Why a Large-Scale Mode Can Be Essential for Understanding Intracellular Actin Waves
Abstract
1. Introduction
2. Intracellular Actin Waves
2.1. Phenomenology from Experiments
- Motility.
- Recently, clear evidence was reported that actin waves directly impact the motility of immune cells, see Figure 1A,B. In particular, dendritic cells, which move in an amoeboid fashion and search the human body for pathogens, display a random walk pattern that can switch between diffusive and persistent states of motion, a direct consequence of the intracellular actin wave dynamics [50];
- Cell division.
- In oocytes and embryonic cells of frog and echinoderms, excitable waves of Rho activity in conjunction with actin polymerization waves were observed shortly after anaphase onset, providing an explanation for the sensitivity of the cell cortex to signals generated by the mitotic spindle [51]. Similarly, in metaphase mast cells, concentric target and spiral waves of Cdc42 and of the F-BAR protein FBP17 were found to set the site of cell division in a size-dependent manner [52]. IAW can also act as the force-generating element that directly drives the division process in a contractile ring-independent form of cytofission. This was observed in D. discoideum cells beyond a critical size, where waves that collide with the cell border not only induce strong deformations of the cell shape but also trigger the division into smaller daughter cells—a cell cycle-independent form of wave-mediated cytofission, see Figure 1C [53].
- Macropinocytosis.
- While functional roles in phagocytosis and motility have been proposed [54,55], recent genetic studies suggest a relation to macropinocytosis [56]. This is supported by similarities between the basal actin waves and circular dorsal ruffles (CDR) [57,58]. The latter also adopt a ring-shaped structure but meander across the apical membrane, where they induce membrane ruffles that were related to the formation of macropinocytic cups [59].
- Cancer.
- Macropinocytosis has been also identified as an important mechanism of nutrient uptake in tumor cells [60]. Specifically, the inability of cells to undergo efficient macropinocytosis, e.g., thorough disordered IAW behavior or suppressed activity via pinning of IAW to cell boundaries [58], has been associated with cancerous phenotypes [61,62].
2.2. Modeling Approaches of Actin Waves
3. Actin Dynamics as a Constrained Continuous Medium: Implications and Applications
- Oscillatory dynamics,
- which represent traveling waves that develop via a Hopf instability of a uniform steady state.
- Excitability,
- corresponding to supra–threshold solitary waves (pulses) that propagate on top of a linearly stable uniform steady state.
- Bistability,
- which describes traveling domain walls or fronts, i.e., an interface that connects two linearly stable uniform steady states.
3.1. Conservation in Physicochemical Systems
3.2. Activator–Inhibitor Patterns with Conservation
4. Discussion and Example
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
HH | Hodgkin–Huxley |
RD | Reaction–diffusion |
AI | Activator–inhibitor |
FHN | FitzHugh–Nagumo |
IAW | Intracellular actin waves |
CDR | Circular dorsal ruffles |
References
- Cross, M.C.; Hohenberg, P.C. Pattern formation outside of equilibrium. Rev. Mod. Phys. 1993, 65, 851–1112. [Google Scholar] [CrossRef]
- Pismen, L. Patterns and Interfaces in Dissipative Dynamics; Springer: Berlin, Germany, 2006. [Google Scholar]
- Cross, M.; Greenside, H. Pattern Formation and Dynamics in Nonequilibrium Systems; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Turing, A. The chemical basis of morphogenesis. Philos. Trans. R. Soc. B 1952, 237, 37–72. [Google Scholar]
- Hodgkin, A.L.; Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 1952, 117, 500. [Google Scholar] [CrossRef]
- Murray, J.D. Mathematical Biology. II Spatial Models and Biomedical Applications {Interdisciplinary Applied Mathematics V. 18}; Springer: New York, NY, USA, 2001. [Google Scholar]
- FitzHugh, R. Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1961, 1, 445. [Google Scholar] [CrossRef]
- Nagumo, J.; Arimoto, S.; Yoshizawa, S. An active pulse transmission line simulating nerve axon. Proc. IRE 1962, 50, 2061–2070. [Google Scholar] [CrossRef]
