Roadside Moss Turfs in South East Australia Capture More Particulate Matter Along an Urban Gradient than a Common Native Tree Species
Abstract
:1. Introduction
2. Methods
2.1. Study Location
2.2. Site Selection
2.3. Air Quality Monitoring
2.4. Tree Leaf and Moss Sampling
2.5. Dark Adaptation
2.6. Particulate Matter Extraction
2.7. Leaf PM Extraction
2.8. Moss PM Extraction
2.9. Analysis
3. Results
3.1. Verification of Site Categorisation Using Ambient PM2.5 Measurements
3.2. Particulate Matter
3.3. Size Fractions
3.4. Moss Versus Tree
3.5. In Wax PM and Wax Content
3.6. Chlorophyll Fluorescence
3.7. Moss Species
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McKinney, M.L. Urbanization, Biodiversity and Conservation. Biosience 2002, 52, 883–890. [Google Scholar] [CrossRef]
- Duncan, R.P.; Clemants, S.E.; Corlett, R.T.; Hahs, A.K.; McCarthy, M.A.; McDonnell, M.J.; Schwartz, M.W.; Thompson, K.; Vesk, P.A.; Williams, N.S. Plant traits and extinction in urban areas: A meta-analysis of 11 cities. Global Ecol. Biogeogr. 2011, 20, 509–519. [Google Scholar] [CrossRef]
- Wright, P.L.; Zang, L.; Chang, I.; Aherne, J.; Wentworth, G.R. Impacts and effects indicators of Atmospheric Deposition of Major Pollutants to Various Ecosystems. Aerosol Air Qual. Res. 2018, 18, 1953–1992. [Google Scholar] [CrossRef]
- Reinert, R.A. Plant Response to Air Pollutant Mixtures. Ann. Rev. Phytopathol. 1984, 22, 421–442. [Google Scholar] [CrossRef]
- Heath, R. Initial events in injury in plants by air pollutants. Annu. Rev. Plant Physiol. 1980, 31, 395–431. [Google Scholar] [CrossRef]
- Salt, D.E.; Smith, R.D.; Raskin, I. Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998, 49, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Wolverton, B.C.; McDonald, R.C.; Watkins, E.A. Foliage Plants for Removing Indoor Air Pollutants from Energy-Efficient Homes. Econo. Bot. 1984, 8, 224–228. [Google Scholar] [CrossRef]
- Buccolieri, R.; Jeanjean, A.P.R.; Gatto, E.; Leigh, R.J. The impact of trees on street ventilation, NOx and PM2.5 concentrations across heights in Marylebone Rd street canyon, central London. Sustain. Cities Soc. 2018, 41, 217–241. [Google Scholar] [CrossRef]
- D’Amato, G. Thunderstorm-related asthma attacks. J. Allergy Clin. Immunol. 2007, 139, 1786–1787. [Google Scholar] [CrossRef]
- UN. Our Urbanizing World, POPFACTS, No. 2014/3. 2014. Available online: https://www.un.org/en/development/desa/population/publications/pdf/popfacts/PopFacts_2014-3.pdf (accessed on 15 August 2014).
- Bergin, M.S.; West, J.J.; Keating, J.J.; Russsell, R.A. Regional Atmospheric Pollution and Transboundary Air Quality Management. Annu. Rev. Environ. Resource. 2005, 30, 1–37. [Google Scholar] [CrossRef]
- Australian Department of Energy and Environment. Fact Sheets on Air Pollution. Available online: http://www.environment.gov.au/protection/publications/factsheet-global-environmental-health-and-air-pollution. Accessed February 2019 (accessed on 28 February 2019).
