DNA Barcoding and Analysis of Nutritional Properties as a Tool for Enhancing Traceability of Anchovies (Engraulis encrasicolus L.) Fished in the Italian Southern Adriatic Sea
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. DNA Extraction, Amplification and Sequencing
2.3. Data Treatment
2.4. Biometric Measurements of Anchovies
2.5. Colour and Textural Parameters in Anchovy Fillets
2.6. Chemical and Fatty Acid Analysis of Fillets
2.7. Statistical Analysis
3. Results
3.1. DNA Barcoding
3.2. Biometric Measurements of Anchovies
3.3. Colour and Textural Parameters in Anchovy Fillets
3.4. Chemical and Fatty Acid Analysis of Fillets
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Albrecht-Ruiz, M.; Salas-Maldonado, A. Chemical composition of light and dark muscle of Peruvian anchovy (Engraulis ringens) and its seasonal variation. J. Aquat. Food Prod. Technol. 2015, 24, 191–196. [Google Scholar] [CrossRef]
- Hei, A. Mental Health Benefits of Fish Consumption. Clin. Schizophr. Relat. Psychoses 2020, 15, 1. [Google Scholar]
- Karsli, B. Determination of metal content in anchovy (Engraulis encrasicolus) from Turkey, Georgia and Abkhazia coasts of the Black Sea: Evaluation of potential risks associated with human consumption. Mar. Pollut. Bull. 2021, 165, 112108. [Google Scholar] [CrossRef] [PubMed]
- Karsli, B. Comparative Analysis of the fatty acid composition of commercially available fish oil supplements in Turkey: Public health risks and benefits. J. Food Comp. Anal. 2021, 103, 104105. [Google Scholar] [CrossRef]
- Kapoor, B.; Kapoor, D.; Gautam, S.; Singh, R.; Bhardwaj, S. Dietary polyunsaturated fatty acids (PUFAs): Uses and potential health benefits. Curr. Nutr. Rep. 2021, 10, 232–242. [Google Scholar] [CrossRef]
- Prato, E.; Biandolino, F. The contribution of fish to the Mediterranean diet. In The Mediterranean Diet; Academic Press: London, UK, 2015; pp. 165–174. [Google Scholar]
- Bevilacqua, A.H.V.; Angelini, R.; Steenbeek, J.; Christensen, V.; Carvalho, A.R. Following the fish: The role of subsistence in a fish-based value chain. Ecol. Econ. 2019, 159, 326–334. [Google Scholar] [CrossRef]
- Patti, B.; Zarrad, R.; Jarboui, O.; Cuttitta, A.; Basilone, G.; Aronica, S.; Mazzola, S. Anchovy (Engraulis encrasicolus) early life stages in central Mediterranean Sea: Connectivity issues emerging among adjacent sub-areas across the Strait of Sicily. Hidrobiologia 2018, 218, 25–40. [Google Scholar] [CrossRef]
- Gaviglio, A.; Demartini, E.; Mauracher, C.; Pirani, A. Consumer perception of different species and presentation forms of fish: An empirical analysis in Italy. Food Qual. Prefer. 2014, 36, 33–49. [Google Scholar] [CrossRef]
- Menozzi, D.; Nguyen, T.T.; Sogari, G.; Taskov, D.; Lucas, S.; Castro-Rial, J.L.S.; Mora, C. Consumers’ preferences and willingness to pay for fish products with health and environmental labels: Evidence from five European countries. Nutrients 2020, 12, 2650. [Google Scholar] [CrossRef]
- Jérôme, M.; Martinsohn, J.T.; Ortega, D.; Carreau, P.; Verrez-Bagnis, V.; Mouchel, O. Toward fish and seafood traceability: Anchovy species determination in fish products by molecular markers and support through a public domain database. J. Agric. Food Chem. 2008, 56, 3460–3469. [Google Scholar] [CrossRef]
