The Role of Continental Mesoscale Convective Systems in Forecast Busts within Global Weather Prediction Systems
Abstract
:1. Introduction
2. Data Set and Methods
3. Results
3.1. Overview of Synoptic Flow
3.2. Interaction between Convective Systems and Rossby Wave Packets
3.2.1. 11–12 June 2015
3.2.2. 20 June 2015
4. Discussion
4.1. Initial Forecast Errors
4.2. Representation of the Diurnal Propagation of Deep Convection
4.3. Implications for Convection over North America and Forecast Skill Downstream
4.4. Downstream Error Propagation Including Linkages to Arctic Circulations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
ACC | Anomaly Correlation Coefficient |
CAPE | Convective Available Potential Energy |
DRW | Diabatic Rossby Wave |
ERA | ECMWF Reanalysis |
ECMWF | European Centre for Medium Range Weather Forecasts |
IFS | Integrated Forecast System |
MCS | Mesocale Convective System |
NAO | North Atlantic Oscillation |
NWP | Numerical Weather Prediction |
NAWDEX | North Atlantic Waveguide and Downstream Impact Experiment |
PECAN | Plains Elevated Convection at Night |
PNA | Pacific-North American |
RMSE | Root Mean Square Error |
TIGGE | THORPEX Integrated Grand Global Ensemble |
UTC | Coordinated Universal Time |
References
- Bauer, P.; Thorpe, A.; Brunet, G. The quiet revolution of numerical weather prediction. Nature 2015, 525, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, L.; Källén, E. Factors influencing skill improvements in the ECMWF forecasting system. Mon. Weather Rev. 2013, 141, 3142–3153. [Google Scholar] [CrossRef]
- Forum, W.E. The Global Risks Report 2019, 14th ed.; World Economic Forum: Geneva, Switzerland, 2019; pp. 1–108. [Google Scholar]
- Rodwell, M.J.; Magnusson, L.; Bauer, P.; Bechtold, P.; Bonavita, M.; Cardinali, C.; Diamantakis, M.; Earnshaw, P.; Garcia-Mendez, A.; Isaksen, L.; et al. Characteristics of Occasional Poor Medium-Range Weather Forecasts for Europe. Bull. Am. Meteorol. Soc. 2013, 94, 1393–1405. [Google Scholar] [CrossRef]
- Ferranti, L.; Corti, S.; Janousek, M. Flow-dependent verification of the ECMWF ensemble over the Euro-Atlantic sector. Q. J. R. Meteorol. Soc. 2015, 141, 916–924. [Google Scholar] [CrossRef]
- Schiemann, R.; Demory, M.E.; Shaffrey, L.C.; Strachan, J.; Vidale, P.L.; Mizielinski, M.S.; Roberts, M.J.; Matsueda, M.; Wehner, M.F.; Jung, T. The resolution sensitivity of Northern Hemisphere blocking in four 25-km atmospheric global circulation models. J. Clim. 2017, 30, 337–358. [Google Scholar] [CrossRef]
- Martínez-Alvarado, O.; Maddison, J.W.; Gray, S.L.; Williams, K.D. Atmospheric blocking and upper-level Rossby-wave forecast skill dependence on model configuration. Q. J. R. Meteorol. Soc. 2018, 144, 2165–2181. [Google Scholar] [CrossRef]
- Lillo, S.P.; Parsons, D.B. Investigating the dynamics of error growth in ECMWF medium-range forecast busts. Q. J. R. Meteorol. Soc. 2017, 143, 1211–1226. [Google Scholar] [CrossRef]
- Corti, S.; Palmer, T.N. Sensitivity analysis of atmospheric low-frequency variability. Q. J. R. Meteorol. Soc. 1997, 123, 2425–2447. [Google Scholar] [CrossRef]
- Woollings, T.; Hoskins, B.; Blackburn, M.; Berrisford, P. A new Rossby wave-breaking interpretation of the North Atlantic Oscillation. J. Atmos. Sci. 2008, 65, 609–626. [Google Scholar] [CrossRef]
- Kirsch, T.D.; Wadhwani, C.; Sauer, L.; Doocy, S.; Catlett, C. Impact of the 2010 Pakistan floods on rural and urban populations at six months. PLoS Curr. 2012, 4. [Google Scholar] [CrossRef]
- Rodwell, M.J.; Richardson, D.S.; Parsons, D.B.; Wernli, H. Flow-dependent reliability: A path to more skillful ensemble forecasts. Bull. Am. Meteorol. Soc. 2018, 99, 1015–1026. [Google Scholar] [CrossRef]
- Grazzini, F.; Isaksen, L. North American Increments; Technical Report OD/MOD/23; ECMWF Operational Department: Reading, UK, 2002; 40p, Available online: https://www.researchgate.net/publication/280775484_North_America_Increments ( (accessed on 6 November 2019).
