Trans-Atlantic Spillover: Deconstructing the Ecological Adaptation of Leishmania infantum in the Americas
Abstract
:1. Introduction
2. Underestimated Genetic Diversity of Neotropical L. infantum
3. Mechanisms of Leishmania Genomic Adaptation In Vitro and In Vivo
4. Inferences on the Transmission Dynamics of Neotropical L. infantum Strains and the Shaping of AVL Epidemiology
5. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Marcili, A.; Sperança, M.A.; Da Costa, A.P.; Madeira, M.D.F.; Soares, H.S.; Sanches, C.D.O.; Acosta, I.D.C.; Girotto, A.; Minervino, A.; Horta, M.C.; et al. Phylogenetic relationships of Leishmania species based on trypanosomatid barcode (SSU rDNA) and gGAPDH genes: Taxonomic revision of Leishmania (L.) infantum chagasi in South America. Infect. Genet. Evol. 2014, 25, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Sereno, D.; Akhoundi, M.; Dorkeld, F.; Oury, B.; Momen, H.; Perrin, P. What pre-Columbian mummies could teach us about South American leishmaniasis? Pathog. Dis. 2017, 75, 3. [Google Scholar] [CrossRef]
- Shaw, J.J. Further thoughts on the use of the name Leishmania (Leishmania) infantum chagasi for the aetiological agent of American visceral leishmaniasis. Memórias Inst. Oswaldo Cruz 2006, 101, 577–579. [Google Scholar] [CrossRef] [Green Version]
- Leblois, R.; Kuhls, K.; François, O.; Schönian, G.; Wirth, T. Guns, germs and dogs: On the origin of Leishmania chagasi. Infect. Genet. Evol. 2011, 11, 1091–1095. [Google Scholar] [CrossRef]
- Momen, H.; Grimaldi, J.G.; Deane, L.M. Leishmania infantum, the aetiological agent of American visceral leishmaniasis (AVL)? Mem. Inst. Oswaldo Cruz. 1987, 82, 447–448. [Google Scholar] [CrossRef] [PubMed]
- Mauricio, I.L.; Stothard, J.R.; Miles, M.A. The Strange Case of Leishmania chagasi. Parasitol. Today 2000, 16, 188–189. [Google Scholar] [CrossRef]
- Mauricio, I.L.; Gaunt, M.W.; Stothard, J.R.; Miles, M.A. Glycoprotein 63 (gp63) genes show gene conversion and reveal the evolution of Old World Leishmania. Int. J. Parasitol. 2007, 37, 565–576. [Google Scholar] [CrossRef] [PubMed]
- Kuhls, K.; Alam, M.Z.; Cupolillo, E.; Ferreira, G.E.M.; Mauricio, I.L.; Oddone, R.; Feliciangeli, M.D.; Wirth, T.; Miles, M.A.; Schönian, G. Comparative Microsatellite Typing of New World Leishmania infantum Reveals Low Heterogeneity among Populations and Its Recent Old World Origin. PLoS Negl. Trop. Dis. 2011, 5, e1155. [Google Scholar] [CrossRef] [Green Version]
- Dantas-Torres, F.; Solano-Gallego, L.; Baneth, G.; Ribeiro, V.M.; De Paiva-Cavalcanti, M.; Otranto, D. Canine leishmaniosis in the Old and New Worlds: unveiled similarities and differences. Trends Parasitol. 2012, 28, 531–538. [Google Scholar] [CrossRef]
- Antoniou, M.; Gramiccia, M.; Molina, R.; Dvorak, V.; Volf, P. The role of indigenous phlebotomine sandflies and mammals in the spreading of leishmaniasis agents in the Mediterranean region. Eurosurveillance 2013, 18, 20540. [Google Scholar] [CrossRef] [Green Version]
- Arce, A.; Estirado, A.; Ordobas, M.; Sevilla, S.; García, N.; Moratilla, L.; De La Fuente, S.; Martínez, A.M.; Pérez, A.M.; Aránguez, E.; et al. Re-emergence of leishmaniasis in Spain: community outbreak in Madrid, Spain, 2009 to 2012. Eurosurveillance 2013, 18, 20546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvar, J.; Velez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; Boer, M.D. Leishmaniasis Worldwide and Global Estimates of Its Incidence. PLOS ONE 2012, 7, e35671. [Google Scholar] [CrossRef] [PubMed]
- Manual on Case Management and Surveillance of the Leishmaniases in the WHO European Region (2017) 20 June 2018. Available online: http://www.euro.who.int/en/publications/abstracts/manual-on-case-management-and-surveillance-of-the-leishmaniases-in-the-who-european-region-2017 (accessed on 6 September 2019).
