A 5 km Resolution Regional Climate Simulation for Central Europe: Performance in High Mountain Areas and Seasonal, Regional and Elevation-Dependent Variations
Abstract
:1. Introduction
2. Investigation Area
- Region 1 (RG1): large parts of Central Europe, Germany and the Alps (from 5° to 16° E, and 44° to 55° N)
- Region 2 (RG2): the Alps, large parts of the Greater Alpine Region (from 5° to 16° E, and 44° to 48° N), and
- Region 3 (RG3): the Berchtesgaden Alps in South-East Germany (from 12.7° to 13.5° E, and 47.2° to 47.8° N)
3. Materials and Methods
3.1. The WRF Model and Setup
3.2. Global Forcing Data and Simulations
3.3. Observation Data
4. Results and Discussion
4.1. Performance of WRF (Forced by ERA-Interim) in Reproducing Regional Temperature and Precipitation Characteristics
4.2. Local Scale Performance of WRF (Driven by ERA-Interim) in Reproducing Hourly, Daily, and Monthly Station Data
- Temperature: The performance is very good with overall mean RMSE values of 3.28 °C for hourly, 2.37 °C for daily, and 1.57 °C for monthly data, as well as mean R of 0.84 (hourly), 0.91 (daily), and 0.94 (monthly).
- Precipitation: deviations in precipitation are less evident than in the evaluation using gridded datasets. R is 0.44 (RMSE = 7.1 mm/d) for daily and 0.64 (RMSE = 2.1 mm/d, 64 mm/month) for monthly station data. Hourly dynamics are not realistically captured.
- Relative humidity: Diverse results for the single stations and time aggregations with an overall average RMSE of 4.36% for monthly data are found.
- Wind speed: A very differentiated performance depending on the station terrain characteristic but with overall small average RMSE values of 1.42 m/s (hourly), 1.0 m/s (daily) and 0.45 m/s (monthly) is shown.
- Incoming short-wave radiation: Temporal dynamics are very well captured with high R values of 0.61, 0.70 and 0.91 (hourly, daily, and monthly, station average). Absolute amounts show an RMSE ranging from 52 W/m for monthly to 158 W/m for hourly data (station average).
4.3. Climate Change Signal of the RCM Simulations
4.3.1. Temperature
4.3.2. Precipitation
4.3.3. Relative Humidity
4.3.4. Wind Speed
4.3.5. Incoming Short-wave Radiation
4.3.6. Elevation-Dependency of the Climate Change Signal
4.3.7. Precipitation Intensities
5. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pörtner, H.O.; Roberts, D.; Masson-Delmotte, V.; Zhai, P.; Tignor, M.; Poloczanska, E.; Mintenbeck, K.; Nicolai, M.; Okem, A.; Petzold, J.; et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; IPCC Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019. [Google Scholar]
- Beniston, M.; Farinotti, D.; Stoffel, M.; Andreassen, L.M.; Coppola, E.; Eckert, N.; Fantini, A.; Giacona, F.; Hauck, C.; Huss, M.; et al. The European mountain cryosphere: A review of its current state, trends, and future challenges. Cryosphere 2018, 12, 759–794. [Google Scholar] [CrossRef]
- Christensen, J.H.; Christensen, O.B. A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim. Chang. 2007, 81, 7–30. [Google Scholar] [CrossRef]
- Van der Linden, P.; Mitchell, J.E. ENSEMBLES: Climate Change and Its Impacts—Summary of Research and Results from the ENSEMBLES Project; Met Office Hadley Centre: Exeter, UK, 2009; p. 160.
