fraction
4. Discussion
4.1. Diurnal Water Flux Partitioning
4.2. Isotopic Insights of Water Flux Dynamics into Atmospheric Moisture and Implications
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix A.1. Parameterization of Heat and Water Fluxes and Partitioning of Energy/Water Flux
Appendix A.2. Three Sub-Models for the Estimation of δTr
Appendix A.3. Model 1: Isotopic Steady-State (ISS)
Appendix A.4. Model 2: Non Steady State (NSS)
Appendix A.5. Nonsteady State (NSS) with Péclet Model
Appendix A.6. Estimation of δEv
Appendix A.7. Estimation of δE
References
- Yakir, D.; Wang, X.F. Fluxes of CO2 and water between terrestrial vegetation and the atmosphere estimated from isotope measurements. Nature 1996, 380, 515–517. [Google Scholar] [CrossRef]
- Yepez, E.A.; Williams, D.G.; Scott, R.L.; Lin, G. Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotopic composition of water vapor. Agric. Meteorol. 2003, 119, 53–68. [Google Scholar] [CrossRef]
- Good, S.P.; Noone, D.; Bowen, G. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science 2015, 349, 175. [Google Scholar] [CrossRef] [PubMed]
- Katul, G.G.; Oren, R.; Manzoni, S.; Higgins, C.; Parlange, M.B. Evapotranspiration: A process driving mass transport and energy exchange in the soil–plant–atmosphere–climate system. Rev. Geophys. 2012, 50, 1209–8755. [Google Scholar] [CrossRef]
- Wang, P.; Deng, Y.; Li, X.-Y.; Wei, Z.; Hu, X.; Tian, F.; Wu, X.; Huang, Y.; Ma, Y.-J.; Zhang, C.; et al. Dynamical effects of plastic mulch on evapotranspiration partition in a mulched agriculture ecosystem: Measurement with numerical modeling. Agric. Meteorol. 2019, 268, 98–108. [Google Scholar] [CrossRef]
- Williams, D.G.; Cable, W.; Hultine, K.; Hoedjes, J.C.B.; Yepez, E.A.; Simonneaux, V.; Er-Raki, S.; Boulet, G.; de Bruin, H.A.R.; Chehbouni, A.; et al. Components of evapotranspiration in an olive orchard determined by eddy covariance, sap flow and stable isotope techniques. Agric. Meteorol. 2004, 125, 241–258. [Google Scholar] [CrossRef]
- Aouad, G.; Ezzahar, J.; Amenzou, N.; Er-Raki, S.; Benkaddour, A.; Khabba, S.; Jarlan, L. Combining stable isotopes and micrometeorological measurements for partitioning evapotranspiration of winter wheat into soil evaporation and plant transpiration in a semi-arid region. Agric. Water Manag. 2016, 177, 181–192. [Google Scholar] [CrossRef]
- Jelka, B.; Christian, M.; Alexander, K. Eddy covariance measurements of the dual-isotope composition of evapotranspiration. Agric. Meteorol. 2019, 269, 203–219. [Google Scholar]
- Maria, Q.; Anne, K.; Alexander, G.; Nicolas, B.; Youri, R. In-situ monitoring of soil water isotopic composition for partitioning of evapotranspiration during one growing season of sugar beet (Beta vulgaris). Agric. Meteorol. 2019, 266, 53–64. [Google Scholar]
- Wei, Z.; Yoshimura, K.; Okazaki, A.; Ono, K.; Kim, W.; Yokoi, M.; Lai, C.T. Understanding the variability of water isotopologues in near-surface atmospheric moisture over a humid subtropical rice paddy in Tsukuba, Japan. J. Hydrol. 2016, 533, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Liu, X.; Wang, N.; Kong, Y.; Song, Y.; He, Z.; Liu, Q.; Wang, L. Contribution of recycled moisture to local precipitation in the inland Heihe River Basin. Agric. Meteorol. 2019, 271, 316–335. [Google Scholar] [CrossRef]