- Gierer, A.; Meinhardt, H. A theory of biological pattern formation. Kybernetik 1972, 12, 30–39. [Google Scholar] [CrossRef]
- Keller, E.F.; Segel, L.A. Model for chemotaxis. J. Theor. Biol. 1971, 30, 225–234. [Google Scholar] [CrossRef]
- Swift, J.; Hohenberg, P.C. Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 1977, 15, 319. [Google Scholar] [CrossRef]
- Gray, P.; Scott, S. Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Isolas and other forms of multistability. Chem. Eng. Sci. 1983, 38, 29–43. [Google Scholar] [CrossRef]
- Gray, P.; Scott, S. Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Oscillations and instabilities in the system A+2B→3B; B→C. Chem. Eng. Sci. 1984, 39, 1087–1097. [Google Scholar] [CrossRef]
- Pearson, J.E. Complex patterns in a simple system. Science 1993, 261, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Keener, J.; Sneyd, J. Mathematical Physiology. Part I: Cellular Physiology; Springer: New York, NY, USA, 1998. [Google Scholar]
- Keener, J.; Sneyd, J. Mathematical Physiology. Part II: Systems Physiology; Springer Science+Business Media: New York, NY, USA, 2008. [Google Scholar]
- Tyson, J.J.; Keener, J.P. Singular perturbation theory of traveling waves in excitable media (a review). Phys. D Nonlinear Phenom. 1988, 32, 327–361. [Google Scholar] [CrossRef]
- Golubitsky, M.; Stewart, I. The Symmetry Perspective; Birkhäuser Verlag: Basel, Switzerland, 2002. [Google Scholar]
- Hoyle, R. Pattern Formation; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Chow, S.N.; Hale, J.K. Methods of Bifurcation Theory. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science]; Springer: New York, NY, USA, 1982; Volume 251. [Google Scholar]
- Collet, P.; Eckmann, J.P. Instabilities and Fronts in Extended Systems; Princeton University Press: Princeton, NJ, USA, 1990. [Google Scholar]
- Kuznetsov, Y.A. Elements of Applied Bifurcation Theory, 3rd ed.; Applied Mathematical Sciences; Springer: New York, NY, USA, 2004; Volume 112. [Google Scholar]
- Mei, Z. Numerical Bifurcation Analysis for Reaction-Diffusion Equations; Springer: Berlin, Germany, 2000. [Google Scholar]
- Pavliotis, G.; Stuart, A. Multiscale Methods: Averaging and Homogenization; Springer Science & Business Media: Berlin, Germany, 2008. [Google Scholar]
- Schneider, G.; Uecker, H. Nonlinear PDE—A Dynamical Systems Approach; Graduate Studies Mathematics; AMS: Premstätten, Austria, 2017; Volume 182. [Google Scholar]
- Dupont, G. Modeling the intracellular organization of calcium signaling. Wiley Interdiscip. Rev. Syst. Biol. Med. 2014, 6, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Falcke, M. Deterministic and stochastic models of intracellular Ca2+ waves. New J. Phys. 2003, 5, 96. [Google Scholar] [CrossRef]
- Kulawiak, D.A.; Löber, J.; Bär, M.; Engel, H. Active poroelastic two-phase model for the motion of physarum microplasmodia. PLoS ONE 2019, 14, e0217447. [Google Scholar] [CrossRef]
- Radszuweit, M.; Alonso, S.; Engel, H.; Bär, M. Intracellular mechanochemical waves in an active poroelastic model. Phys. Rev. Lett. 2013, 110, 138102. [Google Scholar] [CrossRef]
- Onsum, M.D.; Rao, C.V. Calling heads from tails: The role of mathematical modeling in understanding cell polarization. Curr. Opin. Cell Biol. 2009, 21, 74–81. [Google Scholar] [CrossRef][Green Version]
- Allard, J.; Mogilner, A. Traveling waves in actin dynamics and cell motility. Curr. Opin. Cell Biol. 2013, 25, 107–115. [Google Scholar] [CrossRef]
- Blanchoin, L.; Boujemaa-Paterski, R.; Sykes, C.; Plastino, J. Actin Dynamics, Architecture, and Mechanics in Cell Motility. Physiol. Rev. 2014, 94, 235–263. [Google Scholar] [CrossRef]
- Inagaki, N.; Katsuno, H. Actin waves: Origin of cell polarization and migration? Trends Cell Biol. 2017, 27, 515–526. [Google Scholar] [CrossRef]
- Beta, C.; Kruse, K. Intracellular oscillations and waves. Annu. Rev. Condens. Matter Phys. 2017, 8, 239–264. [Google Scholar] [CrossRef]
- Halatek, J.; Brauns, F.; Frey, E. Self-organization principles of intracellular pattern formation. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170107. [Google Scholar] [CrossRef] [PubMed]