- Bobbink, R.; Hornung, M.; Roelofs, J.G.M. The effects of air-borne nitrogen nutrients on species diversity in natural and semi-natural European vegetation. J. Ecology 1998, 86, 717–738. [Google Scholar] [CrossRef]
- Grantz, D.A.; Garner, J.H.B.; Johnson, D.W. Ecological effects of particulate matter. Environ. Int. 2003, 29, 213–239. [Google Scholar] [CrossRef]
- Laurence, J.A.; Weinstein, L.H. Effects of Air Pollution on Plant Productivity. Ann. Rev. Phytopathol. 1981, 19, 257–271. [Google Scholar] [CrossRef]
- Dugger, W.M.; Ting, I.P. Air pollution oxidants—Their effects on metabolic processes in plants. Annu. Rev. Plant Physiol. 1970, 21, 215–234. [Google Scholar]
- Seco, R.; Penuelas, J.; Filella, I. Short-chain oxygenated VOCs: Emission and uptake by plants and atmospheric sources, sinks, and concentrations. Atmos. Environ. 2007, 41, 2477–2499. [Google Scholar] [CrossRef]
- Ning, X.; Ji, X.; Li, G.; Sang, N. Ambient PM2.5 causes lung injuries and coupled energy metabolic disorder. Ecotox. Environ. Safe. 2019, 170, 620–626. [Google Scholar] [CrossRef]
- A Comparative Risk Assessment of Burden of Disease and Injury Attributable to 67 Risk Factors and Risk Factor Clusters in 21 Regions, 1990–2010: A Systematic Analysis for the Global Burden of Disease Study 2010. Available online: https://www.ncbi.nlm.nih.gov/pubmed/23245609 (accessed on 28 February 2018).
- Dockery, D.W.; Xu, X.; Spengler, J.D.; Ware, J.H.; Fay, M.E.; Ferns, B.G.; Speizer, F.E. An association between air pollution and mortality in six US cities. N. Engl. J. Med. 1993, 329, 1753–1759. [Google Scholar] [CrossRef]
- Proctor, M.C.F. Experiments on the effect of different intensities of desiccation on bryophyte survival, using chlorophyll fluorescence as anindex of recovery. J. Bryol. 2003, 25, 201–210. [Google Scholar] [CrossRef]
- Popek, R.; Przybysz, A.; Gawronska, H.; Klamkowski, K.; Gawronski, S.W. Impact of particulate matter accumulation on the photosynthetic apparatus of roadside woody plants growing in the urban conditions. Ecotoxicol. Environ. Safe. 2018, 163, 56–62. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Davies, M.; Ecroyd, H.; Robinson, S.A.; French, K. Stress in native grasses under ecologically relevant heat waves. PLoS ONE 2018, 13, e0204906. [Google Scholar] [CrossRef]
- Shi, S.; Wu, Z.; Liu, F.; Fan, W. Retention of Atmospheric Particles by Local Plant Leaves in the Mount Wutai Scenic Area, China. Atmosphere 2016, 7, 104. [Google Scholar] [CrossRef]
- Saeobo, A.; Popek, R.; Nawrot, B.; Hanslin, H.M.; Gawronska, H.; Gawronski, S.W. Plant species differences in particulate matter accumulation on leaf surfaces. Sci. Total Environ. 2012, 427, 347–354. [Google Scholar] [CrossRef]
- Eldridge, D.; Tozer, M.E. A Practical Guide to Soil Lichens and Bryophytes of Australia’s Dry Country; Department of Land and Water Conservation: Sydney, Australia, 1997.
