Robust Nocturnal and Early Morning Summer Rainfall Peaks over Continental East Asia in a Global Multiscale Modeling Framework
Abstract
:1. Introduction
2. Model, Numerical Experiments, Data, and Methods
2.1. Model and Experiments
2.2. Data and Methods
3. Results
3.1. Differences in the Simulated Diurnal Cycles
3.2. Reasons Responsible for the Modeling Differences
3.2.1. The Lee Side of the Tibetan Plateau
3.2.2. The Eastern Plain
3.3. Impact of the Grid-Scale Forcing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dai, A.; Trenberth, K.E. The Diurnal Cycle and Its Depiction in the Community Climate System Model. J. Clim. 2004, 17, 930–951. [Google Scholar] [CrossRef]
- Jiang, J.H.; Su, H.; Zhai, C.; Shen, T.J.; Wu, T.; Zhang, J.; Cole, J.N.S.; von Salzen, K.; Donner, L.J.; Seman, C.; et al. Evaluating the Diurnal Cycle of Upper-Tropospheric Ice Clouds in Climate Models Using SMILES Observations. J. Atmos. Sci. 2014, 72, 1022–1044. [Google Scholar] [CrossRef]
- Covey, C.; Gleckler, P.J.; Doutriaux, C.; Williams, D.N.; Dai, A.; Fasullo, J.; Trenberth, K.; Berg, A. Metrics for the Diurnal Cycle of Precipitation: Toward Routine Benchmarks for Climate Models. J. Clim. 2016, 29, 4461–4471. [Google Scholar] [CrossRef]
- Bechtold, P.; Chaboureau, J.P.; Beljaars, A.; Betts, A.K.; Köhler, M.; Miller, M.; Redelsperger, J.L. The simulation of the diurnal cycle of convective precipitation over land in a global model. Q. J. R. Meteor. Soc. 2004, 130, 3119–3137. [Google Scholar] [CrossRef] [Green Version]
- Guichard, F.; Petch, J.C.; Redelsperger, J.L.; Bechtold, P.; Chaboureau, J.P.; Cheinet, S.; Grabowski, W.; Grenier, H.; Jones, C.G.; Köhler, M.; et al. Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Q. J. R. Meteor. Soc. 2004, 130, 3139–3172. [Google Scholar] [CrossRef] [Green Version]
- Rio, C.; Hourdin, F.; Grandpeix, J.Y.; Lafore, J.P. Shifting the diurnal cycle of parameterized deep convection over land. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Klein, S.A.; Jiang, X.; Boyle, J.; Malyshev, S.; Xie, S. Diagnosis of the summertime warm and dry bias over the U.S. Southern Great Plains in the GFDL climate model using a weather forecasting approach. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.-I.; Schubert, S.D.; Suarez, M.J.; Held, I.M.; Kumar, A.; Bell, T.L.; Schemm, J.-K.E.; Lau, N.-C.; Ploshay, J.J.; Kim, H.-K.; et al. Sensitivity to Horizontal Resolution in the AGCM Simulations of Warm Season Diurnal Cycle of Precipitation over the United States and Northern Mexico. J. Clim. 2007, 20, 1862–1881. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.; Miura, H.; Satoh, M.; Takayabu, Y.N.; Wang, Y. Diurnal Cycle of Precipitation in the Tropics Simulated in a Global Cloud-Resolving Model. J. Clim. 2009, 22, 4809–4826. [Google Scholar] [CrossRef]
- Pritchard, M.S.; Somerville, R.C.J. Assessing the Diurnal Cycle of Precipitation in a Multi-Scale Climate Model. J. Adv. Model. Earth Syst. 2009, 1. [Google Scholar] [CrossRef]
- Dirmeyer, P.; Cash, B.; Kinter, J., III; Jung, T.; Marx, L.; Satoh, M.; Stan, C.; Tomita, H.; Towers, P.; Wedi, N. Simulating the diurnal cycle of rainfall in global climate models: Resolution versus parameterization. Clim. Dyn. 2012, 39, 399–418. [Google Scholar] [CrossRef]
- Grabowski, W.W.; Smolarkiewicz, P.K. Proceedings of the 1999 International Symposium on Physical Design, Monterey, CA, USA, 12–14 April 1999.
- Khairoutdinov, M.F.; Randall, D.A. A cloud resolving model as a cloud parameterization in the NCAR Community Climate System Model: Preliminary results. Geophys. Res. Lett. 2001, 28, 3617–3620. [Google Scholar] [CrossRef] [Green Version]
- Yu, R.; Li, J.; Chen, H.; Yuan, W. Progress in studies of the precipitation diurnal variation over contiguous China. J. Meteorol. Res. 2014, 28, 877–902. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H. Comparing CAM5 and Superparameterized CAM5 Simulations of Summer Precipitation Characteristics over Continental East Asia: Mean State, Frequency–Intensity Relationship, Diurnal Cycle, and Influencing Factors. J. Clim. 2016, 1067–1089. [Google Scholar] [CrossRef]
- Description of the NCAR Community Atmosphere Model (CAM 5.0). Available online: http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf (accessed on 21 January 2019).