- Deneke, V.E.; Di Talia, S. Chemical waves in cell and developmental biology. J. Cell Biol. 2018, 217, 1193–1204. [Google Scholar] [CrossRef] [PubMed]
- Ruthel, G.; Banker, G. Actin-dependent anterograde movement of growth-cone-like structures along growing hippocampal axons: A novel form of axonal transport? Cell Motil. Cytoskelet. 1998, 40, 160–173. [Google Scholar] [CrossRef]
- Toriyama, M.; Shimada, T.; Kim, K.B.; Mitsuba, M.; Nomura, E.; Katsuta, K.; Sakumura, Y.; Roepstorff, P.; Inagaki, N. Shootin1: A protein involved in the organization of an asymmetric signal for neuronal polarization. J. Cell Biol. 2006, 175, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Tomba, C.; Braïni, C.; Bugnicourt, G.; Cohen, F.; Friedrich, B.M.; Gov, N.S.; Villard, C. Geometrical determinants of neuronal actin waves. Front. Cell. Neurosci. 2017, 11, 86. [Google Scholar] [CrossRef][Green Version]
- Guetta-Terrier, C.; Monzo, P.; Zhu, J.; Long, H.; Venkatraman, L.; Zhou, Y.; Wang, P.; Chew, S.Y.; Mogilner, A.; Ladoux, B.; et al. Protrusive waves guide 3D cell migration along nanofibers. J. Cell Biol. 2015, 211, 683–701. [Google Scholar] [CrossRef]
- Döbereiner, H.G.; Dubin-Thaler, B.J.; Hofman, J.M.; Xenias, H.S.; Sims, T.N.; Giannone, G.; Dustin, M.L.; Wiggins, C.H.; Sheetz, M.P. Lateral Membrane Waves Constitute a Universal Dynamic Pattern of Motile Cells. Phys. Rev. Lett. 2006, 97, 038102. [Google Scholar] [CrossRef]
- Barnhart, E.L.; Allard, J.; Lou, S.S.; Theriot, J.A.; Mogilner, A. Adhesion-dependent wave generation in crawling cells. Curr. Biol. 2017, 27, 27–38. [Google Scholar] [CrossRef]
- Weiner, O.D.; Marganski, W.A.; Wu, L.F.; Altschuler, S.J.; Kirschner, M.W. An Actin-Based Wave Generator Organizes Cell Motility. PLoS Biol. 2007, 5, e221. [Google Scholar] [CrossRef]
- Gerisch, G.; Bretschneider, T.; Müller-Taubenberger, A.; Simmeth, E.; Ecke, M.; Diez, S.; Anderson, K. Mobile Actin Clusters and Traveling Waves in Cells Recovering from Actin Depolymerization. Biophys. J. 2004, 87, 3493–3503. [Google Scholar] [CrossRef] [PubMed]
- Schroth-Diez, B.; Gerwig, S.; Ecke, M.; Hegerl, R.; Diez, S.; Gerisch, G. Propagating waves separate two states of actin organization in living cells. HFSP J. 2009, 3, 412–427. [Google Scholar] [CrossRef] [PubMed]
- Jasnin, M.; Beck, F.; Ecke, M.; Fukuda, Y.; Martinez-Sanchez, A.; Baumeister, W.; Gerisch, G. The architecture of traveling actin waves revealed by cryo-electron tomography. Structure 2019, 27, 1211–1223. [Google Scholar] [CrossRef] [PubMed]
- Gerhardt, M.; Ecke, M.; Walz, M.; Stengl, A.; Beta, C.; Gerisch, G. Actin and PIP3 waves in giant cells reveal the inherent length scale of an excited state. J. Cell Sci. 2014, 127, 4507–4517. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Bhattacharya, S.; Edwards, M.; Cai, H.; Inoue, T.; Iglesias, P.A.; Devreotes, P.N. Altering the threshold of an excitable signal transduction network changes cell migratory modes. Nat. Cell Biol. 2017, 19, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Gerhardt, M.; Walz, M.; Beta, C. Signaling in chemotactic amoebae remains spatially confined to stimulated membrane regions. J. Cell Sci. 2014, 127, 5115–5125. [Google Scholar] [CrossRef]
- Stankevicins, L.; Ecker, N.; Terriac, E.; Maiuri, P.; Schoppmeyer, R.; Vargas, P.; Lennon-Duménil, A.M.; Piel, M.; Qu, B.; Hoth, M.; et al. Deterministic actin waves as generators of cell polarization cues. Proc. Natl. Acad. Sci. USA 2020, 117, 826–835. [Google Scholar] [CrossRef]
- Bement, W.M.; Leda, M.; Moe, A.M.; Kita, A.M.; Larson, M.E.; Golding, A.E.; Pfeuti, C.; Su, K.C.; Miller, A.L.; Goryachev, A.B.; et al. Activator-inhibitor coupling between Rho signalling and actin assembly makes the cell cortex an excitable medium. Nat. Cell Biol. 2015, 17, 1471–1483. [Google Scholar] [CrossRef]
- Xiao, S.; Tong, C.; Yang, Y.; Wu, M. Mitotic Cortical Waves Predict Future Division Sites by Encoding Positional and Size Information. Dev. Cell 2017, 43, 493–506.e3. [Google Scholar] [CrossRef]
- Flemming, S.; Font, F.; Alonso, S.; Beta, C. How cortical waves drive fission of motile cells. Proc. Natl. Acad. Sci. USA 2020, 117, 6330–6338. [Google Scholar] [CrossRef]