- Akhoundi, M.; Kuhls, K.; Cannet, A.; Votýpka, J.; Marty, P.; Delaunay, P.; Sereno, D. A Historical Overview of the Classification, Evolution, and Dispersion of Leishmania Parasites and Sandflies. PLoS Negl. Trop. Dis. 2016, 10, e0004349. [Google Scholar] [CrossRef] [PubMed]
- Souza, N.A.; Brazil, R.P.; Araki, A.S. The current status of the Lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae) species complex. Memórias Instituto Oswaldo Cruz 2017, 112, 161–174. [Google Scholar] [CrossRef] [PubMed]
- Rosypal, A.C.; Troy, G.C.; Zajac, A.M.; Duncan, R.B.; Waki, K.; Chang, K.-P.; Lindsay, D.S. Emergence of Zoonotic Canine Leishmaniasis in the United States: Isolation and Immunohistochemical Detection of Leishmania infantum from Foxhounds from Virginia. J. Eukaryot. Microbiol. 2003, 50, 691–693. [Google Scholar] [CrossRef] [PubMed]
- Rosypal, A.C.; Zajac, A.M.; Lindsay, D.S. Canine visceral leishmaniasis and its emergence in the United States. Vete Clin. N. A. Small Anim. Pract. 2003, 33, 921–937. [Google Scholar] [CrossRef]
- Maia-Elkhoury, A.N.S.; Alves, W.A.; De Sousa-Gomes, M.L.; De Sena, J.M.; Luna, E.A. Visceral leishmaniasis in Brazil: Trends and challenges. Cadernos Saúde Pública 2008, 24, 2941–2947. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, E.L.T.; Martins, D.R.; Monteiro, G.R.; Barbosa, J.D.; Ximenes, M.F.F.M.; Maciel, B.L.; Duarte, I.; Jerônimo, S.M.B. Forum: geographic spread and urbanization of visceral leishmaniasis in Brazil. Postscript: New challenges in the epidemiology of Leishmania chagasi infection. Cadernos de Saúde Pública 2008, 24, 2964–2967. [Google Scholar]
- Lima, Á.L.; de Lima, I.D.; Coutinho, J.F.; de Sousa, Ú.P.; Rodrigues, M.A.; Wilson, M.E.; Pearson, R.D.; Queiroz, J.W.; Jerônimo, S.M. Changing Epidemiology of Visceral Leishmaniasis in Northeastern Brazil: A 25-Year Follow-Up of an Urban Outbreak. -PubMed -NCBI. Available online: https://www.ncbi.nlm.nih.gov/pubmed/29394411 (accessed on 14 October 2019).
- Costa, C.H.; Pereira, H.F.; Araújo, M.V. Visceral leishmaniasis epidemic in the State of Piauí, Brazil, 1980–1986. Revista Saúde Pública 1990, 24, 361–372. [Google Scholar] [CrossRef]
- Jeronimo, S.M.; Oliveira, R.M.; Mackay, S.; Costa, R.M.; Sweet, J.; Nascimento, E.T.; Luz, K.G.; Fernandes, M.Z.; Jernigan, J.; Pearson, R.D. An urban outbreak of visceral leishmaniasis in Natal, Brazil. Trans. R. Soc. Trop. Med. Hyg. 1994, 88, 386–388. [Google Scholar] [CrossRef]
- Lima, I.D.; Lima, A.L.M.; Mendes-Aguiar, C.D.O.; Coutinho, J.F.V.; Wilson, M.E.; Pearson, R.D.; Queiroz, J.W.; Jeronimo, S.M.B. Changing demographics of visceral leishmaniasis in northeast Brazil: Lessons for the future. PLoS Negl. Trop. Dis. 2018, 12, e0006164. [Google Scholar] [CrossRef] [PubMed]
