Understanding Spatial Variability of Air Quality in Sydney: Part 2—A Roadside Case Study
Abstract
:1. Introduction
- The WASPSS-Auburn campaign (Western Air-Shed Particulate Study for Sydney in Auburn) provides an assessment of whether the local air quality monitoring stations give a good representation of pollutant concentrations at a site representative of a suburban balcony setting. The findings from this campaign are reported in a companion paper (“Understanding Spatial Variability of Air Quality in Sydney: Part 1—a Suburban Balcony Case Study” [44]).
- The RAPS campaign (Roadside Atmospheric Particulates in Sydney), described in this paper, provides a comparison of PM2.5 concentrations (at infant breathing height), near a busy road to reported PM2.5 from nearby statutory monitoring stations.
2. Experiments
2.1. Roadside Atmospheric Particulates in Sydney (RAPS)
- Are there significant hotspots at traffic lights and intersections as have been observed in overseas studies?
- Does roadside exposure to pollution vary significantly with the time of day?
- How different are roadside PM2.5 concentrations from those measured at nearby air quality monitoring stations?
- How well can our agent-based traffic model predict traffic in the Randwick study area?
2.2. Measurement Route and Study Area
2.3. Data Collection and Analysis
2.3.1. PM2.5 Measurements
2.3.2. Traffic Counting
2.4. Traffic Emissions Modelling Framework
3. Results and Discussion
3.1. Spatial Variability and Pollution Hotspots
3.2. Temporal Variability in Observed PM2.5 Concentrations
3.3. Comparison with Air Quality Monitoring Station Data
- Roadside PM2.5 concentrations by main roads are likely to be significantly higher than indicated by the nearby ambient air quality monitoring stations.
- Actual concentrations of PM2.5 are highly variable with hotspots near major intersections and places where vehicles accelerate (e.g., bus-stops).
- This means that locating a single air quality monitoring station at a roadside location will only show the pollution levels at that one specific location: Measurements at a large number of locations are needed to estimate pollution exposure for pedestrians as they walk along main roads.
- The increases in PM2.5 concentrations estimated here of 6 µg/m3 overall and 8 µg/m3 during the morning rush hour provide our first indicative estimate of likely additional exposure to PM2.5 (over the ambient air quality) for pedestrians walking along main roads in Sydney.
- We recommend walking along side-streets where possible, since the traffic related increase in PM2.5 of 3 µg/m3 that we observed on the side-streets was approximately half that observed along the main streets.
- Extra thought should be given to locating al fresco dining outlets along main roads given the likely additional exposure for those working roadside all day long.
3.4. Testing the Traffic Model
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Location Number | Location | Description |
---|---|---|
1 | Pedestrian crossing North of Anzac Pde and Allison St. | Pedestrian crossing over a 6-lane road, golf course and parkland surrounding. |
2 | Anzac Pde and Goodwood St. | Traffic intersection of a 6-lane road and a 2-lane road, building height 1-5 stories. |
3 | Anzac Pde and Todman Ave. | Traffic intersection of a 5-lane road and a 6-lane road, building height 2 stories. |
4 | Anzac Pde and High St. | Traffic intersection of a 6-lane road and a 4-lane road, building height 1-2 stories. |
5 | Anzac Pde and University Mall. | Traffic stop intersecting 6-lane road and large pedestrian walkway. At time of study period, only 4 traffic lanes operational. |