- Penna, D.; Hopp, L.; Scandellari, F.; Allen, S.T.; Benettin, P.; Beyer, M.; Geris, J.; Klaus, J.; Marshall, J.D.; Schwendenmann, L.; et al. Ideas and perspectives: Tracing terrestrial ecosystem water fluxes using hydrogen and oxygen stable isotopes–challenges and opportunities from an interdisciplinary perspective. Biogeosciences 2018, 15, 6399–6415. [Google Scholar] [CrossRef]
- Griffis, T.J. Tracing the flow of carbon dioxide and water vapor between thebiosphere and atmosphere: A review of optical isotope techniques and their application. Agric. Meteorol. 2013, 174, 85–109. [Google Scholar] [CrossRef]
- Ménard, C.B.; Ikonen, J.; Rautiainen, K.; Aurela, M.; Arslan, A.N.; Pulliainen, J. Effects of Meteorological and Ancillary Data, Temporal Averaging, and Evaluation Methods on Model Performance and Uncertainty in a Land Surface Model. J. Hydrometeorol. 2015, 16, 2559–2576. [Google Scholar] [CrossRef]
- Shuttleworth, W.J.; Wallace, J. Evaporation from sparse crops–an energy combination theory. Q. J. R. Meteorol. Soc. 1985, 111, 839–855. [Google Scholar] [CrossRef]
- Wang, P.; Yamanaka, T. Application of a two-source model for partitioning evapotranspiration and assessing its controls in temperate grasslands in central Japan. Ecohydrology 2014, 7, 345–353. [Google Scholar] [CrossRef]
- Norman, J.M.; Anderson, M.C.; Kustas, W.P.; French, A.N.; Mecikalski, J.; Torn, R.; Diak, G.R.; Schmugge, T.J.; Tanner, B.C.W. Remote sensing of surface energy fluxes at 101-m pixel resolutions. Water Resour. Res. 2003, 39, 1221. [Google Scholar] [CrossRef]
- Norman, J.M.; Becker, F. Terminology in thermal infrared remote sensing of natural surfaces. Agric. Meteorol. 1995, 77, 153–166. [Google Scholar] [CrossRef]
- Anderson, M.C.; Norman, J.M.; Mecikalski, J.R.; Torn, R.D.; Kustas, W.P.; Basara, J.B. A multiscale remote sensing model for disaggregating regional fluxes to micrometeorological scales. J. Hydrometeorol. 2004, 5, 343–363. [Google Scholar] [CrossRef]
- Braud, I.; Dantas-Antonino, A.; Vauclin, M.; Thony, J.; Ruelle, P. A simple soil-plant-atmosphere transfer model (SiSPAT) development and field verification. J. Hydrol. 1995, 166, 213–250. [Google Scholar] [CrossRef]
- Braud, I.; Bariac, T.; Gaudet, J.P.; Vauclin, M. SiSPAT-Isotope, a coupled heat, water and stable isotope (HDO and H218O) transport model for bare soil. Part, I. Model description and first verifications. J. Hydrol. 2005, 309, 277–300. [Google Scholar] [CrossRef]
- Braud, I.; Bariac, Z.; Vauclin, M.; Boujamlaoui, Z.; Gaudet, J.; Biron, P.; Richard, P. SiSPAT-Isotope, a coupled heat, water and stable isotope (HDO and H218O) transport model for bare soil. Part II. Evaluation and sensitivity tests using two laboratory data sets. J. Hydrol. 2005, 309, 301–320. [Google Scholar] [CrossRef]
- Wang, P.; Yamanaka, T.; Li, X.-Y.; Wei, Z. Partitioning evapotranspiration in a temperate grassland ecosystem: Numerical modeling with isotopic tracers. Agric. Meteorol. 2015, 208, 16–31. [Google Scholar] [CrossRef]