- Lyra, M.R.; Pimentel, M.I.F.; Madeira, M.D.F.; Antonio, L.D.F.; Lyra, J.P.D.M.; Fagundes, A.; Schubach, A.D.O. First report of cutaneous leishmaniasis caused by Leishmania (Leishmania) infantum chagasi in an urban area of Rio de Janeiro, Brazil. Rev. Inst. Med. Trop. Sao Paulo 2015, 57, 451–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro, L.S.; França, A.D.O.; Ferreira, E.D.C.; Filho, G.H.; Júnior, M.G.H.; Gontijo, C.M.F.; Pereira, A.A.S.; Dorval, M.E.M.C.; Hans, G.; Higa, M.G. Leishmania infantum AS A Causative agent of cutaneous leishmaniasis in the state of mato grosso do sul, Brazil. Revista Instituto Medicina Tropical São Paulo 2016, 58, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barreto, M.L.; Teixeira, M.G.; Bastos, F.I.; Ximenes, R.A.; Barata, R.B.; Rodrigues, L.C. Successes and failures in the control of infectious diseases in Brazil: social and environmental context, policies, interventions, and research needs. Lancet 2011, 377, 1877–1889. [Google Scholar] [CrossRef]
- Pasquali, A.K.S.; Baggio, R.A.; Boeger, W.A.; González-Britez, N.; Guedes, D.C.; Chaves, E.C.; Thomaz-Soccol, V. Dispersion of Leishmania (Leishmania) infantum in central-southern Brazil: Evidence from an integrative approach. PLoS Negl. Trop. Dis. 2019, 13, e0007639. [Google Scholar] [CrossRef]
- Segatto, M.; Ribeiro, L.S.; Costa, D.L.; Costa, C.H.N.; De Oliveira, M.R.; Carvalho, S.F.G.; Macedo, A.M.; Valadares, H.M.S.; Dietze, R.; De Brito, C.F.A.; et al. Genetic diversity of Leishmania infantum field populations from Brazil. Memórias Instituto Oswaldo Cruz 2012, 107, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Campos-Ponce, M.; Ponce, C.; Ponce, E.; Maingon, R. Leishmania chagasi/infantum: further investigations on Leishmania tropisms in atypical cutaneous and visceral leishmaniasis foci in Central America. Exp. Parasitol. 2005, 109, 209–219. [Google Scholar] [CrossRef]
- Noyes, H.; Chance, M.; Ponce, C.; Ponce, E.; Maingon, R. Leishmania chagasi: Genotypically Similar Parasites from Honduras Cause both Visceral and Cutaneous Leishmaniasis in Humans. Exp. Parasitol. 1997, 85, 264–273. [Google Scholar] [CrossRef] [Green Version]
- Ponce, C.; Ponce, E.; Cruz, A.; Kreutzer, R.; Pratt, D.M.; Neva, F. Leishmania donovani chagasi: new clinical variant of cutaneous leishmaniasis in Honduras. Lancet 1991, 337, 67–70. [Google Scholar] [CrossRef]
- Campino, L.; Santos-Gomes, G.M.; Pratlong, F.; Antunes, F.; Maurício, I.; Dedet, J.P.; Abranches, P. HIV/Leishmania co-infections in Portugal: diagnosis and isoenzyme characterization of Leishmania. Ann. Trop. Med. Parasitol. 1997, 91, 433–436. [Google Scholar] [CrossRef]
- Cascio, A.; Giordano, S.; Gramiccia, M.; Gradoni, L.; Titone, L.; Scalone, A.; Camma, C.; Russo, R.; Scarlata, F. Epidemiologic surveillance of visceral leishmaniasis in Sicily, Italy. Am. J. Trop. Med. Hyg. 1997, 57, 75–78. [Google Scholar] [CrossRef]
- Fenech, B.F.F. Leishmaniasis in Malta and the Mediterranean Basin. Ann. Trop. Med. Parasitol. 1997, 91, 747–754. [Google Scholar] [CrossRef]
- Guessous-Idrissi, N.; Hamdani, A.; Rhalem, A.; Riyad, M.; Sahibi, H.; Dehbi, F.; Bichichi, M.; Essari, A.; Berrag, B. Epidemiology of human visceral leishmaniasis in Taounate, a northern province of Morocco. Parasite 1997, 4, 181–185. [Google Scholar] [CrossRef]
- Angelici, M.C.; Gramiccia, M.; Gradoni, L. Study on genetic polymorphism of Leishmania infantum through the analysis of restriction enzyme digestion patterns of kinetoplast DNA. Parasitology 1989, 99, 301–309. [Google Scholar] [CrossRef]
- Gramiccia, M.; Gradoni, L. Comparison between leishmanins. Trans. R. Soc. Trop. Med. Hyg. 1994, 88, 255. [Google Scholar] [CrossRef]