- Blanco-Fernandez, C.; Ardura, A.; Masiá, P.; Rodriguez, N.; Voces, L.; Fernandez-Raigoso, M.; Roca, A.; Machado-Schiaffino, G.; Dopico, E.; Garcia-Vazquez, E. Fraud in highly appreciated fish detected from DNA in Europe may undermine the Development Goal of sustainable fishing in Africa. Sci. Rep. 2021, 11, 11423. [Google Scholar] [CrossRef]
- Roncarati, A.; Brambilla, G.; Meluzzi, A.; Iamiceli, A.L.; Fanelli, R.; Moret, I.; Ubaldi, A.; Miniero, F.; Sirri, F.; Melotti, A.; et al. Fatty acid profile and proximate composition of fillets from Engraulis encrasicholus, Mullus barbatus, Merluccius merluccius and Sarda sarda caught in Tyrrhenian, Adriatic and Ionian seas. J. Appl. Ichthyol. 2012, 28, 545–552. [Google Scholar] [CrossRef]
- Jung, J.; Yoshida, R.; Kim, W. Diversity of parasitic peltogastrid barnacles (Crustacea: Cirripedia: Rhizocephala) on hermit crabs in Korea. Zool. Stud. 2019, 58, e33. [Google Scholar] [CrossRef] [PubMed]
- Dwifajri, S.; Tapilatu, R.F.; Pranata, B.; Kusuma, A.B. Molecular phylogeny of grouper of Epinephelus genus in Jayapura, Papua, Indonesia inferred from cytochrome oxidase I (COI) gene. Biodiversitas 2022, 23, 1449–1456. [Google Scholar] [CrossRef]
- Joesidawati, M.I.; Nursalim, N.; Kholilah, N.; Kurniasih, E.M.; Cahyani, N.K.D.; Ambariyanto, A. DNA barcoding of anchovy in Tuban Regency as database of Indonesian marine genetic diversity. ILMU KELAUTAN Indones. J. Mar. Sci. 2023, 28, 383–391. [Google Scholar] [CrossRef]
- NO. 1099/2009 Protection of Animals at the Time of Killing Text with EEA Relevance. In Council of the European Parliament Council Regulation (EC). 2009. Available online: https://eur-lex.europa.eu/eli/reg/2009/1099/oj/eng (accessed on 12 June 2021).
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large datasets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef]
- Tarricone, S.; Iaffaldano, N.; Colonna, M.A.; Giannico, F.; Selvaggi, M.; Caputi Jambrenghi, A.; Cariglia, M.; Ragni, M. Effects of dietary red grape extract on the quality traits in juvenile European sea bass (Dicentrarchus labrax L.). Animals 2023, 13, 254. [Google Scholar] [CrossRef]
- Connolly, C.; Fleiss, T. A study of efficiency and accuracy in the transformation from RGB to CIELAB Color Space. IEEE Trans. Image Process. 1997, 6, 1046–1048. [Google Scholar] [CrossRef]
- Tarricone, S.; Caputi Jambrenghi, A.; Cagnetta, P.; Ragni, M. Wild and farmed sea bass (Dicentrarchus labrax): Comparison of biometry traits, chemical and fatty acid composition of fillets. Fishes 2022, 7, 45. [Google Scholar] [CrossRef]
- Association of Official Agricultural Chemistry. Official Methods of Analysis of the AOAC, 17th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2000. [Google Scholar]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Christie, W.W. Lipid Analysis: Isolation, Separation, Identification and Structural Analysis of Lipids; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 978-1-4831-8717-4. [Google Scholar]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef] [PubMed]
- SAS/STAT 9.1. User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2004; ISBN 978-1-59047-243-9.