- Grazzini, F.; Vitart, F. Atmospheric predictability and Rossby wave packets. Q. J. R. Meteorol. Soc. 2015, 141, 2793–2802. [Google Scholar] [CrossRef]
- Lillo, S.P.; Parsons, D.B.; Peña, M. Dynamics behind a record-breaking trough over Mexico and internal atmospheric variability during El Niño. Bull. Am. Meteorol. Soc. 2019, 100, 1961–1978. [Google Scholar] [CrossRef]
- Schäfler, A.; Craig, G.; Wernli, H.; Arbogast, P.; Doyle, J.D.; McTaggart-Cowan, R.; Methven, J.; Rivière, G.; Ament, F.; Boettcher, M.; et al. The North Atlantic waveguide and downstream impact experiment. Bull. Am. Meteorol. Soc. 2018, 99, 1607–1637. [Google Scholar]
- Geerts, B.; Parsons, D.; Ziegler, C.L.; Weckwerth, T.M.; Biggerstaff, M.I.; Clark, R.D.; Coniglio, M.C.; Demoz, B.B.; Ferrare, R.A.; Gallus, W.A., Jr.; et al. The 2015 plains elevated convection at night field project. Bull. Am. Meteorol. Soc. 2017, 98, 767–786. [Google Scholar] [CrossRef]
- Lorenz, E.N. The predictability of a flow which possesses many scales of motion. Tellus 1969, 21, 289–307. [Google Scholar] [CrossRef]
- Thompson, P.D. Uncertainty of initial state as a factor in the predictability of large scale atmospheric flow patterns. Tellus 1957, 9, 275–295. [Google Scholar] [CrossRef]
- Morss, R.E.; Snyder, C.; Rotunno, R. Spectra, spatial scales, and predictability in a quasigeostrophic model. J. Atmos. Sci. 2009, 66, 3115–3130. [Google Scholar] [CrossRef]
- Mapes, B.; Tulich, S.; Nasuno, T.; Satoh, M. Predictability aspects of global aqua-planet simulations with explicit convection. J. Meteorol. Soc. Jpn. Ser. II 2008, 86, 175–185. [Google Scholar] [CrossRef]
- Durran, D.R.; Gingrich, M. Atmospheric predictability: Why butterflies are not of practical importance. J. Atmos. Sci. 2014, 71, 2476–2488. [Google Scholar] [CrossRef]
- Rotunno, R.; Snyder, C. A generalization of Lorenz’s model for the predictability of flows with many scales of motion. J. Atmos. Sci. 2008, 65, 1063–1076. [Google Scholar] [CrossRef]
- Zhang, F.; Snyder, C.; Rotunno, R. Mesoscale predictability of the “surprise” snowstorm of 24–25 January 2000. Mon. Weather Rev. 2002, 130, 1617–1632. [Google Scholar] [CrossRef]
- Zhang, F.; Snyder, C.; Rotunno, R. Effects of moist convection on mesoscale predictability. J. Atmos. Sci. 2003, 60, 1173–1185. [Google Scholar] [CrossRef]
- Zhang, F.; Bei, N.; Rotunno, R.; Snyder, C.; Epifanio, C.C. Mesoscale predictability of moist baroclinic waves: Convection-permitting experiments and multistage error growth dynamics. J. Atmos. Sci. 2007, 64, 3579–3594. [Google Scholar] [CrossRef]
- Selz, T.; Craig, G.C. Upscale error growth in a high-resolution simulation of a summertime weather event over Europe. Mon. Weather Rev. 2015, 143, 813–827. [Google Scholar] [CrossRef]
- Sun, Y.Q.; Zhang, F. Intrinsic versus practical limits of atmospheric predictability and the significance of the butterfly effect. J. Atmos. Sci. 2016, 73, 1419–1438. [Google Scholar] [CrossRef]
- Judt, F. Insights into Atmospheric Predictability through Global Convection-Permitting Model Simulations. J. Atmos. Sci. 2018, 75, 1477–1497. [Google Scholar] [CrossRef]