- Ferreira, G.E.M.; Dos Santos, B.N.; Dorval, M.E.C.; Ramos, T.P.B.; Porrozzi, R.; Peixoto, A.A.; Cupolillo, E. The Genetic Structure of Leishmania infantum Populations in Brazil and Its Possible Association with the Transmission Cycle of Visceral Leishmaniasis. PLoS ONE 2012, 7, e36242. [Google Scholar] [CrossRef] [Green Version]
- Iantorno, S.A.; Durrant, C.; Khan, A.; Sanders, M.J.; Beverley, S.M.; Warren, W.C.; Berriman, M.; Sacks, D.L.; Cotton, J.A.; Grigg, M.E. Gene Expression in Leishmania Is Regulated Predominantly by Gene Dosage. mBio 2017, 8, e01393-17. [Google Scholar] [CrossRef] [Green Version]
- Patino, L.H.; Imamura, H.; Cruz-Saavedra, L.; Pavia, P.; Muskus, C.; Méndez, C.; Dujardin, J.C.; Ramírez, J.D. Major changes in chromosomal somy, gene expression and gene dosage driven by SbIII in Leishmania braziliensis and Leishmania panamensis. Sci. Rep. 2019, 9, 9485. [Google Scholar] [CrossRef]
- Rogers, M.B.; Hilley, J.D.; Dickens, N.J.; Wilkes, J.; Bates, P.A.; Depledge, D.P.; Harris, D.; Her, Y.; Herzyk, P.; Imamura, H.; et al. Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res. 2011, 21, 2129–2142. [Google Scholar] [CrossRef] [Green Version]
- Sterkers, Y.; Lachaud, L.; Crobu, L.; Bastien, P.; Pagès, M. FISH analysis reveals aneuploidy and continual generation of chromosomal mosaicism in Leishmania major. Cell. Microbiol. 2010, 13, 274–283. [Google Scholar] [CrossRef] [Green Version]
- Barja, P.P.; Pescher, P.; Bussotti, G.; Dumetz, F.; Imamura, H.; Kedra, D.; Domagalska, M.; Chaumeau, V.; Himmelbauer, H.; Pages, M.; et al. Haplotype selection as an adaptive mechanism in the protozoan pathogen Leishmania donovani. Nat. Ecol. Evol. 2017, 1, 1961–1969. [Google Scholar] [CrossRef]
- Dumetz, F.; Imamura, H.; Sanders, M.; Seblova, V.; Myšková, J.; Pescher, P.; Vanaerschot, M.; Meehan, C.J.; Cuypers, B.; De Muylder, G.; et al. Modulation of Aneuploidy in Leishmania donovani during Adaptation to Different In Vitro and In Vivo Environments and Its Impact on Gene Expression. mBio 2017, 8, e00599-17. [Google Scholar] [CrossRef] [Green Version]
- Bussotti, G.; Gouzelou, E.; Boité, M.C.; Kherachi, I.; Harrat, Z.; Eddaikra, N.; Mottram, J.C.; Antoniou, M.; Christodoulou, V.; Bali, A.; et al. Leishmania Genome Dynamics during Environmental Adaptation Reveal Strain-Specific Differences in Gene Copy Number Variation, Karyotype Instability, and Telomeric Amplification. mBio 2018, 9, e01399-18. [Google Scholar] [CrossRef] [Green Version]
- Zackay, A.; Cotton, J.A.; Sanders, M.; Hailu, A.; Nasereddin, A.; Warburg, A.; Jaffe, C.L. Genome wide comparison of Ethiopian Leishmania donovani strains reveals differences potentially related to parasite survival. PLoS Genet. 2018, 14, e1007133. [Google Scholar] [CrossRef]
- Motoie, G.; Ferreira, G.E.M.; Cupolillo, E.; Canavez, F.; Pereira-Chioccola, V.L. Spatial distribution and population genetics of Leishmania infantum genotypes in São Paulo State, Brazil, employing multilocus microsatellite typing directly in dog infected tissues. Infect. Genet. Evol. 2013, 18, 48–59. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, E.F.; Oshiro, E.T.; Fernandes, W.S.; Ferreira, A.M.T.; De Oliveira, A.G.; Galati, E.A.B. Vector Competence of Lutzomyia cruzi Naturally Demonstrated for Leishmania infantum and Suspected for Leishmania amazonensis. Am. J. Trop. Med. Hyg. 2016, 96, 178–181. [Google Scholar] [CrossRef] [Green Version]