- Gerisch, G.; Ecke, M.; Schroth-Diez, B.; Gerwig, S.; Engel, U.; Maddera, L.; Clarke, M. Self-organizing actin waves as planar phagocytic cup structures. Cell Adhes. Migr. 2009, 3, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Bhattacharya, S.; Banerjee, T.; Abubaker-Sharif, B.; Long, Y.; Inoue, T.; Iglesias, P.A.; Devreotes, P.N. Wave patterns organize cellular protrusions and control cortical dynamics. Mol. Syst. Biol. 2019, 15, e8585. [Google Scholar] [CrossRef] [PubMed]
- Veltman, D.M.; Williams, T.D.; Bloomfield, G.; Chen, B.C.; Betzig, E.; Insall, R.H.; Kay, R.R. A plasma membrane template for macropinocytic cups. eLife 2016, 5, e20085. [Google Scholar] [CrossRef] [PubMed]
- Bernitt, E.; Koh, C.G.; Gov, N.; Döbereiner, H.G. Dynamics of Actin Waves on Patterned Substrates: A Quantitative Analysis of Circular Dorsal Ruffles. PLoS ONE 2015, 10, e0115857. [Google Scholar] [CrossRef] [PubMed]
- Bernitt, E.; Döbereiner, H.G.; Gov, N.S.; Yochelis, A. Fronts and waves of actin polymerization in a bistability-based mechanism of circular dorsal ruffles. Nat. Commun. 2017, 8, 15863. [Google Scholar] [CrossRef] [PubMed]
- Buccione, R.; Orth, J.D.; McNiven, M.A. Foot and mouth: Podosomes, invadopodia and circular dorsal ruffles. Nat. Rev. Mol. Cell Biol. 2004, 5, 647–657. [Google Scholar] [CrossRef]
- Commisso, C.; Davidson, S.M.; Soydaner-Azeloglu, R.G.; Parker, S.J.; Kamphorst, J.J.; Hackett, S.; Grabocka, E.; Nofal, M.; Drebin, J.A.; Thompson, C.B.; et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 2013, 497, 633–637. [Google Scholar] [CrossRef]
- Itoh, T.; Hasegawa, J. Mechanistic insights into the regulation of circular dorsal ruffle formation. J. Biochem. 2012, 153, 21–29. [Google Scholar] [CrossRef]
- Hoon, J.L.; Wong, W.K.; Koh, C.G. Functions and Regulation of Circular Dorsal Ruffles. Mol. Cell. Biol. 2012, 32, 4246–4257. [Google Scholar] [CrossRef]
- Ryan, G.L.; Watanabe, N.; Vavylonis, D. A review of models of fluctuating protrusion and retraction patterns at the leading edge of motile cells. Cytoskeleton 2012, 69, 195–206. [Google Scholar] [CrossRef]
- Sept, D.; Carlsson, A.E. Modeling large-scale dynamic processes in the cell: Polarization, waves, and division. Q. Rev. Biophys. 2014, 47, 221–248. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, A.E. Dendritic actin filament nucleation causes traveling waves and patches. Phys. Rev. Lett. 2010, 104, 228102. [Google Scholar] [CrossRef] [PubMed]
- Huber, F.; Käs, J.; Stuhrmann, B. Growing actin networks form lamellipodium and lamellum by self-assembly. Biophys. J. 2008, 95, 5508–5523. [Google Scholar] [CrossRef] [PubMed]
- Khamviwath, V.; Hu, J.; Othmer, H.G. A continuum model of actin waves in Dictyostelium discoideum. PLoS ONE 2013, 8, e64272. [Google Scholar] [CrossRef] [PubMed]
- Gholami, A.; Enculescu, M.; Falcke, M. Membrane waves driven by forces from actin filaments. New J. Phys. 2012, 14, 115002. [Google Scholar] [CrossRef][Green Version]
- Gov, N.S.; Gopinathan, A. Dynamics of membranes driven by actin polymerization. Biophys. J. 2006, 90, 454–469. [Google Scholar] [CrossRef]
- Shlomovitz, R.; Gov, N. Membrane waves driven by actin and myosin. Phys. Rev. Lett. 2007, 98, 168103. [Google Scholar] [CrossRef]
- Veksler, A.; Gov, N.S. Calcium-actin waves and oscillations of cellular membranes. Biophys. J. 2009, 97, 1558–1568. [Google Scholar] [CrossRef]
- Peleg, B.; Disanza, A.; Scita, G.; Gov, N. Propagating cell-membrane waves driven by curved activators of actin polymerization. PLoS ONE 2011, 6, e18635. [Google Scholar] [CrossRef]
- Naoz, M.; Gov, N.S. Cell-Substrate Patterns Driven by Curvature-Sensitive Actin Polymerization: Waves and Podosomes. Cells 2020, 9, 782. [Google Scholar] [CrossRef]
- Wu, Z.; Su, M.; Tong, C.; Wu, M.; Liu, J. Membrane shape-mediated wave propagation of cortical protein dynamics. Nat. Commun. 2018, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Katsuno, H.; Toriyama, M.; Hosokawa, Y.; Mizuno, K.; Ikeda, K.; Sakumura, Y.; Inagaki, N. Actin migration driven by directional assembly and disassembly of membrane-anchored actin filaments. Cell Rep. 2015, 12, 648–660. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Tsai, F.C.; Wang, C.C.; Lee, C.H. Three-dimensional characterization of active membrane waves on living cells. Phys. Rev. Lett. 2009, 103, 238101. [Google Scholar] [CrossRef]