- Tribbia, J.; Baumhefner, D. Scale interactions and atmospheric predictability: An updated perspective. Mon. Weather Rev. 2004, 132, 703–713. [Google Scholar] [CrossRef]
- Haghi, K.R.; Geerts, B.; Chipilski, H.G.; Johnson, A.; Degelia, S.; Imy, D.; Parsons, D.B.; Adams-Selin, R.D.; Turner, D.D.; Wang, X. Bore-ing into nocturnal convection. Bull. Am. Meteorol. Soc. 2019, 100, 1103–1121. [Google Scholar] [CrossRef]
- Lillo, S.P.; Parsons, D.B. Growth and propagation of synoptic-scale forecast errors in NWP forecast busts. In Proceedings of the 18th Cyclone Workshop, Sainte Adele, QC, Canada, 1–6 October 2017. [Google Scholar]
- Bougeault, P.; Toth, Z.; Bishop, C.; Brown, B.; Burridge, D.; Chen, D.H.; Ebert, B.; Fuentes, M.; Hamill, T.M.; Mylne, K.; et al. The THORPEX interactive grand global ensemble. Bull. Am. Meteorol. Soc. 2010, 91, 1059–1072. [Google Scholar] [CrossRef]
- Hakim, G.J. Vertical structure of midlatitude analysis and forecast errors. Mon. Weather Rev. 2005, 133, 567–578. [Google Scholar] [CrossRef]
- Takaya, K.; Nakamura, H. A formulation of a wave-activity flux for stationary Rossby waves on a zonally varying basic flow. Geophys. Res. Lett. 1997, 24, 2985–2988. [Google Scholar] [CrossRef]
- Takaya, K.; Nakamura, H. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci. 2001, 58, 608–627. [Google Scholar] [CrossRef]
- Hersbach, H.; Dee, D. ERA5 reanalysis is in production. ECMWF Newsl. 2016, 147, 5–6. [Google Scholar]
- Chang, E.K. Wave packets and life cycles of troughs in the upper troposphere: Examples from the Southern Hemisphere summer season of 1984/85. Mon. Weather Rev. 2000, 128, 25–50. [Google Scholar] [CrossRef]
- Zhang, S.; Parsons, D.B.; Wang, Y. Wave Disturbances and Their Role in the Maintenance, Structure, and Evolution of a Mesoscale Convection System. J. Atmos. Sci. 2019. [Google Scholar] [CrossRef]
- Zhang, H.; McFarquhar, G.M.; Saleeby, S.M.; Cotton, W.R. Impacts of Saharan dust as CCN on the evolution of an idealized tropical cyclone. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Szunyogh, I.; Toth, Z.; Zimin, A.V.; Majumdar, S.J.; Persson, A. Propagation of the effect of targeted observations: The 2000 Winter Storm Reconnaissance Program. Mon. Weather Rev. 2002, 130, 1144–1165. [Google Scholar] [CrossRef]
- Grams, C.M.; Wernli, H.; Böttcher, M.; Čampa, J.; Corsmeier, U.; Jones, S.C.; Keller, J.H.; Lenz, C.J.; Wiegand, L. The key role of diabatic processes in modifying the upper-tropospheric wave guide: A North Atlantic case-study. Q. J. R. Meteorol. Soc. 2011, 137, 2174–2193. [Google Scholar] [CrossRef]
- Gray, S.L.; Dunning, C.M.; Methven, J.; Masato, G.; Chagnon, J.M. Systematic model forecast error in Rossby wave structure. Geophys. Res. Lett. 2014, 41, 2979–2987. [Google Scholar] [CrossRef]
- Grams, C.M.; Archambault, H.M. The key role of diabatic outflow in amplifying the midlatitude flow: A representative case study of weather systems surrounding western North Pacific extratropical transition. Mon. Weather Rev. 2016, 144, 3847–3869. [Google Scholar] [CrossRef]
- Wallace, J.M. Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States. Mon. Weather Rev. 1975, 103, 406–419. [Google Scholar] [CrossRef]