- Ribolla, P.E.M.; Gushi, L.T.; Pires e Cruz, M.D.S.; Costa, C.H.N.; Costa, D.L.; Junior, M.S.D.C.L.; Dorval, M.E.M.C.; De Oliveira, A.G.; Santos, M.F.D.C.; Camargo-Neves, V.L.F.; et al. Leishmania infantumGenetic Diversity andLutzomyia longipalpisMitochondrial Haplotypes in Brazil. BioMed Res. Int. 2016, 2016, 9249217. [Google Scholar] [CrossRef] [Green Version]
- Quintana, M.G.; Pech-May, A.; Fuenzalida, A.D.; Mancini, J.M.D.; Barroso, P.A.; Yadón, Z.E.; Zaidenberg, M.; Salomón, O.D. Lutzomyia longipalpis (Diptera: Psychodidae) Argentina-Bolivia border: new report and genetic diversity. Memórias Instituto Oswaldo Cruz 2019, 114, e190184. [Google Scholar] [CrossRef] [Green Version]
- Casaril, A.E.; Alonso, D.P.; Franco, K.G.; Alvarez, M.V.N.; Barrios, S.P.G.; Fernandes, W.D.S.; Infran, J.D.O.M.; Rodrigues, A.C.M.; Ribolla, P.E.M.; De Oliveira, A.G. Macrogeographic genetic structure of Lutzomyia longipalpis complex populations using Next Generation Sequencing. PLoS ONE 2019, 14, e0223277. [Google Scholar] [CrossRef] [Green Version]
- Boulanger, N.; Lowenberger, C.; Volf, P.; Ursic, R.; Sigutova, L.; Sabatier, L.; Svobodova, M.; Beverley, S.M.; Späth, G.; Brun, R.; et al. Characterization of a Defensin from the Sand Fly Phlebotomus duboscqi Induced by Challenge with Bacteria or the Protozoan Parasite Leishmania major. Infect. Immun. 2004, 72, 7140–7146. [Google Scholar] [CrossRef] [Green Version]
- Telleria, E.L.; Sant’Anna, M.R.V.; Alkurbi, M.O.; Pitaluga, A.N.; Dillon, R.J.; Traub-Csekö, Y.M. Bacterial feeding, Leishmania infection and distinct infection routes induce differential defensin expression in Lutzomyia longipalpis. Parasites Vectors 2013, 6, 12. [Google Scholar] [CrossRef] [Green Version]
- Dostalova, A.; Volf, P. Leishmania development in sand flies: parasite-vector interactions overview. Parasites Vectors 2012, 5, 276. [Google Scholar] [CrossRef] [Green Version]
- Mahoney, A.B.; Turco, S.J. Characterization of the Glucosyltransferases That Assemble the Side Chains of the Indian Leishmania donovani Lipophosphoglycan. Arch. Biochem. Biophys. 1999, 372, 367–374. [Google Scholar] [CrossRef]
- Mahoney, A.B.; Sacks, D.L.; Saraiva, E.; Modi, G.; Turco, S.J. Intra-Species and Stage-Specific Polymorphisms in Lipophosphoglycan Structure ControlLeishmania donovani−Sand Fly Interactions†. Biochemistry 1999, 38, 9813–9823. [Google Scholar] [CrossRef]
- Courtenay, O.; Peters, N.C.; Rogers, M.E.; Bern, C. Combining epidemiology with basic biology of sand flies, parasites, and hosts to inform leishmaniasis transmission dynamics and control. PLoS Pathog. 2017, 13, e1006571. [Google Scholar] [CrossRef]
- França-Silva, J.C.; Barata, R.A.; Da Costa, R.T.; Monteiro, E.M.; Machado-Coelho, G.L.L.; Vieira, E.P.; Prata, A.; Mayrink, W.; Nascimento, E.; Fortes-Dias, C.L.; et al. Importance of Lutzomyia longipalpis in the dynamics of transmission of canine visceral leishmaniasis in the endemic area of Porteirinha Municipality, Minas Gerais, Brazil. Veter Parasitol. 2005, 131, 213–220. [Google Scholar]