- Jacob, D.; Bärring, L.; Christensen, O.B.; Christensen, J.H.; de Castro, M.; Déqué, M.; Giorgi, F.; Hagemann, S.; Hirschi, M.; Jones, R.; et al. An inter-comparison of regional climate models for Europe: Model performance in present-day climate. Clim. Chang. 2007, 81, 31–52. [Google Scholar] [CrossRef]
- Kotlarski, S.; Keuler, K.; Christensen, O.B.; Colette, A.; Déqué, M.; Gobiet, A.; Goergen, K.; Jacob, D.; Lüthi, D.; van Meijgaard, E.; et al. Regional climate modeling on European scales: A joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci. Model Dev. 2014, 7, 1297–1333. [Google Scholar] [CrossRef]
- Gobiet, A.; Kotlarski, S.; Beniston, M.; Heinrich, G.; Rajczak, J.; Stoffel, M. 21st century climate change in the European Alps—A review. Sci. Total Environ. 2014, 493, 1138–1151. [Google Scholar] [CrossRef]
- Smiatek, G.; Kunstmann, H.; Senatore, A. EURO-CORDEX regional climate model analysis for the Greater Alpine Region: Performance and expected future change. J. Geophys. Res. Atmos. 2016, 121, 7710–7728. [Google Scholar] [CrossRef]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Giorgi, F.; Torma, C.; Coppola, E.; Ban, N.; Schär, C.; Somot, S. Enhanced summer convective rainfall at Alpine high elevations in response to climate warming. Nat. Geosci. 2016, 9, 584. [Google Scholar] [CrossRef]
- Rasmussen, R.; Liu, C.; Ikeda, K.; Gochis, D.; Yates, D.; Chen, F.; Tewari, M.; Barlage, M.; Dudhia, J.; Yu, W.; et al. High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. J. Clim. 2011, 24, 3015–3048. [Google Scholar] [CrossRef]
- Zekollari, H.; Huss, M.; Farinotti, D. Modelling the future evolution of glaciers in the European Alps under the EURO-CORDEX RCM ensemble. Cryosphere 2019, 13, 1125–1146. [Google Scholar] [CrossRef] [Green Version]
- Prein, A.F.; Gobiet, A.; Truhetz, H.; Keuler, K.; Goergen, K.; Teichmann, C.; Fox Maule, C.; van Meijgaard, E.; Déqué, M.; Nikulin, G.; et al. Precipitation in the EURO-CORDEX 0.11° and 0.44° simulations: High resolution, high benefits? Clim. Dyn. 2016, 46, 383–412. [Google Scholar] [CrossRef]
- Ban, N.; Schmidli, J.; Schär, C. Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations. J. Geophys. Res. Atmos. 2014, 119, 7889–7907. [Google Scholar] [CrossRef]
- Leutwyler, D.; Lüthi, D.; Ban, N.; Fuhrer, O.; Schär, C. Evaluation of the convection-resolving climate modeling approach on continental scales. J. Geophys. Res. Atmos. 2017, 122, 5237–5258. [Google Scholar] [CrossRef]
- Coppola, E.; Sobolowski, S.; Pichelli, E.; Raffaele, F.; Ahrens, B.; Anders, I.; Ban, N.; Bastin, S.; Belda, M.; Belusic, D.; et al. A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean. Clim. Dyn. 2018, 1–32. [Google Scholar] [CrossRef]
- Knist, S.; Goergen, K.; Simmer, C. Evaluation and projected changes of precipitation statistics in convection-permitting WRF climate simulations over Central Europe. Clim. Dyn. 2018, 1–17. [Google Scholar] [CrossRef]
- Kendon, E.J.; Stratton, R.A.; Tucker, S.; Marsham, J.H.; Berthou, S.; Rowell, D.P.; Senior, C.A. Enhanced future changes in wet and dry extremes over Africa at convection-permitting scale. Nat. Commun. 2019, 10, 1794. [Google Scholar] [CrossRef]
- Prein, A.F.; Langhans, W.; Fosser, G.; Ferrone, A.; Ban, N.; Goergen, K.; Keller, M.; Tölle, M.; Gutjahr, O.; Feser, F.; et al. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys. 2015, 53, 323–361. [Google Scholar] [CrossRef]
- Ohmura, A. Enhanced temperature variability in high-altitude climate change. Theor. Appl. Climatol. 2012, 110, 499–508. [Google Scholar] [CrossRef]
- Pepin, N.; Bradley, R.; Diaz, H.; Baraer, M.; Caceres, E.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.; Liu, X.; et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar] [Green Version]
- Wang, Q.; Wang, M.; Fan, X. Seasonal patterns of warming amplification of high-elevation stations across the globe. Int. J. Climatol. 2018, 38, 3466–3473. [Google Scholar] [CrossRef]