- Wang, M.; Ghan, S.; Easter, R.; Ovchinnikov, M.; Liu, X.; Kassianov, E.; Qian, Y.; Gustafson Jr, W.I.; Larson, V.E.; Schanen, D.P.; et al. The multi-scale aerosol-climate model PNNL-MMF: Model description and evaluation. Geosci. Model. Dev. 2011, 4, 137–168. [Google Scholar] [CrossRef]
- Wang, M.; Larson, V.E.; Ghan, S.; Ovchinnikov, M.; Schanen, D.P.; Xiao, H.; Liu, X.; Rasch, P.; Guo, Z. A multiscale modeling framework model (superparameterized CAM5) with a higher-order turbulence closure: Model description and low-cloud simulations. J. Adv. Model. Earth Syst. 2015, 7, 484–509. [Google Scholar] [CrossRef] [Green Version]
- Yuan, W. Diurnal cycles of precipitation over subtropical China in IPCC AR5 AMIP simulations. Adv. Atmos. Sci. 2013, 30, 1679–1694. [Google Scholar] [CrossRef]
- Wang, C.-C.; Chen, G.T.-J.; Carbone, R.E. A Climatology of Warm-Season Cloud Patterns over East Asia Based on GMS Infrared Brightness Temperature Observations. Mon. Weather Rev. 2004, 132, 1606–1629. [Google Scholar] [CrossRef]
- Yu, R.; Yuan, W.; Li, J.; Fu, Y. Diurnal phase of late-night against late-afternoon of stratiform and convective precipitation in summer southern contiguous China. Clim. Dyn. 2010, 35, 567–576. [Google Scholar] [CrossRef]
- Chen, G.; Yoshida, R.; Sha, W.; Iwasaki, T.; Qin, H. Convective Instability Associated with the Eastward-Propagating Rainfall Episodes over Eastern China during the Warm Season. J. Clim. 2013, 27, 2331–2339. [Google Scholar] [CrossRef]
- Carbone, R.E.; Tuttle, J.D.; Ahijevych, D.A.; Trier, S.B. Inferences of Predictability Associated with Warm Season Precipitation Episodes. J. Atmos. Sci. 2002, 59, 2033–2056. [Google Scholar] [CrossRef]
- Tuttle, J.D.; Davis, C.A. Corridors of Warm Season Precipitation in the Central United States. Mon. Weather Rev. 2006, 134, 2297–2317. [Google Scholar] [CrossRef]
- Pritchard, M.S.; Moncrieff, M.W.; Somerville, R.C.J. Orogenic Propagating Precipitation Systems over the United States in a Global Climate Model with Embedded Explicit Convection. J. Atmos. Sci. 2011, 68, 1821–1840. [Google Scholar] [CrossRef]
- Kooperman, G.J.; Pritchard, M.S.; Somerville, R.C.J. Robustness and sensitivities of central U.S. summer convection in the super-parameterized CAM: Multi-model intercomparison with a new regional EOF index. Geophys. Res. Lett. 2013, 40, 3287–3291. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Yu, R.; Li, J.; Yuan, W.; Zhou, T. Why Nocturnal Long-Duration Rainfall Presents an Eastward-Delayed Diurnal Phase of Rainfall down the Yangtze River Valley. J. Clim. 2010, 23, 905–917. [Google Scholar] [CrossRef]
- Chen, G.; Sha, W.; Iwasaki, T.; Wen, Z. Diurnal Cycle of a Heavy Rainfall Corridor over East Asia. Mon. Weather Rev. 2017, 145, 3365–3389. [Google Scholar] [CrossRef]
- Randall, D.; Branson, M.; Wang, M.; Ghan, S.; Craig, C.; Gettelman, A.; Edwards, J. A Community Atmosphere Model With Superparameterized Clouds. Eos. Trans. Am. Geophys. Union 2013, 94, 221–222. [Google Scholar] [CrossRef] [Green Version]
- Weisman, M.L.; Skamarock, W.C.; Klemp, J.B. The Resolution Dependence of Explicitly Modeled Convective Systems. Mon. Weather Rev. 1997, 125, 527–548. [Google Scholar] [CrossRef]
- Yang, Q.; Houze, R.A.; Leung, L.R.; Feng, Z. Environments of Long-Lived Mesoscale Convective Systems Over the Central United States in Convection Permitting Climate Simulations. J. Geophys. Res. Atmos. 2017, 122. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteor. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.; Yu, R. Simulations of Stratus Clouds over Eastern China in CAM5: Sources of Errors. J. Clim. 2015, 28, 36–55. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J. Impact of moisture divergence on systematic errors in precipitation around the Tibetan Plateau in a general circulation model. Clim. Dyn. 2016, 47, 2923–2934. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Chen, H.; Yu, R. Simulations of Stratus Clouds over Eastern China in CAM5: Sensitivity to Horizontal Resolution. J. Clim. 2014, 27, 7033–7052. [Google Scholar] [CrossRef]
- Shen, Y.; Zhao, P.; Pan, Y.; Yu, J. A high spatiotemporal gauge-satellite merged precipitation analysis over China. J. Geophys. Res. Atmos. 2014, 119, 3063–3075. [Google Scholar] [CrossRef] [Green Version]