- Ouazzani, K.C.; Benazzou, T.; Taz, L.; Tojo, N.; Chlaida, M. Genetic population structure of the European anchovy (Engraulis encrasicolus) based on mitochondrial DNA sequences along the Moroccan coast. Aquac. Aquar. Conserv. Legis. 2016, 9, 1133–1143. [Google Scholar]
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; De Waard, J.R. Biological identifications through DNA barcodes. Proc. R. Soc. 2003, 270, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Bandarra, N.M.; Batista, I.; Nunes, M.L.; Empis, J.M.; Christie, W.W. Seasonal changes in lipid composition of sardine (Sardina pilchardus). J. Food Sci. 1997, 62, 40–42. [Google Scholar] [CrossRef]
- Gökçe, M.A.; Taşbozan, O.; Çelik, M.; Tabakoğlu, Ş.S. Seasonal Variations in proximate and fatty acid compositions of female common sole (Solea solea). Food Chem. 2004, 88, 419–423. [Google Scholar] [CrossRef]
- Rasoarahona, J.R.E.; Barnathan, G.; Bianchini, J.-P.; Gaydou, E.M. Influence of season on the lipid content and fatty acid profiles of three Tilapia species (Oreochromis niloticus, O. macrochir and Tilapia rendalli) from Madagascar. Food Chem. 2005, 91, 683–694. [Google Scholar] [CrossRef]
- Tsianis, D.E. Temporal Variation of Biological Parameters of Anchovy and Sardine in NW Aegean. Master’s Thesis, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2003. [Google Scholar]
- Bacha, M.; Amara, R. Spatial, temporal and ontogenetic variation in diet of anchovy (Engraulis encrasicolus) on the Algerian coast (SW Mediterranean). Estuar. Coast. Shelf Sci. 2009, 85, 257–264. [Google Scholar] [CrossRef]
- Akalin, S.; Sever, T.M.; Ilham, D.; Unluoglu, A. The diet composition of European anchovy, Engraulis encrasicolus (Linnaeus, 1758) in Izmir Bay, Aegean Sea. Turk. J. Fish. Aquat. Sci. 2019, 19, 431–445. [Google Scholar] [CrossRef]
- Ruyter, B.; Moya-Falcón, C.; Rosenlund, G.; Vegusdal, A. Fat content and morphology of liver and intestine of Atlantic salmon (Salmo salar): Effects of temperature and dietary soybean oil. Aquaculture 2006, 252, 441–452. [Google Scholar] [CrossRef]
- Özyurt, G.; Polat, A.; Özkütük, S. Seasonal changes in the fatty acids of gilthead sea bream (Sparus aurata) and white sea bream (Diplodus sargus) captured in Iskenderun Bay, Eastern Mediterranean Coast of Turkey. Eur. Food Res. Technol. 2005, 220, 120–124. [Google Scholar] [CrossRef]
- Exler, J.; Kinsella, J.E.; Watt, B.K. Lipids and fatty acids of important finfish: New data for nutrient tables. J. Am. Oil Chem. Soc. 1975, 52, 154–159. [Google Scholar] [CrossRef]
- Factors Affecting the Proximate Composition of Cultured Fishes with Emphasis on Salmonids—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/abs/pii/0044848694904448 (accessed on 9 July 2025).
- Rueda, F.M.; López, J.A.; Martínez, F.J.; Zamora, S.; Divanach, P.; Kentouri, M. Fatty acids in muscle of wild and farmed red porgy, Pagrus pagrus. Aquac. Nutr. 1997, 3, 161–165. [Google Scholar] [CrossRef]
- Görgün, S.; Akpinar, M.A. Liver and muscle fatty acid composition of mature and immature rainbow trout (Oncorhynchus mykiss) fed two different diets. Biologia 2007, 62, 351–355. [Google Scholar] [CrossRef]
- Tanakol, R.; Yazici, Z.; Şener, E.; Sencer, E. Fatty acid composition of 19 species of fish from the Black Sea and the Marmara Sea. Lipids 1999, 34, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Turan, D.; Kalaycι, G.; Bektaş, Y.; Kaya, C.; Bayçelebi, E. A new species of trout from the northern drainages of Euphrates River, Turkey (Salmoniformes: Salmonidae). J. Fish. Biol. 2020, 96, 1454–1462. [Google Scholar] [CrossRef] [PubMed]
- Tufan, B.; Koral, S.; Köse, S. Changes during fishing season in the fat content and fatty acid profile of edible muscle, liver and gonads of anchovy (Engraulis encrasicolus) caught in the Turkish Black Sea. Int. J. Food Sci. Tech. 2011, 46, 800–810. [Google Scholar] [CrossRef]
- Kaya, Y.; Turan, H. Comparison of protein, lipid and fatty acids composition of anchovy (Engraulis encrasicolus L. 1758) during the commercial catching season. J. Muscle Foods 2010, 21, 474–483. [Google Scholar] [CrossRef]
- Öksüz, A.; Özyılmaz, A. Changes in fatty acid compositions of Black Sea anchovy (Engraulis encrasicolus L. 1758) during catching season. Turk. J. Fish. Aquat. Sci. 2010, 10, 381–385. [Google Scholar] [CrossRef]
- Biton-Porsmoguer, S.; Bou, R.; Lloret, E.; Alcaide, M.; Lloret, J. Fatty acid composition and parasitism of European sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus) populations in the northern Catalan Sea in the context of changing environmental conditions. Conserv. Physiol. 2020, 8, coaa121. [Google Scholar] [CrossRef]
- Zlatanos, S.; Laskaridis, K. Seasonal variation in the fatty acid composition of three Mediterranean fish—Sardine (Sardina pilchardus), anchovy (Engraulis encrasicolus) and picarel (Spicara smaris). Food Chem. 2007, 103, 725–728. [Google Scholar] [CrossRef]
- Simopoulos, A.P.; Cleland, L.G.; Koletzko, B. Omega-6/Omega-3 Essential Fatty Acid Ratio: The Scientific Evidence; Karger Medical and Scientific Publishers: Basel, Switzerland, 2003; ISBN 978-3-318-01018-3. [Google Scholar]
- CREA. Linee Guida per Una Sana Alimentazione. Dossier Scientifico 2017. Available online: https://www.crea.gov.it/documents/59764/0/dossier+LG+2017_CAP6.pdf/B7fe9ab4-4291-0eff-A8c3-31088224d1d5?T=1575530493427 (accessed on 6 August 2025).