- Haylock, M.; Hofstra, N.; Klein Tank, A.; Klok, E.; Jones, P.; New, M. A European daily high-resolution gridded dataset of surface temperature and precipitation for 1950–2006. J. Geophys. Res. 2008, 113, 2156–2202. [Google Scholar] [CrossRef]
- Van den Besselaar, E.; Haylock, M.; van der Schrier, G.; Klein Tank, A. A European daily high-resolution observational gridded data set of sea level pressure. J. Geophys. Res. 2011, 116, 1–11. [Google Scholar] [CrossRef]
- Efthymiadis, D.; Jones, P.; Briffa, K.; Auer, I.; Böhm, R.; Schöner, W.; Frei, C.; Schmidli, J. Construction of a 10-min-gridded precipitation data set for the Greater Alpine Region for 1800-2003. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Hiebl, J.; Auer, I.; Böhm, R.; Schöner, W.; Maugeri, M.; Lentini, G.; Spinoni, J.; Brunett, M.; Nanni, T.; Tadi’c, M.P.; et al. A high-resolution 1961–1990 monthly temperature climatology for the greater Alpine region. Meteorol. Z. 2009, 18, 507–530. [Google Scholar] [CrossRef]
- Isotta, F.; Frei, C.; Weilguni, V.; Perčec Tadić, M.; Lassègues, P.; Rudolf, B.; Pavan, V.; Cacciamani, C.; Antolini, G.; Ratto, S.; et al. The climate of daily precipitation in the Alps: Development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data. Int. J. Climatol. 2014, 34, 1657–1675. [Google Scholar] [CrossRef]
- Skamarock, W.; Klemp, J.; Dudhia, J.; Gill, D.; Barker, D.; Duda, M.; Huang, X.; Wang, W.; Powers, J. A Description of the Advanced Research WRF Version 3; Technical Reports NCAR/TN-475+STR, NCAR TECHNICAL NOTE; University Corporation for Atmospheric Research: Boulder, CO, USA, 2008; p. 113. [Google Scholar]
- Hong, S.; Lim, J. The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). J. Korean Meteorol. Soc. 1990, 42, 129–151. [Google Scholar]
- Grell, G.A.; Freitas, S.R. A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys. 2014, 14, 5233–5250. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Dudhia, J. Coupling an Advanced Land Surface-Hydrology Model with the Penn State-NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Chen, F.; Dudhia, J. Coupling an Advanced Land Surface-Hydrology Model with the Penn State-NCAR MM5 Modeling System. Part II: Preliminary Model Validation. Mon. Weather Rev. 2001, 129, 587–604. [Google Scholar] [CrossRef]
- Hong, S.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Iacano, M.; Delamere, J.; Mlawer, E.; Shephard, M.; Clough, S.; Collins, W. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Atmos. Sci. 2008, 113. [Google Scholar] [CrossRef]
- Katragkou, E.; García-Díez, M.; Vautard, R.; Sobolowski, S.; Zanis, P.; Alexandri, G.; Cardoso, R.M.; Colette, A.; Fernandez, J.; Gobiet, A.; et al. Regional climate hindcast simulations within EURO-CORDEX: Evaluation of a WRF multi-physics ensemble. Geosci. Model Dev. 2015, 8, 603–618. [Google Scholar] [CrossRef]
- García-Díez, M.; Fernández, J.; Vautard, R. An RCM multi-physics ensemble over Europe: Multi-variable evaluation to avoid error compensation. Clim. Dyn. 2015, 45, 3141–3156. [Google Scholar] [CrossRef]
- Wagner, A.; Heinzeller, D.; Wagner, S.; Rummler, T.; Kunstmann, H. Explicit Convection and Scale-Aware Cumulus Parameterizations: High-Resolution Simulations over Areas of Different Topography in Germany. Mon. Weather Rev. 2018, 146, 1925–1944. [Google Scholar] [CrossRef]
- Warscher, M. High-Resolution (5 km) RCM data for Central Europe, 1980–2009 and 2020-2049, WRF 3.6.1 forced by ERA-Interim and MPI-ESM, RCP4.5. 2019. Available online: https://doi.org/10.5281/zenodo.2533904 (accessed on 1 November 2019).
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Giorgetta, M.; Jungclaus, J.; Reick, C.; Legutke, S.; Brovkin, V.; Crueger, T.; Esch, M.; Fieg, K.; Glushak, K.; Gayler, V.; et al. CMIP5 Simulations of the Max Planck Institute for Meteorology (MPI-M) Based on the MPI-ESM-LR Model: The rcp45 Experiment, Served by ESGF. 2012. Available online: https://doi.org/10.1594/WDCC/CMIP5.MXELr4 (accessed on 1 November 2019).
