Whole-Exome Sequencing of Discordant Monozygotic Twins for Congenital Scoliosis: A Family Case Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Whole Exome Sequencing
2.3. Alignment, Variant Calling and Annotation
2.4. Variant Filtering
2.5. Family-Based Analysis
2.6. Comparison of Established Gene Panels
2.7. Variant Validation and Structural Analysis
3. Results
3.1. Quality Metrics of Whole-Exome Sequencing
3.2. Variant Filtering and Pedigree Structure
3.3. De Novo Model Analysis
3.4. Autosomal Recessive Model Analysis
3.5. Autosomal Dominant Model Analysis
3.6. CSD Gene Panel Analysis
3.7. Homozygous Variants
3.8. Protein Structure Modeling and Predicted Functional Impact
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CS | Congenital scoliosis |
AIS | Adolescent idiopathic scoliosis |
WES | Whole-exome sequencing |
MZ | Monozygotic twins |
KFS | Klippel-Feil syndrome |
CSD | Congenital spinal deformity |
SNV | Single nucleotide variant |
CNV | Copy number variation |
VCF | Variant call format |
BAM | Binary alignment map |
MAF | Minor allele frequency |
CADD | Combined annotation dependent depletion |
REVEL | Rare exome variant ensemble learner |
SIFT | Sorting intolerant from tolerant |
HDIV | Human diversity |
IGV | Integrative Genomics Viewer |
References
- Sebaaly, A.; Daher, M.; Salameh, B.; Ghoul, A.; George, S.; Roukoz, S. Congenital Scoliosis: A Narrative Review and Proposal of a Treatment Algorithm. EFORT Open Rev. 2022, 7, 318–327. [Google Scholar] [CrossRef]
- Giampietro, P.F.; Blank, R.D.; Raggio, C.L.; Merchant, S.; Jacobsen, F.S.; Faciszewski, T.; Shukla, S.K.; Greenlee, A.R.; Reynolds, C.; Schowalter, D.B. Congenital and Idiopathic Scoliosis: Clinical and Genetic Aspects. Clin. Med. Res. 2003, 1, 125–136. [Google Scholar] [CrossRef]
- Hensinger, R.N. Congenital Scoliosis: Etiology and Associations. Spine 2009, 34, 1745–1750. [Google Scholar] [CrossRef]
- Szoszkiewicz, A.; Bukowska-Olech, E.; Jamsheer, A. Molecular Landscape of Congenital Vertebral Malformations: Recent Discoveries and Future Directions. Orphanet J. Rare Dis. 2024, 19, 32. [Google Scholar] [CrossRef]
- Li, H.; Chen, Z.; Gao, B.; Wang, J.; Shao, S.; Wu, J. Surgical Outcomes in Children under 10 Years Old in the Treatment of Congenital Scoliosis Due to Single Nonincarcerated Thoracolumbar Hemivertebra: According to the Age at Surgery. J. Orthop. Surg. Res. 2021, 16, 721. [Google Scholar] [CrossRef] [PubMed]
- Nadirov, N.; Vissarionov, S.; Filippova, A.; Kokushin, D.; Sazonov, V. The Results of Surgical Treatment of Preschool and Primary School Age Children with Congenital Deformation of the Spine in Isolated Hemivertebra: Comparative Analysis. Front. Pediatr. 2022, 10, 960209. [Google Scholar] [CrossRef] [PubMed]
- Nadirov, N.; Vissarionov, S.; Khusainov, N.; Filippova, A.; Sazonov, V. Abdominal Pseudohernia in a Child after Surgical Correction of Congenital Scoliosis: Case Report. Front. Pediatr. 2024, 11, 1211184. [Google Scholar] [CrossRef]
- Nadirov, N.; Vissarianov, S. A Comparative Study of Surgical Correction of Idiopathic Scoliosis with Spinal Transpedicular Metal Structures in Children. Front. Pediatr. 2022, 10, 871117. [Google Scholar] [CrossRef] [PubMed]
- Samarkhanova, D.; Zhabagin, M.; Nadirov, N. Reviewing the Genetic and Molecular Foundations of Congenital Spinal Deformities: Implications for Classification and Diagnosis. J. Clin. Med. 2025, 14, 1113. [Google Scholar] [CrossRef]