- Beta, C.; Amselem, G.; Bodenschatz, E. A bistable mechanism for directional sensing. New J. Phys. 2008, 10, 083015. [Google Scholar] [CrossRef]
- Xiong, Y.; Huang, C.H.; Iglesias, P.A.; Devreotes, P.N. Cells navigate with a local-excitation, global-inhibition-biased excitable network. Proc. Natl. Acad. Sci. USA 2010, 107, 17079–17086. [Google Scholar] [CrossRef]
- Devreotes, P.N.; Bhattacharya, S.; Edwards, M.; Iglesias, P.A.; Lampert, T.; Miao, Y. Excitable Signal Transduction Networks in Directed Cell Migration. Annu. Rev. Cell Dev. Biol. 2017, 33, 103–125. [Google Scholar] [CrossRef]
- Sambeth, R.; Baumgaertner, A. Autocatalytic polymerization generates persistent random walk of crawling cells. Phys. Rev. Lett. 2001, 86, 5196. [Google Scholar] [CrossRef]
- Dreher, A.; Aranson, I.S.; Kruse, K. Spiral actin-polymerization waves can generate amoeboidal cell crawling. New J. Phys. 2014, 16, 055007. [Google Scholar] [CrossRef]
- Cao, Y.; Ghabache, E.; Rappel, W.J. Plasticity of cell migration resulting from mechanochemical coupling. eLife 2019, 8, e48478. [Google Scholar] [CrossRef]
- Mata, M.A.; Dutot, M.; Edelstein-Keshet, L.; Holmes, W.R. A model for intracellular actin waves explored by nonlinear local perturbation analysis. J. Theo. Biol. 2013, 334, 149–161. [Google Scholar] [CrossRef][Green Version]
- Wasnik, V.; Mukhopadhyay, R. Modeling the dynamics of dendritic actin waves in living cells. Phys. Rev. E 2014, 90, 052707. [Google Scholar] [CrossRef] [PubMed]
- Meron, E. Nonlinear Physics of Ecosystems; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Jilkine, A.; Edelstein-Keshet, L. A comparison of mathematical models for polarization of single eukaryotic cells in response to guided cues. PLoS Comput. Biol. 2011, 7, e1001121. [Google Scholar] [CrossRef] [PubMed]
- Halatek, J.; Frey, E. Rethinking pattern formation in reaction–diffusion systems. Nat. Phys. 2018, 14, 507–514. [Google Scholar] [CrossRef]
- Golovin, A.; Davis, S.H.; Voorhees, P.W. Self-organization of quantum dots in epitaxially strained solid films. Phys. Rev. E 2003, 68, 056203. [Google Scholar] [CrossRef] [PubMed]
- Ziebert, F.; Zimmermann, W. Pattern formation driven by nematic ordering of assembling biopolymers. Phys. Rev. E 2004, 70, 022902. [Google Scholar] [CrossRef] [PubMed]
- Golovin, A.; Levine, M.; Savina, T.; Davis, S.H. Faceting instability in the presence of wetting interactions: A mechanism for the formation of quantum dots. Phys. Rev. B 2004, 70, 235342. [Google Scholar] [CrossRef]
- Weliwita, J.; Rucklidge, A.; Tobias, S. Skew-varicose instability in two-dimensional generalized Swift-Hohenberg equations. Phys. Rev. E 2011, 84, 036201. [Google Scholar] [CrossRef]
- Robbins, M.J.; Archer, A.J.; Thiele, U.; Knobloch, E. Modeling the structure of liquids and crystals using one-and two-component modified phase-field crystal models. Phys. Rev. E 2012, 85, 061408. [Google Scholar] [CrossRef]
- Thiele, U.; Frohoff-Hülsmann, T.; Engelnkemper, S.; Knobloch, E.; Archer, A.J. First order phase transitions and the thermodynamic limit. New J. Phys. 2019, 21, 123021. [Google Scholar] [CrossRef]
- Barker, B.; Jung, S.; Zumbrun, K. Turing patterns in parabolic systems of conservation laws and numerically observed stability of periodic waves. Phys. D Nonlinear Phenom. 2018, 367, 11–18. [Google Scholar] [CrossRef]
- Hilder, B. Modulating traveling fronts for the Swift-Hohenberg equation in the case of an additional conservation law. arXiv 2018, arXiv:1811.12178. [Google Scholar] [CrossRef]
- Tribelsky, M.I.; Velarde, M.G. Short-wavelength instability in systems with slow long-wavelength dynamics. Phys. Rev. E 1996, 54, 4973. [Google Scholar] [CrossRef]
- Matthews, P.; Cox, S.M. Pattern formation with a conservation law. Nonlinearity 2000, 13, 1293. [Google Scholar] [CrossRef]
- Cox, S.; Matthews, P. Instability and localisation of patterns due to a conserved quantity. Phys. D Nonlinear Phenom. 2003, 175, 196–219. [Google Scholar] [CrossRef]
- Cox, S.M. The envelope of a one-dimensional pattern in the presence of a conserved quantity. Phys. Lett. A 2004, 333, 91–101. [Google Scholar] [CrossRef]
- Shiwa, Y. Hydrodynamic coarsening in striped pattern formation with a conservation law. Phys. Rev. E 2005, 72, 016204. [Google Scholar] [CrossRef]