- Testi, S.; Bonaldo, A.; Gatta, P.P.; Badiani, A. Nutritional traits of dorsal and ventral fillets from three farmed fish species. Food Chem. 2006, 98, 104–111. [Google Scholar] [CrossRef]
- Buttriss, J.L.; Coe, S. Diet and cardiovascular disease: Where are we now? In Cardiovascular Disease: Diet, Nutrition and Emerging Risk Factors; Stanner, S., Coe, S., Frayn, K.N., Eds.; John Wiley & Sons: Toronto, ON, Canada, 2019. [Google Scholar]
- Lloret, J.; García-de-Vinuesa, A.; Demestre, M. How human health and well-being depends on healthy marine habitats in the Mediterranean: A review. Heliyon 2024, 10, e24329. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.; Wang, Y.; Yao, Y.; Yang, Z.; Wu, S.; Zeng, K.; Hu, X.; Zhao, Y. Long-chain polyunsaturated fatty acids influence colorectal cancer progression via the interactions between the intestinal microflora and the macrophages. Mol. Cell Biochem. 2024, 479, 2895–2906. [Google Scholar] [CrossRef]
- Osman, H.; Suriah, A.R.; Law, E.C. Fatty acid composition and cholesterol content of selected marine fish in Malaysian Waters. Food Chem. 2001, 73, 55–60. [Google Scholar] [CrossRef]
- Gonçalves, R.M.; Petenuci, M.E.; Maistrovicz, F.C.; Galuch, M.B.; Montanher, P.F.; Pizzo, J.S.; Gualda, I.P.; Visentainer, J.V. Lipid profile and fatty acid composition of marine fish species from Northeast coast of Brazil. J. Food Sci. Technol. 2021, 58, 1177–1189. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, C.E.; Vasconcelos, M.A.d.S.; de Almeida Ribeiro, M.; Sarubbo, L.A.; Andrade, S.A.C.; Filho, A.B. de M. Nutritional and lipid profiles in marine fish species from Brazil. Food Chem. 2014, 160, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Dambrosio, A.; Quaglia, N.C.; Colonna, M.A.; Capuozzo, F.; Giannico, F.; Tarricone, S.; Caputi Jambrenghi, A.; Ragni, M. Shelf-life and quality of anchovies (Engraulis encrasicolus) refrigerated using different packaging materials. Fishes 2023, 8, 268. [Google Scholar] [CrossRef]
- Secci, G.; Parisi, G. From Farm to Fork: Lipid Oxidation in Fish Products. A Review. Ital. J. Anim. Sci. 2016, 15, 124–136. [Google Scholar] [CrossRef]
Parameters | Winter | Spring | Summer | Autumn | SEM 1 | p-Value |
---|---|---|---|---|---|---|
Total body weight (g) | 14.11 b | 15.04 ab | 16.93 a | 15.70 ab | 1.264 | 0.034 |
Edible yield (%) | 8.48 b | 9.23 ab | 9.92 a | 9.34 ab | 0.137 | 0.039 |
Total length (cm) | 12.70 | 12.90 | 12.87 | 12.34 | 0.211 | 0.108 |
Fork length (cm) | 12.00 | 11.30 | 11.97 | 11.41 | 0.032 | 0.097 |
Head length (cm) | 1.90 | 2.10 | 1.94 | 2.24 | 0.428 | 0.135 |