- Spagnulo, V.; Zampella, M.; Giordano, S.; Adamo, P. Cytological stress and element uptake in moss and lichen exposed in bags in urban area. Ecotoxicol. Environ. Saf. 2014, 74, 1434–1443. [Google Scholar] [CrossRef] [PubMed]
- Di Palma, A.; Capozzi, F.; Spagnuolo, V.; Giordano, S. Atmospheric particulate matter intercepted by moss-bags: Relations to moss trace element uptake and land use. Chemosphere 2017, 176, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, J.A.; Boquette, M.T.; Carballeira, A.; Aboal, J.R. A critical review of protocols for moss biomonitoring of atmospheric deposition: Sampling and sample preparation. Sci. Total Environ. 2018, 517, 132–150. [Google Scholar] [CrossRef]
- Ducceschi, L.; Legittimo, P.C.; Bonzi, L.M. Heavy Metals in Moss and Bark from Urban Area of Florence: A New Cleaness Procedure for Removing Superficial Particulate Matter. Chem. Ecol. 1999, 16, 119–141. [Google Scholar] [CrossRef]
- Franchini, M.; Mannucci, P.M. Mitigation of air pollution by greenness: A narrative review. Eur. J. Intern. Med. 2018, 55, 1–5. [Google Scholar] [CrossRef]
- Janahall, S. Review on urban vegetation and particle air pollution: Deposition and dispersal. Atmos. Environ. 2015, 105, 130–137. [Google Scholar] [CrossRef]
- Alberti, M.; Botsford, E.; Cohen, A. Quantifying the Urban Gradient: Linking Urban Planning and Ecology. Available online: https://link.springer.com/chapter/10.1007/978-1-4615-1531-9_5 (accessed on 28 February 2019).
- Mallen-Cooper, M.; Eldridge, D. Laboratory-based techniques for assessing the functional traits of biocrusts. Plant Soil 2016, 406. [Google Scholar] [CrossRef]
- Australian Bureau of Statistics. 2016. Available online: https://quickstats.censusdata.abs.gov.au/census_services/getproduct/census/2016/quickstat/LGA18450 (accessed on 28 February 2019).
- Chang, L.T.; Scorgie, Y.; Trieu, T. Air Quality Trends in the Illawarra; Office of Environment and Heritage: Sydney, Australia, 2015.
- Carslaw, D.C.; Ropkins, K. Openair—An R package for air quality data analysis. Environ. Model. Softw. 2012, 27–28, 52–61. [Google Scholar] [CrossRef]
- Dzierzanowski, K.; Popek, R.; Gawronska, H.; Saebo, A.; Gawronski, S.W. Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species. Int. J. Phytoremediation 2011, 13, 1037–1046. [Google Scholar] [CrossRef]
- Ganeva, T.; Stefanova, M.; Koleva, D.; Ruiz, S.R. Isolation and recrystallisation of epicuticular waxes from Sorbus and Cotoneaster leaves. Open Life Sci. 2015, 38, 3033–3044. [Google Scholar]
- Robinson, S.A.; Wasley, J.; Popp, M.; Lovelock, C.E. Desiccation tolerance of three moss species from continental Antarctica. Aust. J. Plant Physiol. 2000, 2, 379–388. [Google Scholar] [CrossRef]
- Scott, G.A.M.; Stone, I.G. The Mosses of Southern Australia; Academic Press: London, UK, 1976. [Google Scholar]
- Catcheside, D.G. Mosses of South Australia; Government Printer: Adelaide, Australia, 1980.