- Stevens, B.; Giorgetta, M.; Esch, M.; Mauritsen, T.; Crueger, T.; Rast, S.; Salzmann, M.; Schmidt, H.; Bader, J.; Block, K.; et al. Atmospheric component of the MPI-M Earth System Model: ECHAM6. J. Adv. Model Earth Syst. 2013, 5, 146–172. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.F.; et al. The representative concentration pathways: an overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Marke, T.; Strasser, U.; Kraller, G.; Warscher, M.; Kunstmann, H.; Franz, H.; Vogel, M. The Berchtesgaden National Park (Bavaria, Germany): A platform for interdisciplinary catchment research. Environ. Earth Sci. 2013, 69, 679–694. [Google Scholar] [CrossRef]
- Warscher, M.; Strasser, U.; Kraller, G.; Marke, T.; Franz, H.; Kunstmann, H. Performance of complex snow cover descriptions in a distributed hydrological model system: A case study for the high Alpine terrain of the Berchtesgaden Alps. Water Resour. Res. 2013, 49, 2619–2637. [Google Scholar] [CrossRef] [Green Version]
- Warrach-Sagi, K.; Schwitalla, T.; Wulfmeyer, V.; Bauer, H. Evaluation of a climate simulation in Europe based on the WRF-NOAH model system: Precipitation in Germany. Clim. Dyn. 2013, 41, 755–774. [Google Scholar] [CrossRef]
- Kotlarski, S.; Szabó, P.; Herrera, S.; Räty, O.; Keuler, K.; Soares, P.M.; Cardoso, R.M.; Bosshard, T.; Pagé, C.; Boberg, F.; et al. Observational uncertainty and regional climate model evaluation: A pan-European perspective. Int. J. Climatol. 2017, 39. [Google Scholar] [CrossRef]
- Frei, C.; Christensen, J.H.; Déqué, M.; Jacob, D.; Jones, R.G.; Vidale, P.L. Daily precipitation statistics in regional climate models: Evaluation and intercomparison for the European Alps. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Prein, A.F.; Gobiet, A. Impacts of uncertainties in European gridded precipitation observations on regional climate analysis. Int. J. Climatol. 2017, 37, 305–327. [Google Scholar] [CrossRef] [PubMed]
- Pieri, A.; von Hardenberg, J.; Parodi, A.; Provenzale, A. Sensitivity of Precipitation Statistics to Resolution, Microphysics, and Convective Parameterization: A Case Study with the High-Resolution WRF Climate Model over Europe. J. Hydrometeorol. 2015, 16, 1857–1872. [Google Scholar] [CrossRef]
- Frei, C.; Schöll, R.; Fukutome, S.; Schmidli, J.; Vidale, P.L. Future change of precipitation extremes in Europe: Intercomparison of scenarios from regional climate models. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. (Eds.) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Berg, P.; Wagner, S.; Kunstmann, H.; Schädler, G. High resolution regional climate model simulations for Germany: Part I—Validation. Clim. Dyn. 2013, 40, 401–414. [Google Scholar] [CrossRef]
- Wagner, S.; Berg, P.; Schädler, G.; Kunstmann, H. High resolution regional climate model simulations for Germany: Part II—Projected climate changes. Clim. Dyn. 2013, 40, 415–427. [Google Scholar] [CrossRef]