6 | Anzac Pde and Barker St. | Traffic intersection of two 4-lane roads, building height ranges from 1-8 stories. |
7 | Anzac Pde and Strachan St. | Traffic intersection of two 4-lane roads, building height approximately 2 stories. |
8 | Pedestrian crossing above the 9-ways roundabout. | Pedestrian crossing over 4-lane road, building height approximately 2 stories. |
Appendix B
Appendix C
References
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef]
- Segalin, B.; Kumar, P.; Micadei, K.; Fornaro, A.; Gonçalves, F.L.T. Size–segregated particulate matter inside residences of elderly in the Metropolitan Area of São Paulo, Brazil. Atmos. Environ. 2017, 148, 139–151. [Google Scholar] [CrossRef] [Green Version]
- Saadeh, R.; Klaunig, J. Child’s Development and Respiratory System Toxicity. J. Environ. Anal. Toxicol. 2014, 4. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, P. A review of factors surrounding the air pollution exposure to in-pram babies and mitigation strategies. Environ. Int. 2018, 120, 262–278. [Google Scholar] [CrossRef]
- Goldizen, F.C.; Sly, P.D.; Knibbs, L.D. Respiratory Effects of Air Pollution on Children. Pediatr. Pulmonol. 2016, 51, 94–108. [Google Scholar] [CrossRef] [PubMed]
- Clark, N.A.; Demers, P.A.; Karr, C.J.; Koehoorn, M.; Lencar, C.; Tamburic, L.; Brauer, M. Effect of Early Life Exposure to Air Pollution on Development of Childhood Asthma. Environ. Health Persp. 2010, 118, 284–290. [Google Scholar] [CrossRef]
- Gehring, U.; Wijga, A.H.; Brauer, M.; Fischer, P.; De Jongste, J.C.; Kerkhof, M.; Oldenwening, M.; Smit, H.A.; Brunekreef, B. Traffic-related air pollution and the development of asthma and allergies during the first 8 years of life. Am. J. Respir. Crit. Care Med. 2010, 181, 596–603. [Google Scholar] [CrossRef]
- Woodruff, T.J.; Parker, J.D.; Schoendorf, K.C. Fine particulate matter (PM2.5) air pollution and selected causes of postneonatal infant mortality in California. Environ. Health Persp. 2006, 114. [Google Scholar] [CrossRef]
- Basagaña, X.; Esnaola, M.; Rivas, I.; Amato, F.; Alvarez-Pedrerol, M.; Forns, J.; López-Vicente, M.; Pujol, J.; Nieuwenhuijsen, M.; Querol, X.; et al. Neurodevelopmental deceleration by urban fine particles from different emission sources: A longitudinal observational study. Environ. Health Persp. 2016, 124, 1630–1636. [Google Scholar] [CrossRef]
- Sunyer, J.; Esnaola, M.; Alvarez-Pedrerol, M.; Forns, J.; Rivas, I.; López-Vicente, M.; Suades-González, E.; Foraster, M.; Garcia-Esteban, R.; Basagaña, X.; et al. Association between Traffic-Related Air Pollution in Schools and Cognitive Development in Primary School Children: A Prospective Cohort Study. PLoS Med. 2015, 12, e1001792. [Google Scholar] [CrossRef]
- Gehring, U.; Gruzieva, O.; Agius, R.M.; Beelen, R.; Custovic, A.; Cyrys, J.; Eeftens, M.; Flexeder, C.; Fuertes, E.; Heinrich, J.; et al. Air pollution exposure and lung function in children: The ESCAPE project. Environ. Health Persp. 2013, 121, 11–12. [Google Scholar] [CrossRef]
- Heal, M.R.; Kumar, P.; Harrison, R.M. Particles, air quality, policy and health. Chem. Soc. Rev. 2012, 41, 6606–6630. [Google Scholar] [CrossRef] [PubMed]
- Zwozdziak, A.; Sówka, I.; Willak-Janc, E.; Zwozdziak, J.; Kwiecińska, K.; Balińska-Miśkiewicz, W. Influence of PM1 and PM2.5 on lung function parameters in healthy schoolchildren—A panel study. Environ. Sci. Pollut. Res. 2016, 23, 23892–23901. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.C.; McTainsh, G.; Leys, J.; McGowan, H.; Tews, K. Influence of the 23 October 2002 dust storm on the air quality of four Australian cities. Water Air Soil Pollut. 2005, 164, 329–348. [Google Scholar] [CrossRef]
