Next Article in Journal
Comparison Analysis of Total Precipitable Water of Satellite-Borne Microwave Radiometer Retrievals and Island Radiosondes
Previous Article in Journal
Correlation of Near-Inertial Wind Stress in Typhoon and Typhoon-Induced Oceanic Near-Inertial Kinetic Energy in the Upper South China Sea
Previous Article in Special Issue
Generalized Electric Field Equations of a Time-Varying Current Distribution Based on the Electromagnetic Fields of Moving and Accelerating Charges
Article Menu

Export Article

Open AccessArticle

Observations of Thermally-Driven Winds in a Small Valley during the 21 August 2017 Solar Eclipse

1
Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22903, USA
2
Department of Earth Sciences, Montana State University, Bozeman, MT 59717, USA
3
Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
4
Earth Research Institute, University of California, Santa Barbara, CA 93106, USA
*
Author to whom correspondence should be addressed.
Atmosphere 2019, 10(7), 389; https://doi.org/10.3390/atmos10070389
Received: 26 June 2019 / Revised: 6 July 2019 / Accepted: 8 July 2019 / Published: 12 July 2019
(This article belongs to the Special Issue 10th Anniversary of Atmosphere: Climatology and Meteorology)
  |  
PDF [28422 KB, uploaded 12 July 2019]
  |  

Abstract

On the afternoon of 21 August 2017, a partial solar eclipse occurred over the Blue Ridge Mountains in central Virginia, USA. High-resolution meteorological observations were made on the floor of a small valley to investigate the effect of eclipse-induced cooling on thermally-driven winds. Measurements taken both at the surface and in the lower atmosphere indicate cooling throughout much of the atmospheric boundary layer. Multiple surface weather stations observed wind rotations that occurred both during and after the eclipse, as wind direction shifted from upvalley to downvalley and back to upvalley. The direction of these rotations (clockwise vs. counterclockwise) varied between stations and was strongly influenced by the proximity of the stations to topographic features in the valley. Doppler lidar observations over the valley floor show a 300 m thick layer of downvalley winds that formed below a deeper layer of upvalley winds. Changes in boundary layer winds and structure during the solar eclipse are similar to changes during the morning and evening transitions. However, the subtle differences in the direction of wind rotations between diurnal- and eclipse-transition periods provided important new insights into the interaction between slope- and valley flows, incoming solar radiation, and topographic features. View Full-Text
Keywords: solar eclipse; atmospheric boundary layer; valley winds solar eclipse; atmospheric boundary layer; valley winds
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material

  • Externally hosted supplementary file 1
    Doi: 10.5281/zenodo.3257670
    Link: https://zenodo.org/record/3257670
    Description: Timelapse photos of cloud cover between 12:00 - 16:00 EDT on 21 August 2017.
SciFeed

Share & Cite This Article

MDPI and ACS Style

Palomaki, R.T.; Babić, N.; Duine, G.-J.; van den Bossche, M.; De Wekker, S.F.J. Observations of Thermally-Driven Winds in a Small Valley during the 21 August 2017 Solar Eclipse. Atmosphere 2019, 10, 389.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Atmosphere EISSN 2073-4433 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top