- Dawes, J.H. Localized pattern formation with a large-scale mode: Slanted snaking. SIAM J. Appl. Dyn. Syst. 2008, 7, 186–206. [Google Scholar] [CrossRef][Green Version]
- Ohnogi, H.; Shiwa, Y. Instability of spatially periodic patterns due to a zero mode in the phase-field crystal equation. Phys. D Nonlinear Phenom. 2008, 237, 3046–3052. [Google Scholar] [CrossRef]
- Golovin, A.; Kanevsky, Y.; Nepomnyashchy, A. Feedback control of subcritical Turing instability with zero mode. Phys. Rev. E 2009, 79, 046218. [Google Scholar] [CrossRef]
- Huang, Z.F.; Elder, K.; Provatas, N. Phase-field-crystal dynamics for binary systems: Derivation from dynamical density functional theory, amplitude equation formalism, and applications to alloy heterostructures. Phys. Rev. E 2010, 82, 021605. [Google Scholar] [CrossRef]
- Kanevsky, Y.; Nepomnyashchy, A. Patterns and Waves Generated by a Subcritical Instability in Systems with a Conservation Law under the Action of a Global Feedback Control. Math. Model. Nat. Phenom. 2011, 6, 188–208. [Google Scholar] [CrossRef][Green Version]
- Thiele, U.; Archer, A.J.; Robbins, M.J.; Gomez, H.; Knobloch, E. Localized states in the conserved Swift-Hohenberg equation with cubic nonlinearity. Phys. Rev. E 2013, 87, 042915. [Google Scholar] [CrossRef]
- Knobloch, E. Localized structures and front propagation in systems with a conservation law. IMA J. Appl. Math. 2016, 81, 457–487. [Google Scholar] [CrossRef]
- Schneider, G.; Zimmermann, D. The Turing Instability in Case of an Additional Conservation Law—Dynamics Near the Eckhaus Boundary and Open Questions. In International Conference on Patterns of Dynamics; Springer: Berlin, Germany, 2016; pp. 28–43. [Google Scholar]
- Firth, W.; Columbo, L.; Maggipinto, T. On homoclinic snaking in optical systems. Chaos Interdiscip. J. Nonlinear Sci. 2007, 17, 037115. [Google Scholar] [CrossRef]
- Winterbottom, D.M. Pattern Formation with a Conservation Law. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2006. [Google Scholar]
- Matthews, P.; Ruckllidge, A. Travelling and standing waves in magnetoconvection. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1993, 441, 649–658. [Google Scholar]
- Cox, S.; Matthews, P. Instability of rotating convection. J. Fluid Mech. 2000, 403, 153–172. [Google Scholar] [CrossRef]
- Cox, S.M.; Matthews, P.; Pollicott, S. Swift-Hohenberg model for magnetoconvection. Phys. Rev. E 2004, 69, 066314. [Google Scholar] [CrossRef] [PubMed]
- Jacono, D.L.; Bergeon, A.; Knobloch, E. Magnetohydrodynamic convectons. J. Fluid Mech. 2011, 687, 595–605. [Google Scholar] [CrossRef]
- Golovin, A.; Nepomnyashchy, A.; Matkowsky, B.J. Traveling and spiral waves for sequential flames with translation symmetry: Coupled CGL–Burgers equations. Phys. D Nonlinear Phenom. 2001, 160, 1–28. [Google Scholar] [CrossRef]
- Golovin, A.; Matkowsky, B.J.; Nepomnyashchy, A. A complex Swift–Hohenberg equation coupled to the Goldstone mode in the nonlinear dynamics of flames. Phys. D Nonlinear Phenom. 2003, 179, 183–210. [Google Scholar] [CrossRef]
- Tsimring, L.S.; Aranson, I.S. Localized and cellular patterns in a vibrated granular layer. Phys. Rev. Lett. 1997, 79, 213. [Google Scholar] [CrossRef]
- Snezhko, A.; Aranson, I.; Kwok, W.K. Surface wave assisted self-assembly of multidomain magnetic structures. Phys. Rev. Lett. 2006, 96, 078701. [Google Scholar] [CrossRef] [PubMed]
- Pradenas, B.; Araya, I.; Clerc, M.G.; Falcón, C.; Gandhi, P.; Knobloch, E. Slanted snaking of localized Faraday waves. Phys. Rev. Fluids 2017, 2, 064401. [Google Scholar] [CrossRef]
- Kramer, S.C.; Kree, R. Pattern formation of ion channels with state-dependent charges and diffusion constants in fluid membranes. Phys. Rev. E 2002, 65, 051920. [Google Scholar] [CrossRef]
- Peter, R.; Zimmermann, W. Traveling ion channel density waves affected by a conservation law. Phys. Rev. E 2006, 74, 016206. [Google Scholar] [CrossRef]
- Coullet, P.; Fauve, S. Propagative phase dynamics for systems with Galilean invariance. Phys. Rev. Lett. 1985, 55, 2857. [Google Scholar] [CrossRef]
- Riecke, H. Solitary waves under the influence of a long-wave mode. Phys. D Nonlinear Phenom. 1996, 92, 69–94. [Google Scholar] [CrossRef][Green Version]