- Rea, G.; Paton-Walsh, C.; Turquety, S.; Cope, M.; Griffith, D. Impact of the New South Wales fires during October 2013 on regional air quality in eastern Australia. Atmos. Environ. 2016, 131, 150–163. [Google Scholar] [CrossRef] [Green Version]
- Crawford, J.; Chambers, S.; Cohen, D.D.; Williams, A.; Griffiths, A.; Stelcer, E.; Dyer, L. Impact of meteorology on fine aerosols at Lucas Heights, Australia. Atmos. Environ. 2016, 145, 135–146. [Google Scholar] [CrossRef]
- Brines, M.; Dall’Osto, M.; Beddows, D.C.S.; Harrison, R.M.; Gómez-Moreno, F.; Núñez, L.; Artíñano, B.; Costabile, F.; Gobbi, G.P.; Salimi, F.; et al. Traffic and nucleation events as main sources of ultrafine particles in high-insolation developed world cities. Atmos. Chem. Phys. 2015, 15, 5929–5945. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Morawska, L.; Birmili, W.; Paasonen, P.; Hu, M.; Kulmala, M.; Harrison, R.M.; Norford, L.; Britter, R. Ultrafine particles in cities. Environ. Int. 2014, 66, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albriet, B.; Sartelet, K.N.; Lacour, S.; Carissimo, B.; Seigneur, C. Modelling aerosol number distributions from a vehicle exhaust with an aerosol CFD model. Atmos. Environ. 2010, 44, 1126–1137. [Google Scholar] [CrossRef]
- Kumar, P.; Morawska, L.; Martani, C.; Biskos, G.; Neophytou, M.; Di Sabatino, S.; Bell, M.; Norford, L.; Britter, R. The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 2015, 75, 199–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinle, S.; Reis, S.; Sabel, C.E. Quantifying human exposure to air pollution-Moving from static monitoring to spatio-temporally resolved personal exposure assessment. Sci. Total Environ. 2013, 443, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Greaves, S.; Issarayangyun, T.; Liu, Q. Exploring variability in pedestrian exposure to fine particulates (PM2.5) along a busy road. Atmos. Environ. 2008, 42, 1665–1676. [Google Scholar] [CrossRef]
- Kumar, P.; Patton, A.P.; Durant, J.L.; Frey, H.C. A review of factors impacting exposure to PM2.5, ultrafine particles and black carbon in Asian transport microenvironments. Atmos. Environ. 2018, 187, 301–316. [Google Scholar] [CrossRef]
- Bereitschaft, B. Pedestrian exposure to near-roadway PM2.5 in mixed-use urban corridors: A case study of Omaha, Nebraska. Sustain. Cities Soc. 2015, 15, 64–74. [Google Scholar] [CrossRef]
- Targino, A.C.; Gibson, M.D.; Krecl, P.; Rodrigues, M.V.C.; dos Santos, M.M.; de Paula Corrêa, M. Hotspots of black carbon and PM2.5 in an urban area and relationships to traffic characteristics. Environ. Pollut. 2016, 218, 475–486. [Google Scholar] [CrossRef]
- Goel, A.; Kumar, P. Characterisation of nanoparticle emissions and exposure at traffic intersections through fast-response mobile and sequential measurements. Atmos. Environ. 2015, 107, 374–390. [Google Scholar] [CrossRef]
- Schneider, I.L.; Teixeira, E.C.; Silva Oliveira, L.F.; Wiegand, F. Atmospheric particle number concentration and size distribution in a traffic–impacted area. Atmos. Pollut. Res. 2015, 6, 877–885. [Google Scholar] [CrossRef]
- Choudhary, A.; Gokhale, S. Urban real-world driving traffic emissions during interruption and congestion. Trans. Res. Part Trans. Environ. 2016, 43, 59–70. [Google Scholar] [CrossRef]