- Wang, P.; Li, X.Y.; Huang, Y.; Liu, S.; Xu, Z.; Wu, X.; Ma, Y. Numerical modeling the isotopic composition of evapotranspiration in an arid artificial oasis cropland ecosystem with high–frequency water vapor isotope measurement. Agric. Meteorol. 2016, 230, 79–88. [Google Scholar] [CrossRef]
- Wei, Z.; Lee, X.; Wen, X.; Xiao, W. Evapotranspiration partitioning for three agro-ecosystems with contrasting moisture conditions: A comparison of an isotope method and a two-source model calculation. Agric. Meteorol. 2018, 252, 296–310. [Google Scholar] [CrossRef]
- Wei, Z.; Yoshimura, K.; Okazaki, A.; Kim, W.; Liu, Z.; Yokoi, M. Partitioning of evapotranspiration using high-frequency water vapor isotopic measurement over a rice paddy field. Water Resour. Res. 2015, 51, 3716–3729. [Google Scholar] [CrossRef]
- Riley, W.; Still, C.; Torn, M.; Berry, J. A mechanistic model of H218O and C18OO fluxes between ecosystems and the atmosphere: Model description and sensitivity analyses. Glob. Biogeochem. Cycles 2002, 16, 1095. [Google Scholar] [CrossRef]
- Lai, C.T.; Ehleringer, J.R.; Bond, B.J.; Paw, U.K.T. Contributions of evaporation, isotopic non-steady state transpiration and atmospheric mixing on the δ18O of water vapor in Pacific Northwest coniferous forests. Plant Cell Environ. 2005, 29, 77–94. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Cernusak, L.A. On the isotopic composition of leaf water in the non-steady state. Funct. Plant Biol. 2005, 32, 293–303. [Google Scholar] [CrossRef] [Green Version]
- Dubbert, M.; Cuntz, M.; Piayda, A.; Werner, C. Oxygen isotope signatures of transpired water vapor: The role of isotopic non-steady-state transpiration under natural conditions. New Phytol. 2014, 203, 1242–1252. [Google Scholar] [CrossRef]
- Dongmann, G.; Nürnberg, H.W.; Förstel, H.; Wagener, K. On the enrichment of H218O in the leaves of transpiring plants. Radiat. Environ. Biophys. 1974, 11, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Ogée, J.; Cuntz, M.; Peylin, P.; Bariac, T. Non-steady-state, non-uniform transpiration rate and leaf anatomy effects on the progressive stable isotope enrichment of leaf water along monocot leaves. Plant Cell Environ. 2007, 30, 367–387. [Google Scholar] [CrossRef] [PubMed]
- Cuntz, M.; Ogee, J.; Farquhar, G.D.; Peylin, P.; Cernusak, L.A. Modelling advection and diffusion of water isotopologues in leaves. Plant Cell Environ. 2007, 30, 892–909. [Google Scholar] [CrossRef] [PubMed]
- Dubbert, M.; Werner, C. Water fluxes mediated by vegetation: Emerging isotopic insights at the soil and atmosphere interfaces. New Phytol. 2019, 221, 1754–1763. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Asanuma, J.; Xu, J.; Onda, Y. A database of water and heat observations over grassland in the north-east of Japan. Earth Syst. Sci. Data 2018, 10, 2295–2309. [Google Scholar] [CrossRef] [Green Version]
- Yamanaka, T.; Tsunakawa, A. Isotopic signature of evapotranspiration flux and its use for partitioning evaporation/transpiration components. Tsukuba Geoenviron. Sci. 2007, 3, 11–21. [Google Scholar]
- Yamanaka, T.; Onda, Y. On measurement accuracy of liquid water isotope analyzer based on wavelength-scanned cavity ring-down spectroscopy (WS-CRDS). Bull. Terr. Environ. Res. Cent. Univ. Tsukuba 2011, 12, 31–40. [Google Scholar]