- Ipsen, M.; Sørensen, P.G. Finite wavelength instabilities in a slow mode coupled complex Ginzburg-Landau equation. Phys. Rev. Lett. 2000, 84, 2389. [Google Scholar] [CrossRef]
- Winterbottom, D.; Matthews, P.; Cox, S.M. Oscillatory pattern formation with a conserved quantity. Nonlinearity 2005, 18, 1031. [Google Scholar] [CrossRef]
- Hek, G.; Valkhoff, N. Pulses in a complex Ginzburg–Landau system: Persistence under coupling with slow diffusion. Phys. D Nonlinear Phenom. 2007, 232, 62–85. [Google Scholar] [CrossRef]
- Nepomnyashchy, A.; Shklyaev, S. Longwave oscillatory patterns in liquids: Outside the world of the complex Ginzburg–Landau equation. J. Phys. A Math. Theor. 2016, 49, 053001. [Google Scholar] [CrossRef][Green Version]
- Koch, A.; Meinhardt, H. Biological pattern formation: From basic mechanisms to complex structures. Rev. Mod. Phys. 1994, 66, 1481. [Google Scholar] [CrossRef]
- Maini, P.; Painter, K.; Chau, H.P. Spatial pattern formation in chemical and biological systems. J. Chem. Soc. Faraday Trans. 1997, 93, 3601–3610. [Google Scholar] [CrossRef]
- Volpert, V.; Petrovskii, S. Reaction–diffusion waves in biology. Phys. Life Rev. 2009, 6, 267–310. [Google Scholar] [CrossRef]
- Baker, R.E.; Gaffney, E.; Maini, P. Partial differential equations for self-organization in cellular and developmental biology. Nonlinearity 2008, 21, R251. [Google Scholar] [CrossRef]
- Otsuji, M.; Ishihara, S.; Co, C.; Kaibuchi, K.; Mochizuki, A.; Kuroda, S. A mass conserved reaction–diffusion system captures properties of cell polarity. PLoS Comput. Biol. 2007, 3, e108. [Google Scholar] [CrossRef]
- Yochelis, A.; Ebrahim, S.; Millis, B.; Cui, R.; Kachar, B.; Naoz, M.; Gov, N.S. Self-organization of waves and pulse trains by molecular motors in cellular protrusions. Sci. Rep. 2015, 5, 13521. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, S.; Otsuji, M.; Mochizuki, A. Transient and steady state of mass-conserved reaction-diffusion systems. Phys. Rev. E 2007, 75, 015203. [Google Scholar] [CrossRef] [PubMed]
- Morita, Y.; Ogawa, T. Stability and bifurcation of nonconstant solutions to a reaction–diffusion system with conservation of mass. Nonlinearity 2010, 23, 1387. [Google Scholar] [CrossRef]
- Chern, J.L.; Morita, Y.; Shieh, T.T. Asymptotic behavior of equilibrium states of reaction–diffusion systems with mass conservation. J. Differ. Equ. 2018, 264, 550–574. [Google Scholar] [CrossRef]
- Kuwamura, M.; Seirin-Lee, S.; Ei, S.i. Dynamics of localized unimodal patterns in reaction-diffusion systems for cell polarization by extracellular signaling. SIAM J. Appl. Math. 2018, 78, 3238–3257. [Google Scholar] [CrossRef]
- Ei, S.I.; Tzeng, S.Y. Spike solutions for a mass conservation reaction-diffusion system. Dis. Contin. Dyn. Syst.-A 2020, 40, 3357. [Google Scholar] [CrossRef]
- Sakamoto, T.O. Hopf bifurcation in a reaction–diffusion system with conservation of mass. Nonlinearity 2013, 26, 2027. [Google Scholar] [CrossRef]
- Yochelis, A.; Bar-On, T.; Gov, N.S. Reaction–diffusion–advection approach to spatially localized treadmilling aggregates of molecular motors. Physica D 2016, 318, 84–90. [Google Scholar] [CrossRef]
- Zmurchok, C.; Small, T.; Ward, M.J.; Edelstein-Keshet, L. Application of quasi-steady-state methods to nonlinear models of intracellular transport by molecular motors. Bull. Math. Biol. 2017, 79, 1923–1978. [Google Scholar] [CrossRef]
- Goryachev, A.B.; Pokhilko, A.V. Dynamics of Cdc42 network embodies a Turing-type mechanism of yeast cell polarity. FEBS Lett. 2008, 582, 1437–1443. [Google Scholar] [CrossRef]
- Champneys, A.R.; Kirk, V.; Knobloch, E.; Oldeman, B.E.; Sneyd, J. When Shil’nikov meets Hopf in excitable systems. SIAM J. Appl. Dyn. Syst. 2007, 6, 663–693. [Google Scholar] [CrossRef]
- Yochelis, A.; Knobloch, E.; Xie, Y.; Qu, Z.; Garfinkel, A. Generation of finite wave trains in excitable media. Europhys. Lett. 2008, 83, 64005. [Google Scholar] [CrossRef]
- Doedel, E.; Champneys, A.R.; Fairgrieve, T.F.; Kuznetsov, Y.A.; Sandstede, B.; Wang, X. AUTO: Continuation and Bifurcation Software for Ordinary Differential Equations (with HomCont). Available online: http://cmvl.cs.concordia.ca/auto/ (accessed on 22 June 2020).