- Haghi, K.R.; Parsons, D.B.; Shapiro, A. Bores observed during IHOP_2002: The relationship of bores to the nocturnal environment. Mon. Weather Rev. 2017, 145, 3929–3946. [Google Scholar] [CrossRef]
- Loveless, D.M.; Wagner, T.J.; Turner, D.D.; Ackerman, S.A.; Feltz, W.F. A Composite Perspective on Bore Passages during the PECAN Campaign. Mon. Weather Rev. 2019, 147, 1395–1413. [Google Scholar] [CrossRef]
- Parsons, D.B.; Haghi, K.R.; Halbert, K.T.; Elmer, B.; Wang, J. The potential role of atmospheric bores and gravity waves in the initiation and maintenance of nocturnal convection over the Southern Great Plains. J. Atmos. Sci. 2019, 76, 43–68. [Google Scholar] [CrossRef]
- Carbone, R.; Tuttle, J. Rainfall occurrence in the US warm season: The diurnal cycle. J. Clim. 2008, 21, 4132–4146. [Google Scholar] [CrossRef]
- Boettcher, M.; Wernli, H. A 10-yr climatology of diabatic Rossby waves in the Northern Hemisphere. Mon. Weather Rev. 2013, 141, 1139–1154. [Google Scholar] [CrossRef]
- Cordeira, J.M.; Bosart, L.F. Cyclone interactions and evolutions during the “Perfect Storms” of late October and early November 1991. Mon. Weather Rev. 2011, 139, 1683–1707. [Google Scholar] [CrossRef]
- Wernli, H.; Dirren, S.; Liniger, M.A.; Zillig, M. Dynamical aspects of the life cycle of the winter storm ‘Lothar’ (24–26 December 1999). Q. J. R. Meteorol. Soc. 2002, 128, 405–429. [Google Scholar] [CrossRef]
- Rivière, G.; Arbogast, P.; Maynard, K.; Joly, A. The essential ingredients leading to the explosive growth stage of the European wind storm Lothar of Christmas 1999. Q. J. R. Meteorol. Soc. 2010, 136, 638–652. [Google Scholar]
- Moore, R.W.; Montgomery, M.T.; Davies, H.C. The integral role of a diabatic Rossby vortex in a heavy snowfall event. Mon. Weather Rev. 2008, 136, 1878–1897. [Google Scholar] [CrossRef]
- Boettcher, M.; Wernli, H. Life Cycle Study of a Diabatic Rossby Wave as a Precursor to Rapid Cyclogenesis in the North Atlantic—Dynamics and Forecast Performance. Mon. Weather Rev. 2011, 139, 1861–1878. [Google Scholar] [CrossRef]
- Raymond, D.; Jiang, H. A theory for long-lived mesoscale convective systems. J. Atmos. Sci. 1990, 47, 3067–3077. [Google Scholar] [CrossRef]
- Snyder, C.; Lindzen, R.S. Quasi-geostrophic wave-CISK in an unbounded baroclinic shear. J. Atmos. Sci. 1991, 48, 76–86. [Google Scholar] [CrossRef]
- Parker, D.J.; Thorpe, A.J. Conditional Convective Heating in a Baroclinic Atmosphere: A Model of Convective Frontogenesis. J. Atmos. Sci. 1995, 52, 1699–1711. [Google Scholar] [CrossRef] [Green Version]
- Maddox, R.A. Large-scale meteorological conditions associated with midlatitude, mesoscale convective complexes. Mon. Weather Rev. 1983, 111, 1475–1493. [Google Scholar] [CrossRef]
- Fortune, M.A.; Cotton, W.R.; McAnelly, R.L. Frontal-wave-like evolution in some mesoscale convective complexes. Mon. Weather Rev. 1992, 120, 1279–1300. [Google Scholar] [CrossRef]
- Smull, B.F.; Augustine, J.A. Multiscale analysis of a mature mesoscale convective complex. Mon. Weather Rev. 1993, 121, 103–132. [Google Scholar] [CrossRef]
- Johns, R.H.; Hirt, W.D. Derechos: Widespread convectively induced windstorms. Weather Forecast. 1987, 2, 32–49. [Google Scholar] [CrossRef]