- Kumar, P.; Rivas, I.; Sachdeva, L. Exposure of in-pram babies to airborne particles during morning drop-in and afternoon pick-up of school children. Environ. Pollut. 2017, 224, 407–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hitchins, J.; Morawska, L.; Wolff, R.; Gilbert, D. Concentrations of submicrometre particles from vehicle emissions near a major road. Atmos. Environ. 2000, 34, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Kinney, P.L.; Gichuru, M.G.; Volavka-Close, N.; Ngo, N.; Ndiba, P.K.; Law, A.; Gachanja, A.; Gaita, S.M.; Chillrud, S.N.; Sclar, E. Traffic impacts on PM2.5air quality in Nairobi, Kenya. Environ. Sci. Policy 2011, 14, 369–378. [Google Scholar] [CrossRef]
- Wang, J.S.; Chan, T.L.; Ning, Z.; Leung, C.W.; Cheung, C.S.; Hung, W.T. Roadside measurement and prediction of CO and PM2.5 dispersion from on-road vehicles in Hong Kong. Trans. Res. Part Trans. Environ. 2006, 11, 242–249. [Google Scholar] [CrossRef]
- Goel, A.; Kumar, P. Vertical and horizontal variability in airborne nanoparticles and their exposure around signalised traffic intersections. Environ. Pollut. 2016, 214. [Google Scholar] [CrossRef]
- Buzzard, N.A.; Clark, N.N.; Guffey, S.E. Investigation into pedestrian exposure to near-vehicle exhaust emissions. Environ. Health Glob. Access Sci. Sour. 2009, 8. [Google Scholar] [CrossRef]
- Garcia-Algar, O.; Canchucaja, L.; d’Orazzio, V.; Manich, A.; Joya, X.; Vall, O. Different exposure of infants and adults to ultrafine particles in the urban area of Barcelona. Environ. Monit. Assess. 2015, 187, 4196. [Google Scholar] [CrossRef]
- Galea, K.S.; Maccalman, L.; Amend-straif, M.; Gorman-Ng, M.; Cherrie, J.W. Are children in buggies exposed to higher PM2.5 concentrations than adults? J. Environ. Health Res. 2014, 14, 28–42. [Google Scholar]
- Cooper, J.; Corcoran, J. Census of Population and Housing: Commuting to Work—More Stories from the Census, 2016. Journey to Work in Australia; Australian Bureau of Statistic: Canberra, Australia, 2016.
- Active-Healthy-Kids-Australia. The Road Less Travelled. 2015 Progress Report Card on Active Transport for Children and Young People. Available online: http://www.activehealthykidsaustralia.com.au/report-cards/ (accessed on 23 January 2019).
- Apte, J.S.; Messier, K.P.; Gani, S.; Brauer, M.; Kirchstetter, T.W.; Lunden, M.M.; Marshall, J.D.; Portier, C.J.; Vermeulen, R.C.H.; Hamburg, S.P. High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data. Environ. Sci. Technol. 2017, 51, 6999–7008. [Google Scholar] [CrossRef] [PubMed]
- Ginzburg, H.; Liu, X.; Baker, M.; Shreeve, R.; Jayanty, R.K.M.; Campbell, D.; Zielinska, B. Monitoring study of the near-road PM2.5 concentrations in Maryland. J. Air Waste Manag. Assoc. 2015, 65, 1062–1071. [Google Scholar] [CrossRef] [Green Version]
- Sofowote, U.M.; Healy, R.M.; Su, Y.; Debosz, J.; Noble, M.; Munoz, A.; Jeong, C.H.; Wang, J.M.; Hilker, N.; Evans, G.J.; et al. Understanding the PM2.5 imbalance between a far and near-road location:Results of high temporal frequency source apportionment and parameterization of black carbon. Atmos. Environ. 2018, 173, 277–288. [Google Scholar] [CrossRef]
- Wang, Z.; Zhong, S.; He, H.; Peng, Z.; Cai, M. Fine-scale variations in PM2.5 and black carbon concentrations and corresponding influential factors at an urban road intersection. Build. Environ. 2018, 141, 215–225. [Google Scholar] [CrossRef]
- Krecl, P.T.; Landi, A.C.; Ketzel, T.P.M. Determination of black carbon, PM2.5, particle number and NOx emission factors from roadside measurements and their implications for emission inventory development. Atmos. Environ. 2018, 186, 229–240. [Google Scholar] [CrossRef]
- Simmons, J.; Paton-Walsh, C.; Phillips, F.; Naylor, T.; Guérette, É.-A.; Graham, J.; Keatley, T.; Burden, S.; Dominick, D.; Kirkwood, J.; et al. Understanding Spatial Variability of Air Quality in Sydney: Part 1—A Suburban Balcony Case Study. Atmosphere 2019, 10, 181. [Google Scholar] [CrossRef]