- Jerez, S.; Tobin, I.; Vautard, R.; Montávez, J.P.; López-Romero, J.M.; Thais, F.; Bartok, B.; Christensen, O.B.; Colette, A.; Déqué, M.; et al. The impact of climate change on photovoltaic power generation in Europe. Nat. Commun. 2015, 6, 10014. [Google Scholar] [CrossRef] [Green Version]
- Winter, K.; Kotlarski, S.; Scherrer, S.; Schär, C. The Alpine snow-albedo feedback in regional climate models. Clim. Dyn. 2017, 48, 1109–1124. [Google Scholar] [CrossRef]
- Yan, L.; Liu, X. Has climatic warming over the Tibetan Plateau paused or continued in recent years. J. Earth Ocean Atmos. Sci. 2014, 1, 13–28. [Google Scholar]
- Kotlarski, S.; Bosshard, T.; Lüthi, D.; Pall, P.; Schär, C. Elevation gradients of European climate change in the regional climate model COSMO-CLM. Clim. Chang. 2012, 112, 189–215. [Google Scholar] [CrossRef]
- Rangwala, I.; Miller, J.R. Climate change in mountains: A review of elevation-dependent warming and its possible causes. Clim. Chang. 2012, 114, 527–547. [Google Scholar] [CrossRef]
- Rajczak, J.; Pall, P.; Schär, C. Projections of extreme precipitation events in regional climate simulations for Europe and the Alpine Region. J. Geophys. Res. Atmos. 2013, 118, 3610–3626. [Google Scholar] [CrossRef]
Station | Elevation | ΔElevation | Temperature | Precipitation | Humidity | Wind Speed | SW Radiation | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
m ASL | m (g.c. - st.) | hour | day | month | hour | day | month | hour | day | month | hour | day | month | hour | day | month | |
Reiteralm 1 | 1753 | −747 | 0.86 | 0.92 | 0.92 | n.a. | n.a. | n.a. | 0.53 | 0.69 | 0.61 | 0.27 | 0.48 | 0.42 | n.a. | n.a. | n.a. |
Reiteralm 2 | 1679 | −662 | 0.89 | 0.93 | 0.96 | n.a. | n.a. | n.a. | 0.50 | 0.66 | 0.46 | n.a. | n.a. | n.a. | 0.48 | 0.60 | 0.85 |
Reiteralm 3 | 1611 | −607 | 0.90 | 0.96 | 0.95 | n.a. | n.a. | n.a. | 0.45 | 0.67 | 0.36 | n.a. | n.a. | n.a. | 0.54 | 0.75 | 0.90 |
Schoenau | 617 | +281 | 0.80 | 0.90 | 0.97 | 0.06 | 0.44 | 0.74 | 0.06 | 0.20 | 0.05 | 0.02 | 0.15 | 0.00 | 0.54 | 0.76 | 0.96 |
Jenner 1 | 1219 | +310 | 0.84 | 0.91 | 0.97 | n.a. | n.a. | n.a. | 0.41 | 0.57 | 0.40 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
Hoellgraben | 640 | +463 | 0.69 | 0.79 | 0.90 | 0.06 | 0.47 | 0.69 | 0.09 | 0.21 | 0.15 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
Kuehroint | 1407 | −215 | 0.90 | 0.95 | 0.97 | 0.05 | 0.36 | 0.48 | 0.53 | 0.71 | 0.58 | 0.08 | 0.14 | 0.05 | 0.56 | 0.71 | 0.91 |
Funtenseetauern | 2522 | −539 | 0.77 | 0.83 | 0.89 | n.a. | n.a. | n.a. | 0.47 | 0.64 | 0.52 | 0.12 | 0.16 | 0.11 | n.a. | n.a. | n.a. |
Hinterberghorn | 2270 | −651 | 0.80 | 0.86 | 0.71 | n.a. | n.a. | n.a. | 0.32 | 0.45 | 0.29 | 0.09 | 0.14 | 0.12 | 0.51 | 0.50 | 0.91 |
Schlunghorn | 2155 | −645 | 0.82 | 0.92 | n.a. | n.a. | n.a. | n.a. | 0.41 | 0.61 | n.a. | 0.33 | 0.56 | n.a. | n.a. | n.a. | n.a. |