Tail length (cm) | 1.70 | 1.50 | 1.90 | 1.48 | 0.312 | 0.261 |
Length at the first dorsal fin (cm) | 5.40 | 5.30 | 5.33 | 5.08 | 0.014 | 0.139 |
Parameters | Winter | Spring | Summer | Autumn | SEM 1 | p-Value |
---|---|---|---|---|---|---|
L* (lightness) | 34.15 | 37.93 | 35.34 | 37.77 | 1.291 | 0.184 |
a* (redness) | 1.53 | 1.27 | 1.18 | 1.45 | 0.042 | 0.127 |
b* (yellowness) | 4.57 | 4.79 | 5.45 | 5.40 | 0.436 | 0.049 |
Maximum compression 2nd cycle (mm) | 5.85 | 6.01 | 5.84 | 5.99 | 0.090 | 0.121 |
Springiness (mm) | 3.91 | 4.59 | 3.96 | 4.68 | 0.406 | 0.099 |
Cohesion force resilience (N/m) | 0.60 | 0.75 | 0.72 | 0.77 | 0.076 | 0.084 |
Chewiness (N*mm) | 6.53 | 7.73 | 6.89 | 7.09 | 0.503 | 0.107 |
Parameters | Winter | Spring | Summer | Autumn | SEM 1 | p-Value |
---|---|---|---|---|---|---|
Moisture | 72.45 | 72.95 | 72.70 | 72.41 | 0.250 | 0.238 |
Crude Protein | 18.48 b | 18.77 ab | 19.59 a | 18.37 b | 0.051 | 0.037 |
Lipid | 4.89 A | 3.65 B | 3.69 B | 5.24 A | 0.018 | 0.007 |
Ash | 2.09 | 2.09 | 2.18 | 1.56 | 0.283 | 0.059 |
N Free-Extract | 2.09 | 2.54 | 1.84 | 2.42 | 0.318 | 0.055 |
Fatty Acids | Winter | Spring | Summer | Autumn | SEM 1 | p-Value |
---|---|---|---|---|---|---|
C12:0 | 0.07 | 0.08 | 0.05 | 0.04 | 0.018 | 0.078 |
C13:0 | 0.03 | 0.03 | 0.04 | 0.08 | 0.024 | 0.081 |
C14:0 | 3.08 | 3.19 | 2.82 | 3.75 | 0.392 | 0.127 |
C15:0 | 0.84 | 0.89 | 0.63 | 0.59 | 0.150 | 0.116 |
C16:0 | 32.06 a | 30.89 ab | 29.55 b | 32.08 a | 0.200 | 0.043 |
C17:0 | 1.09 | 1.16 | 0.84 | 1.01 | 0.138 | 0.177 |
C18:0 | 7.09 | 6.95 | 5.91 | 5.86 | 0.658 | 0.088 |
C20:0 | 0.06 | 0.05 | 0.07 | 0.07 | 0.010 | 0.065 |
C21:0 | 0.23 | 0.33 | 0.35 | 0.38 | 0.065 | 0.112 |
C22:0 | 0.04 | 0.04 | 0.04 | 0.04 | 0.001 | 0.073 |
C23:0 | 5.67 | 4.18 | 4.25 | 5.19 | 0.729 | 0.135 |
SFAs | 50.26 A | 47.79 AB | 44.55 B | 49.09 A | 1.464 | 0.008 |
C14:1 | 0.12 b | 0.16 b | 0.28 ab | 0.52 a | 0.180 | 0.034 |
C15:1 | 0.09 | 0.11 | 0.07 | 0.28 | 0.096 | 0.097 |
C16:1 trans | 0.09 | 0.12 | 0.11 | 0.14 | 0.021 | 0.114 |
C16:1 cis | 1.37 | 1.34 | 1.54 | 1.18 | 0.148 | 0.125 |
C17:1 | 0.34 | 0.35 | 0.34 | 0.38 | 0.019 | 0.087 |
C18:1 n-9 trans | 0.18 | 0.14 | 0.14 | 0.15 | 0.051 | 0.144 |
C18:1 n-9 cis | 12.63 | 13.32 | 12.25 | 12.11 | 0.542 | 0.078 |
C20:1 n-9 | 0.19 | 0.19 | 0.15 | 0.14 | 0.026 | 0.201 |
C22:1 n-9 | 0.86 | 0.61 | 0.92 | 0.63 | 0.158 | 0.099 |
C24:1 n-9 | 0.74 | 0.52 | 0.74 | 0.94 | 0.172 | 0.067 |
MUFAs | 16.61 | 16.86 | 16.54 | 16.57 | 0.146 | 0.107 |
C18:2 n-6 trans | 0.13 | 0.09 | 0.11 | 0.12 | 0.017 | 0.081 |
C18:2 n-6 cis | 1.25 | 1.18 | 1.13 | 1.31 | 0.079 | 0.096 |
C18:3 n-6 | 0.26 | 0.25 | 0.24 | 0.24 | 0.010 | 0.077 |