- Petrosyan, E.; Fares, J.; Ahuja, C.S.; Lesniak, M.S.; Koski, T.R.; Dahdaleh, N.S.; El Tecle, N.E. Genetics and Pathogenesis of Scoliosis. N. Am. Spine Soc. J. (NASSJ) 2024, 20, 100556. [Google Scholar] [CrossRef]
- Wu, N.; Wang, L.; Hu, J.; Zhao, S.; Liu, B.; Li, Y.; Du, H.; Zhang, Y.; Li, X.; Yan, Z.; et al. A Recurrent Rare SOX9 Variant (M469V) Is Associated with Congenital Vertebral Malformations. Curr. Gene Ther. 2019, 19, 242–247. [Google Scholar] [CrossRef]
- Wu, N.; Ming, X.; Xiao, J.; Wu, Z.; Chen, X.; Shinawi, M.; Shen, Y.; Yu, G.; Liu, J.; Xie, H.; et al. TBX6 Null Variants and a Common Hypomorphic Allele in Congenital Scoliosis. N. Engl. J. Med. 2015, 372, 341–350. [Google Scholar] [CrossRef]
- Lin, M.; Zhao, S.; Liu, G.; Huang, Y.; Yu, C.; Zhao, Y.; Wang, L.; Zhang, Y.; Yan, Z.; Wang, S.; et al. Identification of Novel FBN1 Variations Implicated in Congenital Scoliosis. J. Hum. Genet. 2020, 65, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Yang, Y.; Wang, S.; Zhao, S.; Zhao, H.; Li, X.; Niu, Y.; Deciphering Disorders Involving Scoliosis and COmorbidities (DISCO) Study Group; Qiu, G.; Wu, Z.; et al. The Mutational Landscape of PTK7 in Congenital Scoliosis and Adolescent Idiopathic Scoliosis. Genes 2021, 12, 1791. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Cheung, J.P.Y.; Je, J.S.H.; Cheung, P.W.H.; Chen, S.; Yue, M.; Wang, N.; Choi, V.N.T.; Yang, X.; Song, Y.; et al. Genetic Variants of TBX6 and TBXT Identified in Patients with Congenital Scoliosis in Southern China. J. Orthop. Res. 2021, 39, 971–988. [Google Scholar] [CrossRef] [PubMed]
- Zwijnenburg, P.J.G.; Meijers-Heijboer, H.; Boomsma, D.I. Identical but Not the Same: The Value of Discordant Monozygotic Twins in Genetic Research. Am. J. Med. Genet. Pt. B 2010, 153B, 1134–1149. [Google Scholar] [CrossRef]
- Ketelaar, M.; Hofstra, R.; Hayden, M. What Monozygotic Twins Discordant for Phenotype Illustrate about Mechanisms Influencing Genetic Forms of Neurodegeneration. Clin. Genet. 2012, 81, 325–333. [Google Scholar] [CrossRef]
- Vadgama, N.; Pittman, A.; Simpson, M.; Nirmalananthan, N.; Murray, R.; Yoshikawa, T.; De Rijk, P.; Rees, E.; Kirov, G.; Hughes, D.; et al. De Novo Single-Nucleotide and Copy Number Variation in Discordant Monozygotic Twins Reveals Disease-Related Genes. Eur. J. Hum. Genet. 2019, 27, 1121–1133. [Google Scholar] [CrossRef]
- Liu, G.; Wang, L.; Wang, X.; Yan, Z.; Yang, X.; Lin, M.; Liu, S.; Zuo, Y.; Niu, Y.; Zhao, S.; et al. Whole-Genome Methylation Analysis of Phenotype Discordant Monozygotic Twins Reveals Novel Epigenetic Perturbation Contributing to the Pathogenesis of Adolescent Idiopathic Scoliosis. Front. Bioeng. Biotechnol. 2019, 7, 364. [Google Scholar] [CrossRef]
- Dunk, C.E.; Van Dijk, M.; Choudhury, R.; Wright, T.J.; Cox, B.; Leavey, K.; Harris, L.K.; Jones, R.L.; Lye, S.J. Functional Evaluation of STOX1 (STORKHEAD-BOX PROTEIN 1) in Placentation, Preeclampsia, and Preterm Birth. Hypertension 2021, 77, 475–490. [Google Scholar] [CrossRef]
- Van Dijk, M.; Mulders, J.; Poutsma, A.; Könst, A.A.M.; Lachmeijer, A.M.A.; Dekker, G.A.; Blankenstein, M.A.; Oudejans, C.B.M. Maternal Segregation of the Dutch Preeclampsia Locus at 10q22 with a New Member of the Winged Helix Gene Family. Nat. Genet. 2005, 37, 514–519. [Google Scholar] [CrossRef]
- C1QTNF9 C1q and TNF Related 9 [Homo Sapiens (Human)]. Available online: https://www.ncbi.nlm.nih.gov/gene/338872 (accessed on 18 September 2025).