- Burtscher, H.; Schüepp, K. The occurrence of ultrafine particles in the specific environment of children. Paediatr. Respir. Rev. 2012, 13, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Boarnet, M.G.; Houston, D.; Edwards, R.; Princevac, M.; Ferguson, G.; Pan, H.; Bartolome, C. Fine particulate concentrations on sidewalks in five Southern California cities. Atmos. Environ. 2011, 45, 4025–4033. [Google Scholar] [CrossRef]
- Yu, C.H.; Fan, Z.; Lioy, P.J.; Baptista, A.; Greenberg, M.; Laumbach, R.J. A novel mobile monitoring approach to characterize spatial and temporal variation in traffic-related air pollutants in an urban community. Atmos. Environ. 2016, 141, 161–173. [Google Scholar] [CrossRef]
- Quang, T.N.; He, C.; Morawska, L.; Knibbs, L.D.; Falk, M. Vertical particle concentration profiles around urban office buildings. Atmos. Chem. Phys. 2012, 12, 5017–5030. [Google Scholar] [CrossRef] [Green Version]
- Jiao, W.; Frey, H. Method for measuring the ratio of in-vehicle to near-vehicle exposure concentrations of airborne fine particles. Trans. Res. Record 2013, 34–42. [Google Scholar] [CrossRef]
- Rizza, V.; Stabile, L.; Buonanno, G.; Morawska, L. Variability of airborne particle metrics in an urban area. Environ. Pollut. 2017, 220, 625–635. [Google Scholar] [CrossRef]
- Roulston, C.; Paton-Walsh, C.; Smith, T.E.L.; Guérette, É.A.; Evers, S.; Yule, C.M.; Rein, G.; Van der Werf, G.R. Fine Particle Emissions From Tropical Peat Fires Decrease Rapidly With Time Since Ignition. J. Geophys. Res. Atmos. 2018, 123, 5607–5617. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. A Language and Environmental for Statisitical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Huang, C.H. Field Comparison of Real-Time PM2.5 Readings from a Beta Gauge Monitor and a Light Scattering Method. Aerosol Air Qual. Res. 2007, 7, 239–250. [Google Scholar] [CrossRef] [Green Version]
- Kirkwood, J.R.C.; Masson, S.; Gunashanhar, G. Comparison of PM2.5 Monitors at the NSW OEH Chullora Air Quality Monitoring Supersite. In Proceedings of the Clean Air Society of Australia and New Zealand, Brisbane, Australia, 15–18 October 2017. [Google Scholar]
- Rivas, I.M.M.; Viana, M.; Moreno, T.; Clifford, S.; He, C.C.; Bischof, O.; Martins, V.; Reche, C.; Alastuey, A.; Alvarez-Pedrerol, M.; et al. Identification of technical problems affecting performance of DustTrak DRX aerosol monitors. Sci. Total Environ. 2017. [Google Scholar] [CrossRef]
- SMART-Infrastructure-Facility. SMART Traffic Counter App. Available online: http://trafficcounter.smartinfrastructuredashboard.org/ (accessed on 1 February 2017).
- Huynh, N.; Perez, P.; Berryman, M.; Barthelemy, J. Simulating Transport and Land Use Interdependencies for Strategic Urban Planning—An Agent Based Modelling Approach. Systems. 2015, 3, 177–210. [Google Scholar] [CrossRef] [Green Version]
- Barthélemy, J.; Carletti, T. A dynamic behavioural traffic assignment model with strategic agents. Trans. Res. Part Emerg. Technol. 2017, 85, 23–46. [Google Scholar] [CrossRef]
- Barthélemy, J.; Carletti, T. An adaptive agent-based approach to traffic simulation. Transp. Res. Procedia 2017, 25, 1238–1248. [Google Scholar] [CrossRef]
- Forehead, H.; Huynh, N. Review of modelling air pollution from traffic at street-level—The state of the science. Environ. Pollut. 2018, 241, 775–786. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency. MOtor Vehicle Emissions Simulator 2014b. Available online: https://www.epa.gov/moves/latest-version-motor-vehicle-emission-simulator-moves (accessed on 7 December 2018).