- Yanai, M.; Esbensen, S.; Chu, J.-H. Determination of Bulk Properties of Tropical Cloud Clusters from Large-Scale Heat and Moisture Budgets. J. Atmos. Sci. 1973, 30, 611–627. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; McFarlane, N. Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos. Ocean. 1995, 33, 407–446. [Google Scholar] [CrossRef]
- Xie, S.; Zhang, M. Impact of the convection triggering function on single-column model simulations. J. Geophys. Res. Atmos. 2000, 105, 14983–14996. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.J. Convective quasi-equilibrium in midlatitude continental environment and its effect on convective parameterization. J. Geophys. Res. Atmos. 2002, 107. [Google Scholar] [CrossRef] [Green Version]
- Donner, L.J. A Cumulus Parameterization Including Mass Fluxes, Vertical Momentum Dynamics, and Mesoscale Effects. J. Atmos. Sci. 1993, 50, 889–906. [Google Scholar] [CrossRef] [Green Version]
- Mapes, B.; Neale, R. Parameterizing Convective Organization to Escape the Entrainment Dilemma. J. Adv. Model. Earth Syst. 2011, 3. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.-I.; Choi, I.; Tao, W.-K.; Schubert, S.; Kang, I.-S. Mechanisms of diurnal precipitation over the US Great Plains: A cloud resolving model perspective. Clim. Dyn. 2010, 34, 419–437. [Google Scholar] [CrossRef]
- Houze, R.A. Cloud Dynamics. Int. Geophys. 2014, 104, 432. [Google Scholar]
- Yu, R.; Xu, Y.; Zhou, T.; Li, J. Relation between rainfall duration and diurnal variation in the warm season precipitation over central eastern China. Geophys. Res. Lett. 2007, 34, L13703. [Google Scholar] [CrossRef]
- Lin, J.; Mapes, B.; Zhang, M.; Newman, M. Stratiform Precipitation, Vertical Heating Profiles, and the Madden–Julian Oscillation. J. Atmos. Sci. 2004, 61, 296–309. [Google Scholar] [CrossRef]
- Del Genio, A.D.; Wu, J.; Chen, Y. Characteristics of Mesoscale Organization in WRF Simulations of Convection during TWP-ICE. J. Clim. 2012, 25, 5666–5688. [Google Scholar] [CrossRef]
- Song, X.; Yu, R. Underestimated tropical stratiform precipitation in the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM3). Geophys. Res. Lett. 2004, 31, L24101. [Google Scholar] [CrossRef]
- Liu, H.; He, M.; Wang, B.; Zhang, Q. Advances in low-level jet research and future prospects. J. Meteorol. Res. 2014, 28, 57–75. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, R.; Li, J. Implementation of a conservative two-step shape-preserving advection scheme on a spherical icosahedral hexagonal geodesic grid. Adv. Atmos. Sci. 2017, 34, 411–427. [Google Scholar] [CrossRef]
- Zhang, Y. Extending High-Order Flux Operators on Spherical Icosahedral Grids and Their Applications in the Framework of a Shallow Water Model. J. Adv. Model. Earth Syst. 2018, 10, 145–164. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, J.; Yu, R.; Zhang, S.; Liu, Z.; Huang, J.; Zhou, Y. A Layer-based Nonhydrostatic Dynamical Framework on an Unstructured Mesh for Global and Regional Atmospheric Modeling: Model Description, Baseline Evaluation and Sensitivity Exploration. J. Adv. Model. Earth Syst. 2019. under revision. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Chen, H.; Wang, D. Robust Nocturnal and Early Morning Summer Rainfall Peaks over Continental East Asia in a Global Multiscale Modeling Framework. Atmosphere 2019, 10, 53. https://doi.org/10.3390/atmos10020053
Zhang Y, Chen H, Wang D. Robust Nocturnal and Early Morning Summer Rainfall Peaks over Continental East Asia in a Global Multiscale Modeling Framework. Atmosphere. 2019; 10(2):53. https://doi.org/10.3390/atmos10020053
Chicago/Turabian StyleZhang, Yi, Haoming Chen, and Dan Wang. 2019. "Robust Nocturnal and Early Morning Summer Rainfall Peaks over Continental East Asia in a Global Multiscale Modeling Framework" Atmosphere 10, no. 2: 53. https://doi.org/10.3390/atmos10020053
APA StyleZhang, Y., Chen, H., & Wang, D. (2019). Robust Nocturnal and Early Morning Summer Rainfall Peaks over Continental East Asia in a Global Multiscale Modeling Framework. Atmosphere, 10(2), 53. https://doi.org/10.3390/atmos10020053