- Zhao, R.; Zhao, J.-R.; Xue, X.; Ma, D. Deciphering the Etiology of Congenital Scoliosis: A Genetic and Epigenetic Perspective. World J. Orthop. 2025, 16, 104853. [Google Scholar] [CrossRef]
- Fan, X.; Ping, L.; Sun, H.; Chen, Y.; Wang, P.; Liu, T.; Jiang, R.; Zhang, X.; Chen, X. Whole-Exome Sequencing of Discordant Monozygotic Twin Families for Identification of Candidate Genes for Microtia-Atresia. Front. Genet. 2020, 11, 568052. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Montpetit, A.; Rousseau, M.; Wu, S.Y.M.; Greenwood, C.M.T.; Spector, T.D.; Pollak, M.; Polychronakos, C.; Richards, J.B. Somatic Point Mutations Occurring Early in Development: A Monozygotic Twin Study. J. Med. Genet. 2014, 51, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Dai, Z.; Feng, Z.; Qiu, Y.; Zhu, Z.; Xu, L. Genome-Wide Methylation Association Study in Monozygotic Twins Discordant for Curve Severity of Adolescent Idiopathic Scoliosis. Spine J. 2025, 25, 785–796. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Ding, Z.; Hai, Y.; Cheng, Y. Advances in Epigenetic Research of Adolescent Idiopathic Scoliosis and Congenital Scoliosis. Front. Genet. 2023, 14, 1211376. [Google Scholar] [CrossRef]
Sample | Average Alignment Coverage over Target Region | Coverage ≥ 20×, % | Coverage ≥ 50×, % | Aligned Reads | Uniformity of Coverage (>0.2 × Mean), % |
---|---|---|---|---|---|
WES-001 | 168.62 | 95.04 | 92.67 | 75,343,495 | 94.18 |
WES-002 | 185.68 | 95.13 | 93.2 | 83,246,593 | 94.13 |
WES-003 | 171.22 | 95 | 92.74 | 75,932,971 | 94.11 |
WES-004 | 158.2 | 94.86 | 92.27 | 70,000,230 | 94.08 |
WES-005 | 140.09 | 94.87 | 91.12 | 61,970,997 | 94.13 |
WES-006 | 138.88 | 94.69 | 91.04 | 61,009,330 | 94.04 |
WES-007 | 152.59 | 94.95 | 91.75 | 67,074,657 | 94.12 |
WES-008 | 158.84 | 94.99 | 92.24 | 70,330,963 | 94.2 |
Average | 159.265 | 94.94 | 92.13 | 70,613,654.4 | 94.12 |
Gene | Chr | Exon | cDNA Change | Protein Change | refGene | CADD | REVEL | SIFT | PolyPhen2 | Mutation Taster |
---|---|---|---|---|---|---|---|---|---|---|
FOXD4L1 | 2 | 1 | NM_01218:c.C433T | p.R145C | Nonsynonymous SNV | 23.2 | 0.666 | D (0.008) | B (0.208) | D (1.0) |
FOXD4L5 | 9 | 1 | NM_001126334:c.G512A | p.R171H | Nonsynonymous SNV | 21.8 | 0.567 | D (0) | D (1.0) | D (1.0) |
SVIL | 10 | 20 | NM_003174:c.T2843G | p.L948R | Nonsynonymous SNV | 24.4 | 0.5 | D (0.001) | D (0.991) | D (0.995) |
STOX1 | 10 | 1 | NM_001130159:c.C163T | p.R55C | Nonsynonymous SNV | 26.4 | 0.535 | D (0.001) | D (1.0) | D (0.998) |