C18:3 n-3 | 0.58 | 0.71 | 0.57 | 0.59 | 0.066 | 0.149 |
C20:2 n-6 | 0.22 b | 0.39 a | 0.41 a | 0.18 b | 0.114 | 0.042 |
C20:3 n-6 | 0.45 b | 0.63 a | 0.62 a | 0.45 b | 0.077 | 0.037 |
C20:4 n-6 | 0.11 | 0.14 | 0.09 | 0.11 | 0.021 | 0.102 |
C20:3 n-3 | 0.07 | 0.07 | 0.06 | 0.06 | 0.006 | 0.084 |
C22:2 n-6 | 0.27 | 0.23 | 0.15 | 0.13 | 0.166 | 0.079 |
C20:5 n-3 | 10.31 | 10.24 | 10.33 | 10.32 | 0.039 | 1.021 |
C22:5 n-3 | 3.12 | 3.19 | 3.41 | 3.41 | 0.147 | 1.104 |
C22:6 n-3 | 16.04 b | 19.15 a | 19.92 a | 17.09 b | 0.660 | 0.047 |
∑ PUFA | 33.01 b | 36.27 a | 36.92 a | 34.08 b | 1.662 | 0.041 |
n-6 | 2.69 | 2.91 | 2.73 | 2.54 | 0.153 | 0.064 |
n-3 | 30.12 b | 33.36 a | 34.29 a | 31.44 b | 1.765 | 0.032 |
n-6/n-3 | 0.09 | 0.09 | 0.08 | 0.08 | 0.009 | 0.087 |
n-3/n-6 | 11.20 b | 11.46 ab | 12.56 a | 12.37 ab | 1.185 | 0.041 |
PUFA/SFA | 0.66 | 0.70 | 0.83 | 0.64 | 0.046 | 0.074 |
AI | 0.90 | 0.86 | 0.76 | 0.93 | 0.071 | 0.075 |
TI | 0.38 | 0.36 | 0.31 | 0.36 | 0.033 | 0.098 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Virgilio, M.; De Paola, D.; Selvaggi, M.; Carbonara, C.; Ragni, M.; Caputi Jambrenghi, A.; Giannico, F.; Colonna, M.A.; Tarricone, S. DNA Barcoding and Analysis of Nutritional Properties as a Tool for Enhancing Traceability of Anchovies (Engraulis encrasicolus L.) Fished in the Italian Southern Adriatic Sea. Genes 2025, 16, 1219. https://doi.org/10.3390/genes16101219
de Virgilio M, De Paola D, Selvaggi M, Carbonara C, Ragni M, Caputi Jambrenghi A, Giannico F, Colonna MA, Tarricone S. DNA Barcoding and Analysis of Nutritional Properties as a Tool for Enhancing Traceability of Anchovies (Engraulis encrasicolus L.) Fished in the Italian Southern Adriatic Sea. Genes. 2025; 16(10):1219. https://doi.org/10.3390/genes16101219
Chicago/Turabian Stylede Virgilio, Maddalena, Domenico De Paola, Maria Selvaggi, Claudia Carbonara, Marco Ragni, Anna Caputi Jambrenghi, Francesco Giannico, Maria Antonietta Colonna, and Simona Tarricone. 2025. "DNA Barcoding and Analysis of Nutritional Properties as a Tool for Enhancing Traceability of Anchovies (Engraulis encrasicolus L.) Fished in the Italian Southern Adriatic Sea" Genes 16, no. 10: 1219. https://doi.org/10.3390/genes16101219
APA Stylede Virgilio, M., De Paola, D., Selvaggi, M., Carbonara, C., Ragni, M., Caputi Jambrenghi, A., Giannico, F., Colonna, M. A., & Tarricone, S. (2025). DNA Barcoding and Analysis of Nutritional Properties as a Tool for Enhancing Traceability of Anchovies (Engraulis encrasicolus L.) Fished in the Italian Southern Adriatic Sea. Genes, 16(10), 1219. https://doi.org/10.3390/genes16101219