- Trier, S.B.; Parsons, D.B.; Clark, J.H. Environment and evolution of a cold-frontal mesoscale convective system. Mon. Weather Rev. 1991, 119, 2429–2455. [Google Scholar] [CrossRef]
- Trier, S.B.; Parsons, D.B. Evolution of environmental conditions preceding the development of a nocturnal mesoscale convective complex. Mon. Weather Rev. 1993, 121, 1078–1098. [Google Scholar] [CrossRef]
- Corfidi, S.F.; Coniglio, M.C.; Cohen, A.E.; Mead, C.M. A proposed revision to the definition of “derecho”. Bull. Am. Meteorol. Soc. 2016, 97, 935–949. [Google Scholar] [CrossRef]
- Hakim, G.J. Climatology of Coherent Structures on the Extratropical Tropopause. Mon. Weather. Rev. 2000, 128, 385–406. [Google Scholar] [CrossRef]
- Weckwerth, T.M.; Romatschke, U. Where, When, and Why Did It Rain during PECAN? Mon. Weather Rev. 2019, 147, 3557–3573. [Google Scholar] [CrossRef]
- Magnusson, L. Diagnostic methods for understanding the origin of forecast errors. Q. J. R. Meteorol. Soc. 2017, 143, 2129–2142. [Google Scholar] [CrossRef]
- Grams, C.M.; Magnusson, L.; Madonna, E. An atmospheric dynamics perspective on the amplification and propagation of forecast error in numerical weather prediction models: A case study. Q. J. R. Meteorol. Soc. 2018, 144, 2577–2591. [Google Scholar] [CrossRef]
- Magnusson, L.; Chen, J.H.; Lin, S.J.; Zhou, L.; Chen, X. Dependence on initial conditions versus model formulations for medium-range forecast error variations. Q. J. R. Meteorol. Soc. 2019, 145, 2085–2100. [Google Scholar] [CrossRef]
- Stensrud, D.J. Effects of Persistent, Midlatitude Mesoscale Regions of Convection on the Large-Scale Environment during the Warm Season. J. Atmos. Sci. 1996, 53, 3503–3527. [Google Scholar] [CrossRef] [Green Version]
- Stensrud, D.J.; Anderson, J.L. Is Midlatitude Convection an Active or a Passive Player in Producing Global Circulation Patterns? J. Clim. 2001, 14, 2222–2237. [Google Scholar] [CrossRef]
- Stensrud, D.J. Upscale Effects of Deep Convection during the North American Monsoon. J. Atmos. Sci. 2013, 70, 2681–2695. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parsons, D.B.; Lillo, S.P.; Rattray, C.P.; Bechtold, P.; Rodwell, M.J.; Bruce, C.M. The Role of Continental Mesoscale Convective Systems in Forecast Busts within Global Weather Prediction Systems. Atmosphere 2019, 10, 681. https://doi.org/10.3390/atmos10110681
Parsons DB, Lillo SP, Rattray CP, Bechtold P, Rodwell MJ, Bruce CM. The Role of Continental Mesoscale Convective Systems in Forecast Busts within Global Weather Prediction Systems. Atmosphere. 2019; 10(11):681. https://doi.org/10.3390/atmos10110681
Chicago/Turabian StyleParsons, David B., Samuel P. Lillo, Christopher P. Rattray, Peter Bechtold, Mark J. Rodwell, and Connor M. Bruce. 2019. "The Role of Continental Mesoscale Convective Systems in Forecast Busts within Global Weather Prediction Systems" Atmosphere 10, no. 11: 681. https://doi.org/10.3390/atmos10110681
APA StyleParsons, D. B., Lillo, S. P., Rattray, C. P., Bechtold, P., Rodwell, M. J., & Bruce, C. M. (2019). The Role of Continental Mesoscale Convective Systems in Forecast Busts within Global Weather Prediction Systems. Atmosphere, 10(11), 681. https://doi.org/10.3390/atmos10110681