C1QTNF9 | 13 | 4 | NM_001303138:c.G428T | p.G143V | Nonsynonymous SNV | 23.0 | 0.944 | D (0.001) | D (1.0) | D (1.0) |
Gene | Chr | Exon | cDNA Change | Protein Change | refGene | CADD | REVEL | SIFT | PolyPhen2 | Mutation Taster |
---|---|---|---|---|---|---|---|---|---|---|
CPT2 | 1 | 4 | NM_000098:c.T1055G | p.F352C | Nonsynonymous SNV | 22.1 | 0.521 | D (0) | D (0.999) | P (0) |
LRP2 | 2 | 69 | NM_004525:c.A12628C | p.I4210L | Nonsynonymous SNV | 21.8 | 0.503 | D (0) | D (0.995) | P (0) |
ERCC6L2 | 9 | 11 | NM_001010895:c.T1742C | p.V581A | Nonsynonymous SNV | 20.5 | 0.512 | D (0.001) | - | P (0) |
NXPE1 | 11 | 5 | NM_152315:c.G631A | p.G211R | Nonsynonymous SNV | 20.2 | 0.501 | D (0) | D (1.0) | P (0.002) |
Gene | Chr | Exon | cDNA Change | Protein Change | refGene | CADD | REVEL | SIFT | PolyPhen2 | Mutation Taster |
---|---|---|---|---|---|---|---|---|---|---|
FOXD4L1 | 2 | 1 | NM_01218:c.C433T | p.R145C | Nonsynonymous SNV | 23.2 | 0.666 | D (0.008) | B (0.208) | D (1.0) |
HS6ST1 | 2 | 2 | NM_004807:c.C745A | p.R249S | Nonsynonymous SNV | 28.3 | 0.827 | D (0.001) | D (0.997) | D (1.0) |
HOXD8 | 2 | 1 | NM_001199746:c.50A | p.A17D | Nonsynonymous SNV | 15.38 | 0.462 | T (0.167) | P (0.634) | D (1.0) |
FOXD4L5 | 9 | 1 | NM_001126334:c.G512A | p.R171H | Nonsynonymous SNV | 21.8 | 0.567 | D (0) | D (1.0) | D (1.0) |
SVIL | 10 | 20 | NM_003174:c.T2843G | p.L948R | Nonsynonymous SNV | 24.4 | 0.5 | D (0.001) | D (0.991) | D (0.995) |
STOX1 | 10 | 1 | NM_001130159:c.C163T | p.R55C | Nonsynonymous SNV | 26.4 | 0.535 | D (0.001) | D (1.0) | D (0.998) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samarkhanova, D.; Seidualy, M.; Kairov, U.; Nadirov, N.; Zhabagin, M. Whole-Exome Sequencing of Discordant Monozygotic Twins for Congenital Scoliosis: A Family Case Study. Genes 2025, 16, 1220. https://doi.org/10.3390/genes16101220
Samarkhanova D, Seidualy M, Kairov U, Nadirov N, Zhabagin M. Whole-Exome Sequencing of Discordant Monozygotic Twins for Congenital Scoliosis: A Family Case Study. Genes. 2025; 16(10):1220. https://doi.org/10.3390/genes16101220
Chicago/Turabian StyleSamarkhanova, Diana, Madina Seidualy, Ulykbek Kairov, Nurbek Nadirov, and Maxat Zhabagin. 2025. "Whole-Exome Sequencing of Discordant Monozygotic Twins for Congenital Scoliosis: A Family Case Study" Genes 16, no. 10: 1220. https://doi.org/10.3390/genes16101220
APA StyleSamarkhanova, D., Seidualy, M., Kairov, U., Nadirov, N., & Zhabagin, M. (2025). Whole-Exome Sequencing of Discordant Monozygotic Twins for Congenital Scoliosis: A Family Case Study. Genes, 16(10), 1220. https://doi.org/10.3390/genes16101220