- Craig, H.; Gordon, L.I. Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In Stable Isotopes in Oceanographic Studies and Palaiotemperatures; Tongiorgi, E., Ed.; Lab. Geol. Nucl.: Pisa, Italy, 1965; pp. 1–122. [Google Scholar]
- Yabusaki, S.; Tase, N. Formation Process of vertical profile of stable isotopes in soil water at TERC. Bull. Terr. Environ. Res. Cent. Univ. Tsukuba 2007, 8, 17–26. [Google Scholar]
- Breshears, D.D. The grassland-forest continuum: Trends in ecosystem properties for woody plant mosaics? Front. Ecol. Environ. 2006, 4, 96–104. [Google Scholar] [CrossRef]
- Wang, L.; Caylor, K.K.; Villegas, J.C.; Barron-Gafford, G.A.; Breshears, D.D.; Huxman, T.E. Partitioning evapotranspiration across gradients of woody plantcover: Assessment of a stable isotope technique. Geophys. Res. Lett. 2010, 37, L09401. [Google Scholar] [CrossRef]
- Tong, Y.; Wang, P.; Li, X.-Y.; Wang, L.; Wu, X.; Shi, F.; Bai, Y.; Li, E.; Wang, J.; Wang, Y. Seasonality of the transpiration fraction and its controls across typical ecosystems within the Heihe River Basin. J. Geophys. Res. Atmos. 2019, 124, 1277–1291. [Google Scholar] [CrossRef]
- Wang, P.; Li, X.Y.; Wang, L.X.; Wu, X.C.; Hu, X.; Fan, Y.; Tong, Y.Q. Divergent evapotranspiration partition dynamics between shrubs and grasses in a shrub-encroached steppe ecosystem. New Phytol. 2018, 219, 1325–1337. [Google Scholar] [CrossRef] [PubMed]
- Welp, L.R.; Lee, X.; Kim, K.; Grifronfis, T.J.; Billmark, K.A.; Baker, J.M. δ18O of water vapour, evapotranspiration and the sites of leaf water evaporation in asoybean canopy. Plant Cell Environ. 2008, 31, 1214–1228. [Google Scholar] [CrossRef] [PubMed]
Variables | Eddy Correlation System | Height of Measurement (m) |
---|---|---|
Net radiation, Rn | (aCN-81, EKO, Tokyo, Japan) | 1.6 |
Soil heat flux, G | (bCN-11, EKO, Tokyo, Japan) | −0.05 |
Air temperature, Ta relative humidity, ha | (cCVS-HMP45D, Climatec Inc., Tokyo, Japan) | 1.6 |
Sensible heat flux, H | (dDA-650, Kaijo, Tokyo, Japan) | 1.6 |
Variables | Equipment | Measurements |
---|---|---|
Air temperature, Ta | Ventilated thermometer, (aPFT-01, PREDE, Japan) | 3 or 4 levels, 5 min interval |
Air humidity, ha | Ventilated hygrometer, (bCHS-APS, TDK, Japan) | |
Leaf temperature, TL | Infrared-radiation-thermometer, (cPT-7LD, Optex, Shiga, Japan) | 60 repetition per |
Leaf area index, LAI | Automatic area meter, (dAAM -7, Hayashi Denko, Japan) | 3 repetitions |
Leaf water content, W | Gravimetric | 3 repetition |
Soil water content, θ | Soil moisture meter, (eDIK-311C, Daiki, Japan) | 15 repetition per hour |
Sub-Models | Reference | dδTr and eδE | |||
---|---|---|---|---|---|
ISS | Péclet Number | W fVariation | NSS | ||
ISS modela | Craig and Gordon (1965), [38] | Yes | No | No | No |
NSS modelb | Dongmann et al. (1974), [31] | No | No | No | Yes |
NSS Pécletc model | Farquhar and Cernusak (2005), [29] | No | Yes | Yes | Yes |
Model Input | uE | vTr/E | wδEv | xδTr | yδE | |
---|---|---|---|---|---|---|
Parameters | arst_min | −0.28 | −0.08 | 0.00 | −0.53 | −0.18 |
brst_max | −0.01 | 0.00 | 0.00 | −0.01 | 0.00 | |