- Popek, R.; Gawronska, H.; Wrochna, M.; Gawronski, S.W.; Saebo, A. Particulate matter on foliage of 13 woody species: Deposition on surfaces and phytostabilisation in waxes—A 3-year study. Int. J. Phytoremediation 2013, 15, 245–256. [Google Scholar] [CrossRef]
- Wei, H.; Lang, F.; Cheng, W.; Feng, Y.; Yang, W. The mechanisms for lung cancer risk of PM2.5. Environ. Toxicol. 2017, 32, 2341–2351. [Google Scholar] [CrossRef] [PubMed]
- Levy, I.; Mihele, C.; Lu, G.; Narayan, J.; Brook, J.R. Evaluating Multipollutant Exposure and Urban Air Quality: Pollutant Interrelationships, Neighborhood Variability, and Nitrogen Dioxide as a Proxy Pollutant. Environ. Health Perspect. 2014, 122, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Izuta, T. Effects of black carbon and ammonium sulfate particles on plants. In Air Pollution Impacts on Plants in East Asia; Springer: Tokyo, Japan, 2017. [Google Scholar]
- Fangmeir, A.; Hawiger-Fangmeir, A.; Van der Eerden, L.; Jager, H.-J. Effects of atmospheric ammonia on vegetation—A review. Environ. Pollut. 1994, 86, 43–82. [Google Scholar] [CrossRef]
- Calfapietra, C.; Penuelas, J.; Niinemets, U. Urban plant physiology: adaptation-mitigation strategies under permanent stress. Trends Plant Sci. 2015, 20, 72–75. [Google Scholar] [CrossRef]
- Holbrook, N.M.; Lund, C.P. Photosynthesis in forest canopies. In Forest Canopies; Lowman, M.D., Nadkarni, N.M., Eds.; Academic Press: San Jose, CA, USA, 1995. [Google Scholar]
- Pickett, S.; Cadenasso, M.; Grove, J.; Boone, C.; Groffman, P.; Irwin, E.; Kaushal, S.; Marshall, V.; McGrath, P.; Nilon, C.; et al. Urban ecological systems: Scientific foundations and a decade of progress. J. Environ. Manage. 2011, 92, 331–362. [Google Scholar] [CrossRef]
- Schwarz, K.; Hermann, D.; McHale, M. Abiotic drivers of ecological structure and function in urban systems. In Urban Wildlife Conservation; Springer: Boston, MA, USA, 2014. [Google Scholar]
- Gleadow, R.M.; Narayan, I. Temperature thresholds for germination and survival of Pittosporum undulatum: implications for management by fire. Acta Oecologica. 2007, 31, 151–157. [Google Scholar] [CrossRef]
- Jouraeva, V.A.; Johnson, D.L.; Hassett, J.P.; Nowak, D.J. Differences in accumulation of PAHs and metals on the leaves of Tilia euchlora and Pyrus calleryana. Environ. Pollut. 2002, 120, 331–338. [Google Scholar] [CrossRef]
- Renault, H.; Alber, A.; Horst, N.A.; Basilio Lopes, A.; Rich, E.A.; Kriegshauser, L.; Wiedemann, G.; Ullmann, P.; Herrgott, L.; Erhardt, M.; et al. A phenol-enriched cuticle is ancestral to lignin evolution in plants. Nat. Commun. 2017, 8. [Google Scholar] [CrossRef]
- Spagnuolo, V.; Giordano, S.; Perez-Llamazares, A.; Ares, A.; Carballeira, A.; Fernandez, J.A.; Aboal, J.R. Distinguishing metal bioconcentration from particulate matter in moss tissue: Testing methods of removing particles attached to the moss surface. Sci. Total Environ. 2013, 463–464, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Paco, T.A.; Cameira, M.R.; Branquinho, C.; Cruz de Carvalho, R.; Luis, L.; Esprito-Santo, D.; Valente, F.; Brandao, C.; Soares, A.L. Innovative Green Roofs for Southern Europe: Biocrusts and Native Plants for Low Water Use. In Proceedings of the 40th IAHS World Congress on Housing, Funchal, Portugal, 16–19 December 2014. [Google Scholar]
- Drake, P.; Grimshaw-Surette, H.; Heim, A.; Lundholm, J. Mosses inhibit germination of vascular plants on an extensive green roof. Ecol. Eng. 2011, 117, 111–114. [Google Scholar] [CrossRef]