- Giraud, E.; Martin, O.; Yakob, L.; Rogers, M. Quantifying Leishmania Metacyclic Promastigotes from Individual Sandfly Bites Reveals the Efficiency of Vector Transmission. Commun. Boil. 2019, 2, 84. [Google Scholar] [CrossRef]
- Teixeira, D.; Monteiro, G.; Martins, D.; Fernandes, M.; Macedo-Silva, V.; Ansaldi, M.; Nascimento, P.; Kurtz, M.; Streit, J.; Ximenes, M.; et al. Comparative analyses of whole genome sequences of Leishmania infantum isolates from humans and dogs in northeastern Brazil. Int. J. Parasitol. 2017, 47, 655–665. [Google Scholar] [CrossRef] [Green Version]
- Carnielli, J.B.; Crouch, K.; Forrester, S.; Silva, V.C.; Carvalho, S.F.; Damasceno, J.D.; Brown, E.; Dickens, N.J.; Costa, D.L.; Costa, C.H.; et al. A Leishmania infantum genetic marker associated with miltefosine treatment failure for visceral leishmaniasis. EBioMedicine 2018, 36, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Carnielli, J.B.T.; Monti-Rocha, R.; Costa, D.L.; Sesana, A.M.; Pansini, L.N.N.; Segatto, M.; Mottram, J.C.; Costa, C.H.N.; Carvalho, S.F.G.; Dietze, R. Natural Resistance of Leishmania infantum to Miltefosine Contributes to the Low Efficacy in the Treatment of Visceral Leishmaniasis in Brazil. Am. J. Trop. Med. Hyg. 2019, 101, 789–794. [Google Scholar] [CrossRef]
- Nogueira, F.D.S.; Avino, V.C.; Galvis-Ovallos, F.; Pereira-Chioccola, V.L.; Moreira, M.A.B.; Romariz, A.P.P.L.; Molla, L.M.; Menz, I. Use of miltefosine to treat canine visceral leishmaniasis caused by Leishmania infantum in Brazil. Parasites Vectors 2019, 12, 79. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Ouellette, M. New insights with miltefosine unresponsiveness in Brazilian Leishmania infantum isolates. EBioMedicine 2018, 37, 13–14. [Google Scholar] [CrossRef] [Green Version]
- Ready, P.D. Leishmaniasis emergence in Europe. Euro Surveill. Bull. Eur. Sur Mal. Transm. Eur. Commun. Dis. Bull. 2010, 15, 19505. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boité, M.C.; Späth, G.F.; Bussotti, G.; Porrozzi, R.; Morgado, F.N.; Llewellyn, M.; Schwabl, P.; Cupolillo, E. Trans-Atlantic Spillover: Deconstructing the Ecological Adaptation of Leishmania infantum in the Americas. Genes 2020, 11, 4. https://doi.org/10.3390/genes11010004
Boité MC, Späth GF, Bussotti G, Porrozzi R, Morgado FN, Llewellyn M, Schwabl P, Cupolillo E. Trans-Atlantic Spillover: Deconstructing the Ecological Adaptation of Leishmania infantum in the Americas. Genes. 2020; 11(1):4. https://doi.org/10.3390/genes11010004
Chicago/Turabian StyleBoité, Mariana C., Gerald F. Späth, Giovanni Bussotti, Renato Porrozzi, Fernanda N. Morgado, Martin Llewellyn, Philipp Schwabl, and Elisa Cupolillo. 2020. "Trans-Atlantic Spillover: Deconstructing the Ecological Adaptation of Leishmania infantum in the Americas" Genes 11, no. 1: 4. https://doi.org/10.3390/genes11010004
APA StyleBoité, M. C., Späth, G. F., Bussotti, G., Porrozzi, R., Morgado, F. N., Llewellyn, M., Schwabl, P., & Cupolillo, E. (2020). Trans-Atlantic Spillover: Deconstructing the Ecological Adaptation of Leishmania infantum in the Americas. Genes, 11(1), 4. https://doi.org/10.3390/genes11010004