- Kakosimos, K.E.; Hertel, O.; Ketzel, M.; Berkowicz, R. Operational Street Pollution Model (OSPM)—A review of performed application and validation studies, and future prospects. Environ. Chem. 2010, 7, 485–503. [Google Scholar] [CrossRef]
- Chambers, S.D.; Guérette, E.A.; Monk, K.; Griffiths, A.D.; Zhang, Y.; Duc, H.; Cope, M.; Emmerson, K.M.; Chang, L.T.; Silver, J.D.; et al. Skill-testing chemical transport models across contrasting atmospheric mixing states using radon-222. Atmosphere 2019, 10, 25. [Google Scholar] [CrossRef]
- Paton-Walsh, C.; Guérette, É.A.; Emmerson, K.; Cope, M.; Kubistin, D.; Humphries, R.; Wilson, S.; Buchholz, R.; Jones, N.B.; Griffith, D.W.T.; et al. Urban air quality in a coastal city: Wollongong during the MUMBA campaign. Atmosphere 2018, 9, 500. [Google Scholar] [CrossRef]
- Meier, P.C.; Zünd, R.E. Statistical Methods in Analytical Chemistry; Wiley: Hoboken, NJ, USA, 2005; 424p. [Google Scholar]
- Department of the Environment. National Environment Protection (Ambient Air Quality) Measure; Australian Government: Canberra, Australia, 2016.
- EPA NSW. Clean Air For NSW: Vehicle Emissions; NSW Government: Sydney, Australia, June 2017.
City | Pollutants | Study Design | Instruments Used | Author (year) |
---|---|---|---|---|
Guildford, UK | PMC, PNC, PM (0.25–32 μm) | Measurements at multiple heights over a 2.7 km route to a primary school during drop-off and pick-up school periods. PMC range: 14.1–78.2 μg/m3 | PM: GRIMM EDM 107 PNC: P-Track 8525 (TSI) Dylos DC1700 | Kumar et al 2017 [29] |
Barcelona, Spain | UFP (0.02 μm–1 μm) | Measurements taken on three streets at 0.55 m and 1.70 m heights over 10 days, 2 hours per day. UFP at 0.55m: 48,198 ± 25,296 pt/cm3 | UFP: P-TRAK 8525 (TSI) | Garcia-Algar et al 2015 [35] |
Edinburgh (UK) | PM2.5 | Mobile sampling undertaken at 0.74 m and 1.36 m heights over six weekdays. PM2.5 range at 0.74 m: 5.9–46.6 μg/m3 | PM2.5: SidePak AM510 (TSI) fitted with PM2.5 impactor. | Galea et al. 2014 [36] |
Nebraska, USA | PM2.5 | Data collected at a 1.5 m height on a 2 km walking route over 48 outings (total measurements for 20 h). Average PM2.5 range: 0.9–16.6 μg/m3 | PM2.5: TSI Optical Particle Sizer (0.3–10 μm) | Bereitschaft 2015 [24] |
Switzerland | UFP (10–700 nm) | Measurements collected using a bicycle pulling a child trailer at bicycle-rider and trailer height along routes of varying traffic density. Average UFP number concentration: 11,522/cm3 | UFP: DiSCmini (Matter Aerosol) | Burtscher and Schüepp 2012 [45] |
Nairobi, Kenya | PM2.5 | Mobile data collected at adult breathing zone height at three sampling sites within the CBD, and two sites at rural background locations. Data collected for a total of 110 hours over 10 days. Average PM2.5 concentration (rural/urban): 10.7 μg/m3/98.1 μg/m3 | PM2.5: Anodized aluminium cyclone (BGI Inc, Waltham, MA) and Teflon filter. Vacuum pump flow rates recorded using mass flow meter (TSI Model 4199). | Kinney et al. 2011 [31] |
California, USA | FP | Stationary monitoring at six locations for six hours over three days. Backpack-height mobile measurements collected for a 2 hr period over 2 to 3 routes at the six locations. FP range: 20–70 μg/m3 | PM2.5: DustTrak Aerosol Monitor (TSI) | Boarnet et al. 2011 [46] |