cαV | −0.17 | −0.02 | 0.00 | −0.03 | −0.04 | |
dαG | −0.01 | 0.01 | −0.01 | 0.00 | 0.01 | |
eCLAI | 0.02 | 0.06 | −0.07 | 0.03 | 0.10 | |
frss | −0.05 | 0.06 | −0.12 | 0.00 | 0.05 | |
Variables | gSd | 0.72 | 0.00 | 0.07 | 0.21 | 0.10 |
hLd | 0.84 | −0.03 | 0.17 | 0.33 | 0.03 | |
iu | 0.08 | 0.00 | −0.17 | 0.19 | −0.05 | |
jTa | 0.74 | 0.21 | −0.38 | 0.93 | 0.56 | |
kha | −1.31 | 0.12 | −0.80 | 0.93 | 0.03 | |
lP | −0.04 | −0.01 | 0.01 | 0.01 | 0.00 | |
mLAI | 0.42 | 0.26 | −0.06 | 0.55 | 0.13 | |
nZv | 0.23 | 0.03 | 0.01 | 0.46 | 0.08 | |
oTsoil | 0.24 | −0.17 | 0.43 | 0.17 | −0.19 | |
pθ | 0.42 | 0.12 | 0.00 | 0.00 | 0.00 | |
Isotope budget | qW | N/A | N/A | 0.00 | −0.52 | 0.02 |
rδV | N/A | N/A | 1.07 | 0.07 | 0.59 | |
sδS | N/A | N/A | 0.70 | 0:00 | 0.51 | |
tδX | N/A | N/A | 0.00 | 0.99 | 0.41 |
Flux | Unit | fRMSD | gI Index | hR2 | in |
---|---|---|---|---|---|
aRn | (W m−2) | 29 | 0.99 | 0.99 | 75 |
blE | 39 | 0.96 | 0.98 | 75 | |
cH | 42 | 0.94 | 0.94 | 75 | |
dG | 12.6 | 0.96 | 0.94 | 75 | |
eTL | °C | 1.07 | 0.99 | 0.98 | 18 |
aDOY | Time Interval | Linear Equation | bδE (‰) |
---|---|---|---|
203 | 9:00~10:00 | cy = −0.03xd − 14.03 | −14.03 |
13:00~14:00 | y = 0.05x − 9.68 | −9.68 | |
17:00~18:00 | y = 0.08x − 17.01 | −17.01 | |
243 | 9:00~10:00 | y = −0.03x − 10.94 | −10.94 |
13:00~14:00 | y = −0.05x − 16.02 | −16.02 | |
17:00~18:00 | y = −0.11x − 20.74 | −20.74 | |
296 | 9:00~10:00 | y = −0.008x − 15.79 | −15.79 |
12:00~13:00 | y = −0.039x − 12.17 | −12.17 | |
15:00~16:00 | y = −0.035x − 17.05 | −17.05 |
Sub-module | ISSa | NSSb | NSS Pécletc | nd |
---|---|---|---|---|
eR2 | 0.43 | 0.52 | 0.51 | 18 |
fI index | 0.99 | 0.99 | 0.99 | 18 |
gRMSD ‰ | 3.44 | 2.72 | 2.69 | 18 |
Reference | Ecosystem Type (Location) | Time Scale | aδE | |||
---|---|---|---|---|---|---|
bR2 | cRMSD (‰) | dI | en | |||
Wang et al., 2015 [23] | Temperate grassland (Ibaraki, Japan) | Seasonal | 0.26 | 2.08 | 0.40 | 14 |
Wang et al., 2016 [24] | Corn agroecosystem (Gansu, China) | Seasonal | N/A | 5.32 | 0.60 | 956 |
fWei et al., 2018 [25] | Wheat agroecosystem (Luancheng, China) | Seasonal | 0.74 | 2.63 | 0.92 | N/A |
Corn agroecosystem (Luancheng, China) | Seasonal | 0.82 | 2.74 | 0.93 | N/A | |
This study | Temperate grassland (Ibaraki, Japan) | Diurnal | 0.52 | 2.69 | 0.99 | 18 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Deng, Y.; Wei, Z. Modeling Investigation of Diurnal Variations in Water Flux and Its Components with Stable Isotopic Tracers. Atmosphere 2019, 10, 403. https://doi.org/10.3390/atmos10070403
Wang P, Deng Y, Wei Z. Modeling Investigation of Diurnal Variations in Water Flux and Its Components with Stable Isotopic Tracers. Atmosphere. 2019; 10(7):403. https://doi.org/10.3390/atmos10070403
Chicago/Turabian StyleWang, Pei, Yujing Deng, and Zhongwang Wei. 2019. "Modeling Investigation of Diurnal Variations in Water Flux and Its Components with Stable Isotopic Tracers" Atmosphere 10, no. 7: 403. https://doi.org/10.3390/atmos10070403
APA StyleWang, P., Deng, Y., & Wei, Z. (2019). Modeling Investigation of Diurnal Variations in Water Flux and Its Components with Stable Isotopic Tracers. Atmosphere, 10(7), 403. https://doi.org/10.3390/atmos10070403