Watzmannhaus | 1919 | −727 | 0.88 | 0.94 | 0.97 | n.a. | n.a. | n.a. | 0.53 | 0.70 | 0.67 | 0.32 | 0.56 | 0.80 | 0.57 | 0.69 | 0.86 |
Blaueis | 1651 | −619 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | 0.51 | 0.66 | 0.51 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
Hinterseeau | 839 | +715 | 0.78 | 0.91 | 0.98 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | 0.50 | 0.69 | 0.96 |
Brunftbergtiefe | 1238 | +113 | 0.83 | 0.88 | 0.96 | 0.07 | 0.44 | 0.85 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | 0.50 | 0.66 | 0.85 |
Lofer | 625 | +429 | 0.87 | 0.92 | 0.97 | 0.09 | 0.50 | 0.65 | 0.18 | 0.29 | 0.05 | n.a. | n.a. | n.a. | 0.74 | 0.76 | 0.95 |
Loferer Alm | 1623 | −404 | 0.87 | 0.93 | 0.98 | 0.09 | 0.47 | 0.56 | 0.51 | 0.70 | 0.57 | 0.28 | 0.57 | 0.77 | 0.75 | 0.73 | 0.88 |
Salzburg Flughafen | 430 | −40 | 0.91 | 0.95 | 0.99 | n.a. | n.a. | n.a. | 0.26 | 0.40 | 0.45 | 0.14 | 0.39 | 0.51 | n.a. | n.a. | n.a. |
Schmittenhoehe | 1973 | −747 | n.a. | n.a. | n.a. | 0.07 | 0.43 | 0.65 | 0.50 | 0.69 | 0.52 | 0.09 | 0.21 | 0.05 | 0.72 | 0.67 | 0.95 |
Golling | 491 | +272 | 0.91 | 0.95 | 0.96 | 0.10 | 0.43 | 0.67 | 0.34 | 0.56 | 0.52 | 0.03 | 0.04 | 0.09 | 0.75 | 0.79 | 0.95 |
Saalbach | 974 | +481 | 0.83 | 0.89 | 0.97 | 0.08 | 0.42 | 0.49 | n.a. | n.a. | n.a. | 0.03 | 0.14 | 0.23 | 0.73 | 0.81 | 0.95 |
Average | 1382 | −177 | 0.84 | 0.91 | 0.94 | 0.07 | 0.44 | 0.64 | 0.39 | 0.55 | 0.42 | 0.15 | 0.30 | 0.29 | 0.61 | 0.70 | 0.91 |
Station | Elevation | ΔElevation | Temperature | Precipitation | Humidity | Wind Speed | SW Radiation | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
m ASL | m | °C | mm | % | % | m/s | W/m2 | |||||||||||
g.c. - st. | hour | day | month | hour | day | month | PBias | hour | day | month | hour | day | month | hour | day | month | ||
Reiteralm 1 | 1753 | −747 | 3.11 | 2.32 | 1.94 | n.a. | n.a. | n.a. | n.a. | 12.74 | 8.42 | 3.93 | 1.16 | 0.75 | 0.34 | n.a. | n.a. | n.a. |
Reiteralm 2 | 1679 | −662 | 2.77 | 2.06 | 1.39 | n.a. | n.a. | n.a. | n.a. | 13.12 | 8.75 | 4.26 | n.a. | n.a. | n.a. | 186.13 | 62.73 | 31.71 |
Reiteralm 3 | 1611 | −607 | 2.70 | 1.71 | 1.51 | n.a. | n.a. | n.a. | n.a. | 13.94 | 8.80 | 4.38 | n.a. | n.a. | n.a. | 163.61 | 46.45 | 26.07 |
Schoenau | 617 | +281 | 3.74 | 2.49 | 1.14 | 0.66 | 6.41 | 49.62 | +24 | 17.69 | 13.30 | 5.37 | 1.21 | 0.82 | 0.35 | 174.98 | 47.85 | 17.41 |
Jenner 1 | 1219 | +310 | 3.34 | 2.43 | 1.25 | n.a. | n.a. | n.a. | n.a. | 13.69 | 9.48 | 4.54 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
Jenner 2 | 640 | +463 | 4.45 | 3.44 | 2.24 | 0.76 | 8.56 | 97.82 | +63 | 18.05 | 13.65 | 6.02 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
Kuehroint | 1407 | −215 | 2.63 | 1.83 | 1.19 | 0.81 | 8.42 | 94.19 | +54 | 12.94 | 8.33 | 4.28 | 1.53 | 1.17 | 0.56 | 167.61 | 51.61 | 24.59 |