New Jersey, USA | PNC, PM2.5, CO. BC, | Two simultaneous samplings measured at backpack-height, on sets of parallel streets one block in distance over 5 locations. PM2.5 mass range: 0.27–46.5 μg/m3 | PM2.5: SidePak monitor BC: Micro-Aethalo meter CO: Langan T15 | Ho Yu et al. 2016 [47] |
Londrina, Brazil | PM2.5, BC | Data collected using instrumented bicycles along main and side-streets in the city centre, covering a distance of 215 km in nine sessions over 2 months. Average PM2.5 concentration (morning): 8.61 μg/m3 | BC: AE51 Microaethalometer (Aethlabs) PM2.5: DustTrak 8520 (TSI) | Targino et al. 2016 [25] |
Australian studies | ||||
Sydney, Australia | PM2.5 | Measurements taken at adult breathing height, 39 trips of a 2.2 km circuit. Average PM2.5 concentration: 12.8 μg/m3 | PM2.5: AM510 SidePak Personal Aerosol | Greaves et al. 2008 [22] |
Queensland (Tingalpa & Murrarie), Australia | PM1, PM2.5 and PM10 | Measurements taken at increasing distances away from a main road perpendicularly (15–375 m). | Particle size: APS Model 3310A & SMPS Model 3934 (TSI) PM1, PM2.5, PM10: DustTrak 8520 (TSI) | Hitchins et al. 2000 [30] |
Brisbane, Australia | Particle number size distribution (PNSD) and PM2.5 | Measurements taken at a total of 11 heights on three office buildings situated near busy roads. Average PM2.5 street-level concentration (Building C, morning): 17.70 μg/m3 | PNSD: Scanning Mobility Particle Sizers (SMPSs) (TSI 3934), 8.5–400 nm. PM2.5: DustTrak aerosol monitors (TSI 8520) | Quang et al. 2012 [48] |
Site | Morning | Midday | Afternoon | Overall |
---|---|---|---|---|
Earlwood (µg/m3) (E) | 6 (±2) | 7 (±5) | 6 (±4) | 6 (±4) |
Rozelle (µg/m3) (R) | 8 (±3) | 9 (±5) | 6 (±4) | 8 (±5) |
Randwick Roadside (DustTrak) (µg/m3) (RR) | 15 (±3) | 11 (±2) | 11 (±3) | 13 (±3) |
Estimated roadside increase (µg/m3) | 8 (±3) | 3 (±2) | 5 (±3) | 6 (±3) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wadlow, I.; Paton-Walsh, C.; Forehead, H.; Perez, P.; Amirghasemi, M.; Guérette, É.-A.; Gendek, O.; Kumar, P. Understanding Spatial Variability of Air Quality in Sydney: Part 2—A Roadside Case Study. Atmosphere 2019, 10, 217. https://doi.org/10.3390/atmos10040217
Wadlow I, Paton-Walsh C, Forehead H, Perez P, Amirghasemi M, Guérette É-A, Gendek O, Kumar P. Understanding Spatial Variability of Air Quality in Sydney: Part 2—A Roadside Case Study. Atmosphere. 2019; 10(4):217. https://doi.org/10.3390/atmos10040217
Chicago/Turabian StyleWadlow, Imogen, Clare Paton-Walsh, Hugh Forehead, Pascal Perez, Mehrdad Amirghasemi, Élise-Andrée Guérette, Owen Gendek, and Prashant Kumar. 2019. "Understanding Spatial Variability of Air Quality in Sydney: Part 2—A Roadside Case Study" Atmosphere 10, no. 4: 217. https://doi.org/10.3390/atmos10040217
APA StyleWadlow, I., Paton-Walsh, C., Forehead, H., Perez, P., Amirghasemi, M., Guérette, É. -A., Gendek, O., & Kumar, P. (2019). Understanding Spatial Variability of Air Quality in Sydney: Part 2—A Roadside Case Study. Atmosphere, 10(4), 217. https://doi.org/10.3390/atmos10040217