Next Article in Journal
Climatology and Trend of Severe Drought Events in the State of Sao Paulo, Brazil, during the 20th Century
Next Article in Special Issue
Vehicle Ammonia Emissions Measured in An Urban Environment in Sydney, Australia, Using Open Path Fourier Transform Infra-Red Spectroscopy
Previous Article in Journal
Improving Estimation of Cropland Evapotranspiration by the Bayesian Model Averaging Method with Surface Energy Balance Models
Previous Article in Special Issue
Understanding Spatial Variability of Air Quality in Sydney: Part 1—A Suburban Balcony Case Study
Article Menu
Issue 4 (April) cover image

Export Article

Open AccessArticle

Multiscale Applications of Two Online-Coupled Meteorology-Chemistry Models during Recent Field Campaigns in Australia, Part I: Model Description and WRF/Chem-ROMS Evaluation Using Surface and Satellite Data and Sensitivity to Spatial Grid Resolutions

1
Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695, USA
2
Centre for Atmospheric Chemistry, University of Wollongong, Wollongong, NSW 2500, Australia
3
School of Earth Sciences, University of Melbourne, Melbourne, Victoria, VIC 3052, Australia
4
Climate Science Centre, The Commonwealth Scientific and Industrial Research Organisation, Oceans and Atmosphere, Aspendale, VIC 3195, Australia
*
Author to whom correspondence should be addressed.
Atmosphere 2019, 10(4), 189; https://doi.org/10.3390/atmos10040189
Received: 26 February 2019 / Revised: 1 April 2019 / Accepted: 4 April 2019 / Published: 8 April 2019
(This article belongs to the Special Issue Air Quality in New South Wales, Australia)
  |  
PDF [8910 KB, uploaded 22 April 2019]
  |  

Abstract

Air pollution and associated human exposure are important research areas in Greater Sydney, Australia. Several field campaigns were conducted to characterize the pollution sources and their impacts on ambient air quality including the Sydney Particle Study Stages 1 and 2 (SPS1 and SPS2), and the Measurements of Urban, Marine, and Biogenic Air (MUMBA). In this work, the Weather Research and Forecasting model with chemistry (WRF/Chem) and the coupled WRF/Chem with the Regional Ocean Model System (ROMS) (WRF/Chem-ROMS) are applied during these field campaigns to assess the models’ capability in reproducing atmospheric observations. The model simulations are performed over quadruple-nested domains at grid resolutions of 81-, 27-, 9-, and 3-km over Australia, an area in southeastern Australia, an area in New South Wales, and the Greater Sydney area, respectively. A comprehensive model evaluation is conducted using surface observations from these field campaigns, satellite retrievals, and other data. This paper evaluates the performance of WRF/Chem-ROMS and its sensitivity to spatial grid resolutions. The model generally performs well at 3-, 9-, and 27-km resolutions for sea-surface temperature and boundary layer meteorology in terms of performance statistics, seasonality, and daily variation. Moderate biases occur for temperature at 2-m and wind speed at 10-m in the mornings and evenings due to the inaccurate representation of the nocturnal boundary layer and surface heat fluxes. Larger underpredictions occur for total precipitation due to the limitations of the cloud microphysics scheme or cumulus parameterization. The model performs well at 3-, 9-, and 27-km resolutions for surface O3 in terms of statistics, spatial distributions, and diurnal and daily variations. The model underpredicts PM2.5 and PM10 during SPS1 and MUMBA but overpredicts PM2.5 and underpredicts PM10 during SPS2. These biases are attributed to inaccurate meteorology, precursor emissions, insufficient SO2 conversion to sulfate, inadequate dispersion at finer grid resolutions, and underprediction in secondary organic aerosol. The model gives moderate biases for net shortwave radiation and cloud condensation nuclei but large biases for other radiative and cloud variables. The performance of aerosol optical depth and latent/sensible heat flux varies for different simulation periods. Among all variables evaluated, wind speed at 10-m, precipitation, surface concentrations of CO, NO, NO2, SO2, O3, PM2.5, and PM10, aerosol optical depth, cloud optical thickness, cloud condensation nuclei, and column NO2 show moderate-to-strong sensitivity to spatial grid resolutions. The use of finer grid resolutions (3- or 9-km) can generally improve the performance for those variables. While the performance for most of these variables is consistent with that over the U.S. and East Asia, several differences along with future work are identified to pinpoint reasons for such differences. View Full-Text
Keywords: air quality; WRF/Chem; WRF/Chem-ROMS; model evaluation; satellite retrievals; Sydney; SPS1; SPS2; MUMBA air quality; WRF/Chem; WRF/Chem-ROMS; model evaluation; satellite retrievals; Sydney; SPS1; SPS2; MUMBA
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Zhang, Y.; Jena, C.; Wang, K.; Paton-Walsh, C.; Guérette, É.-A.; Utembe, S.; Silver, J.D.; Keywood, M. Multiscale Applications of Two Online-Coupled Meteorology-Chemistry Models during Recent Field Campaigns in Australia, Part I: Model Description and WRF/Chem-ROMS Evaluation Using Surface and Satellite Data and Sensitivity to Spatial Grid Resolutions. Atmosphere 2019, 10, 189.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Atmosphere EISSN 2073-4433 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top