Funtenseetauern | 2522 | −539 | 4.15 | 3.35 | 2.42 | n.a. | n.a. | n.a. | n.a. | 12.29 | 8.29 | 4.24 | 1.90 | 1.60 | 0.79 | n.a. | n.a. | n.a. |
Hinterberghorn | 2270 | −651 | 3.82 | 3.15 | 3.97 | n.a. | n.a. | n.a. | n.a. | 14.40 | 10.27 | 3.83 | 2.13 | 1.67 | 0.92 | 176.04 | 66.58 | 23.73 |
Schlunghorn | 2155 | −645 | 2.95 | 1.82 | n.a. | n.a. | . n.a. | n.a. | n.a. | 15.03 | 9.69 | n.a. | 1.76 | 1.05 | n.a. | n.a. | n.a. | n.a. |
Watzmannhaus | 1919 | −727 | 2.81 | 1.92 | 1.09 | n.a. | n.a. | n.a. | n.a. | 12.75 | 8.29 | 3.34 | 1.40 | 0.90 | 0.31 | 155.41 | 51.08 | 29.37 |
Blaueis | 1651 | −619 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | 13.10 | 8.95 | 4.43 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
Hinterseeau | 839 | +715 | 3.82 | 2.35 | 1.20 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | 186.44 | 54.45 | 16.61 |
Brunftbergtiefe | 1238 | +113 | 3.68 | 2.91 | 1.61 | 0.89 | 9.27 | 57.21 | +19 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | 179.56 | 56.69 | 33.72 |
Lofer | 625 | +429 | 3.12 | 2.33 | 1.16 | 0.69 | 6.21 | 55.32 | +19 | 16.54 | 12.13 | 5.31 | n.a. | n.a. | n.a. | 133.46 | 47.04 | 18.00 |
Loferer Alm | 1623 | −404 | 3.07 | 2.20 | 1.06 | 0.77 | 7.21 | 61.05 | +41 | 12.51 | 7.67 | 3.54 | 1.03 | 0.61 | 0.21 | 126.29 | 49.82 | 27.74 |
Salzburg Flugh. | 430 | −40 | 2.65 | 1.85 | 0.71 | n.a. | n.a. | n.a. | n.a. | 14.48 | 10.27 | 4.31 | 1.00 | 0.54 | 0.22 | n.a. | n.a. | n.a. |
Schmittenhoehe | 1973 | −747 | n.a. | n.a. | n.a. | 0.58 | 5.14 | 41.96 | −7 | 12.78 | 7.63 | 3.72 | 0.97 | 0.60 | 0.21 | 136.38 | 54.04 | 18.12 |
Golling | 491 | +272 | 2.61 | 1.80 | 1.50 | 0.64 | 6.00 | 54.28 | +36 | 15.18 | 10.16 | 4.32 | 1.46 | 1.12 | 0.47 | 122.43 | 45.02 | 19.81 |
Saalbach | 974 | +481 | 3.63 | 2.73 | 1.29 | 0.71 | 6.76 | 62.14 | +85 | n.a. | n.a. | n.a. | 1.50 | 1.12 | 0.53 | 129.14 | 40.88 | 18.51 |
Average | 1382 | −177 | 3.28 | 2.37 | 1.57 | 0.72 | 7.11 | 63.73 | +37 | 14.19 | 9.65 | 4.36 | 1.42 | 1.00 | 0.45 | 156.73 | 51.86 | 23.49 |
Temperature | Precipitation | Humidity | Wind speed | SW radiation | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
K | mm | % | % | m/s | W/m2 | |||||||||||||
min. | max. | avg. | min. | max. | avg. | min. | max. | avg. | min. | max. | avg. | min. | max. | avg. | min. | max. | avg. | |
RG1 ann. | +0.44 | +1.59 | +0.90 | −40 | +666 | +83 | −4 | +25 | +6 | −3.37 | +1.61 | −0.20 | −0.22 | +0.25 | +0.06 | −8.31 | +0.72 | −1.91 |
DJF | +0.46 | +1.73 | +1.13 | −60 | +331 | + 32 | −9 | +32 | +11 | −4.73 | +2.95 | −0.96 | −0.43 | +0.56 | +0.15 | −5.77 | +1.50 | −1.56 |
MAM | +0.42 | +1.73 | +0.97 | −55 | +215 | +16 | −13 | +37 | +5 | −4.53 | +1.79 | −0.22 | −0.30 | +0.47 | +0.17 | −18.94 | +0.90 | −3.40 |
JJA | +0.43 | +1.72 | +0.84 | −70 | +198 | +10 | −12 | +67 | +3 | −3.78 | +4.46 | +0.22 | −0.57 | +0.29 | −0.05 | −17.60 | +5.56 | −0.39 |