- Anderson, M.; Lambrinos, J.; Schroll, E. The potential value of mosses for stormwater management in urban environments. Urban Ecosyst. 2010, 13, 319–332. [Google Scholar] [CrossRef]
- Cruz, M.; Beckett, R. Bioreceptive design: A novel approach to biodigital materiality. Arq 2016, 20, 51–64. [Google Scholar] [CrossRef]
- Sempel, F.; Gorbachevskaya, O.; Mewis, I.; Ulrichs, C. Modellversuch zur Feinstaubbindung: Extensive Dachbergrunung vs Schotterdach. Gesunde Pflanzen 2013, 65, 113–118. [Google Scholar] [CrossRef]
- Splitgerber, V.; Saenger, P. City Tree: A Vertical Plant Wall. In Air Pollution XXIII 295; WIT Press: Southampton, UK, 2015. [Google Scholar]
- Belnap, J.; Weber, B.; Budel, B. Biological Soil Crusts as an Organizing Principle in Drylands. In Biological Soil Crusts as an Organizing Principle in Drylands, 2nd ed.; Springer: New York, NY, USA, 2016. [Google Scholar]
- Williams, N.S.; Schwartz, M.W.; Vesk, P.A.; McCarthy, M.A.; Hahs, A.K.; Clemants, S.E.; Corlett, R.T.; Duncan, R.P.; Norton, B.A.; Thompson, K.; et al. A Conceptual Framework for Predicting the Effects of Urban Environments on Floras. J. Ecology 2009, 9, 4–9. [Google Scholar] [CrossRef]
- Cheptou, P.O.; Carrue, O.; Rouifed, S.; Cantarel, A. Rapid evolution of seed dispersal in an urban environment in the weed Crepis sancta. PNAS 2008, 105, 3796–3799. [Google Scholar] [CrossRef]
- Kalusová, V.; Čeplová, N.; Lososová, Z. Which traits influence the frequency of plant species occurrence in urban habitat types? Urban Ecosyst. 2017, 20. [Google Scholar] [CrossRef]
Plant | Site | Class | PM100 | PM10 | PM2.5 | Total PM | Fv/Fm | Wax Content |
---|---|---|---|---|---|---|---|---|
Moss | Stanwell Park | Low | 4.15 | 2 | 0.43 | 6.58 | 0.76 (0.74–0.78) | 0.17 (0.12–0.24) |
Austinmer | ||||||||
Kembla Heights | ||||||||
Bulli | Medium | 13.18 | 3.06 | 0.6 | 16.84 | 0.62 (0.47–0.72) | 0.33 (0.26–0.36) | |
Balgownie | ||||||||
Figtree | ||||||||
Keiraville | High | 17 | 6.82 | 1.47 | 25.29 | 0.45 (0.32–0.72) | 0.36 (0.34–0.58) | |
Unanderra | ||||||||
Port Kembla | ||||||||
Tree | Stanwell Park | Low | 2.15 | 1.25 | 0.18 | 3.58 | 0.83 (0.82–0.84) | 1.68 (1.63–1.74) |
Austinmer | ||||||||
Kembla Heights | ||||||||
Bulli | Medium | 3.47 | 2.35 | 0.24 | 6.06 | 0.82 (0.80–0.83) | 1.84 (1.64–2.18) | |
Balgownie | ||||||||
Figtree | ||||||||
Keiraville | High | 4.47 | 2.73 | 0.42 | 7.62 | 0.81 (0.80–0.83) | 2.11 (1.67–3.01) | |
Unanderra | ||||||||
Port Kembla |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haynes, A.; Popek, R.; Boles, M.; Paton-Walsh, C.; Robinson, S.A. Roadside Moss Turfs in South East Australia Capture More Particulate Matter Along an Urban Gradient than a Common Native Tree Species. Atmosphere 2019, 10, 224. https://doi.org/10.3390/atmos10040224
Haynes A, Popek R, Boles M, Paton-Walsh C, Robinson SA. Roadside Moss Turfs in South East Australia Capture More Particulate Matter Along an Urban Gradient than a Common Native Tree Species. Atmosphere. 2019; 10(4):224. https://doi.org/10.3390/atmos10040224
Chicago/Turabian StyleHaynes, Alison, Robert Popek, Mitchell Boles, Clare Paton-Walsh, and Sharon A. Robinson. 2019. "Roadside Moss Turfs in South East Australia Capture More Particulate Matter Along an Urban Gradient than a Common Native Tree Species" Atmosphere 10, no. 4: 224. https://doi.org/10.3390/atmos10040224