SON | +0.21 | +2.27 | +0.64 | −55 | +317 | +19 | −10 | +38 | +6 | −8.61 | +2.76 | 0 | −0.78 | +0.58 | +0.01 | −10.77 | +4.20 | −1.45 |
RG2 ann. | +0.44 | +1.59 | +0.96 | +2 | +666 | +155 | 0 | +24 | +10 | −3.37 | +1.61 | +0.03 | −0.22 | +0.25 | 0 | −8.31 | −0.73 | −2.94 |
DJF | +0.46 | +1.73 | +1.15 | −60 | +331 | +34 | −9 | +32 | +8 | −4.73 | +2.95 | −0.92 | −0.43 | +0.56 | +0.05 | −5.77 | +1.03 | −2.13 |
MAM | +0.56 | +1.73 | +1.11 | −55 | +215 | +35 | −10 | +37 | +9 | −4.53 | +1.79 | −0.33 | −0.30 | +0.45 | +0.05 | −18.94 | +0.85 | −4.56 |
JJA | +0.43 | +1.72 | +0.90 | −70 | +198 | +32 | −10 | +67 | +10 | −3.78 | +4.46 | +0.96 | −0.57 | +0.29 | −0.08 | −17.60 | +4.20 | −2.48 |
SON | +0.21 | +2.27 | +0.68 | −55 | +317 | +40 | −8 | +38 | +9 | −8.61 | +2.76 | −0.01 | −0.78 | +0.58 | −0.02 | −10.77 | +4.20 | −1.52 |
RG3 ann. | +0.93 | +1.05 | +0.99 | +77 | +298 | +169 | +4 | +13 | +8 | −0.60 | +0.63 | +0.04 | −0.07 | +0.06 | 0 | −7.12 | −2.50 | −4.61 |
DJF | +0.88 | +1.31 | +1.04 | +22 | +121 | +59 | +6 | +27 | +13 | −2.38 | +1.86 | +0.43 | −0.10 | +0.23 | +0.03 | −4.22 | −1.16 | −2.69 |
MAM | +1.18 | +1.55 | +1.41 | −19 | +41 | +10 | −3 | +10 | +2 | −3.14 | −0.06 | −1.69 | −0.05 | +0.16 | +0.03 | −12.22 | −1.97 | −6.90 |
JJA | +0.80 | +1.13 | +0.89 | −39 | +54 | 0 | −5 | +8 | 0 | −1.12 | +0.95 | +0.46 | −0.17 | +0.03 | −0.06 | −11.28 | +0.24 | −2.65 |
SON | +0.42 | +0.74 | +0.61 | +48 | +173 | +99 | +16 | +33 | +23 | +0.18 | +2.76 | +0.86 | −0.30 | +0.18 | +0.02 | −8.04 | −1.83 | −5.87 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Warscher, M.; Wagner, S.; Marke, T.; Laux, P.; Smiatek, G.; Strasser, U.; Kunstmann, H. A 5 km Resolution Regional Climate Simulation for Central Europe: Performance in High Mountain Areas and Seasonal, Regional and Elevation-Dependent Variations. Atmosphere 2019, 10, 682. https://doi.org/10.3390/atmos10110682
Warscher M, Wagner S, Marke T, Laux P, Smiatek G, Strasser U, Kunstmann H. A 5 km Resolution Regional Climate Simulation for Central Europe: Performance in High Mountain Areas and Seasonal, Regional and Elevation-Dependent Variations. Atmosphere. 2019; 10(11):682. https://doi.org/10.3390/atmos10110682
Chicago/Turabian StyleWarscher, Michael, Sven Wagner, Thomas Marke, Patrick Laux, Gerhard Smiatek, Ulrich Strasser, and Harald Kunstmann. 2019. "A 5 km Resolution Regional Climate Simulation for Central Europe: Performance in High Mountain Areas and Seasonal, Regional and Elevation-Dependent Variations" Atmosphere 10, no. 11: 682. https://doi.org/10.3390/atmos10110682
APA StyleWarscher, M., Wagner, S., Marke, T., Laux, P., Smiatek, G., Strasser, U., & Kunstmann, H. (2019). A 5 km Resolution Regional Climate Simulation for Central Europe: Performance in High Mountain Areas and Seasonal, Regional and Elevation-Dependent Variations. Atmosphere, 10(11), 682. https://doi.org/10.3390/atmos10110682