- Sherratt, J.A. Numerical continuation methods for studying periodic travelling wave (wavetrain) solutions of partial differential equations. Appl. Math. Comput. 2012, 218, 4684–4694. [Google Scholar] [CrossRef]
- Uecker, H.; Wetzel, D.; Rademacher, J.D. pde2path-A Matlab package for continuation and bifurcation in 2D elliptic systems. Numer. Math. Theory Methods Appl. 2014, 7, 58–106. [Google Scholar] [CrossRef]
- Bindel, D.; Friedman, M.; Govaerts, W.; Hughes, J.; Kuznetsov, Y. Numerical computation of bifurcations in large equilibrium systems in Matlab. J. Comput. Appl. Math. 2014, 261, 232–248. [Google Scholar] [CrossRef]
- Dankowicz, H.; Schilder, F. Recipes for Continuation; SIAM: Philadelphia, PA, USA, 2013. [Google Scholar]
- Yochelis, A.; Knobloch, E.; Köpf, M.H. Origin of finite pulse trains: Homoclinic snaking in excitable media. Phys. Rev. E 2015, 91, 032924. [Google Scholar] [CrossRef] [PubMed]
- Yochelis, A.; Beta, C.; Gov, N.S. Excitable solitons: Annihilation, crossover, and nucleation of pulses in mass-conserving activator–inhibitor media. Phys. Rev. E 2020, 101, 022213. [Google Scholar] [CrossRef]
- Zabusky, N.J.; Kruskal, M.D. Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 1965, 15, 240. [Google Scholar] [CrossRef]
- Scott, A.C.; Chu, F.; McLaughlin, D.W. The soliton: A new concept in applied science. Proc. IEEE 1973, 61, 1443–1483. [Google Scholar] [CrossRef]
- Scott, A.C. The electrophysics of a nerve fiber. Rev. Mod. Phys. 1975, 47, 487. [Google Scholar] [CrossRef]
- Knobloch, E. Spatial localization in dissipative systems. Annu. Rev. Condens. Matter Phys. 2015, 6, 325–359. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Baldwin, D.E. Nonlinear shallow ocean-wave soliton interactions on flat beaches. Phys. Rev. E 2012, 86, 036305. [Google Scholar] [CrossRef] [PubMed]
- Santiago-Rosanne, M.; Vignes-Adler, M.; Velarde, M.G. Dissolution of a drop on a liquid surface leading to surface waves and interfacial turbulence. J. Colloid Interface Sci. 1997, 191, 65–80. [Google Scholar] [CrossRef]
- Alonso, S.; Bär, M.; Echebarria, B. Nonlinear physics of electrical wave propagation in the heart: A review. Rep. Prog. Phys. 2016, 79, 096601. [Google Scholar] [CrossRef]
- Petrov, V.; Scott, S.K.; Showalter, K. Excitability, wave reflection, and wave splitting in a cubic autocatalysis reaction-diffusion system. Philos. Trans. R. Soc. London. Ser. A Phys. Eng. Sci. 1994, 347, 631–642. [Google Scholar]
- Argentina, M.; Coullet, P.; Mahadevan, L. Colliding Waves in a Model Excitable Medium: Preservation, Annihilation, and Bifurcation. Phys. Rev. Lett. 1997, 79, 2803–2806. [Google Scholar] [CrossRef]
- Nishiura, Y.; Teramoto, T.; Ueda, K.I. Scattering and separators in dissipative systems. Phys. Rev. E 2003, 67, 056210. [Google Scholar] [CrossRef]
- Nishiura, Y.; Teramoto, T.; Ueda, K.I. Dynamic transitions through scattors in dissipative systems. Chaos 2003, 13, 962–972. [Google Scholar] [CrossRef]
- Whitelam, S.; Bretschneider, T.; Burroughs, N.J. Transformation from spots to waves in a model of actin pattern formation. Phys. Rev. Lett. 2009, 102, 198103. [Google Scholar] [CrossRef]
- Alonso, S.; Stange, M.; Beta, C. Modeling random crawling, membrane deformation and intracellular polarity of motile amoeboid cells. PLoS ONE 2018, 13, e0201977. [Google Scholar] [CrossRef] [PubMed]
- Krischer, K.; Mikhailov, A. Bifurcation to traveling spots in reaction-diffusion systems. Phys. Rev. Lett. 1994, 73, 3165. [Google Scholar] [CrossRef] [PubMed]
- Bär, M.; Hildebrand, M.; Eiswirth, M.; Falcke, M.; Engel, H.; Neufeld, M. Chemical turbulence and standing waves in a surface reaction model: The influence of global coupling and wave instabilities. Chaos 1994, 4, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Mimura, M.; Kawaguchi, S. Collision of travelling waves in a reaction-diffusion system with global coupling effect. SIAM J. Appl. Math. 1998, 59, 920–941. [Google Scholar] [CrossRef]
- Coombes, S.; Owen, M. Exotic dynamics in a firing rate model of neural tissue. In Proceedings of the Fluids and Waves: Recent Trends in Applied Analysis: Research Conference, the Universtiy of Memphis, Memphis, TN, USA, 11–13 May 2006; Volume 440, p. 123. [Google Scholar]
- Tsyganov, M.; Brindley, J.; Holden, A.; Biktashev, V. Quasisoliton interaction of pursuit-evasion waves in a predator-prey system. Phys. Rev. Lett. 2003, 91, 218102. [Google Scholar] [CrossRef]
- Bär, M.; Eiswirth, M.; Rotermund, H.H.; Ertl, G. Solitary-wave phenomena in an excitable surface reaction. Phys. Rev. Lett. 1992, 69, 945. [Google Scholar] [CrossRef] [PubMed]
- Nishiura, Y.; Teramoto, T.; Yuan, X.; Ueda, K.I. Dynamics of traveling pulses in heterogeneous media. Chaos 2007, 17, 037104. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Teramoto, T.; Nishiura, Y. Heterogeneity-induced defect bifurcation and pulse dynamics for a three-component reaction-diffusion system. Phys. Rev. E 2007, 75, 036220. [Google Scholar] [CrossRef]
- Argentina, M.; Coullet, P.; Krinsky, V. Head-on collisions of waves in an excitable FitzHugh–Nagumo system: A transition from wave annihilation to classical wave behavior. J. Theor. Biol. 2000, 205, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Bordyugov, G.; Engel, H. Anomalous pulse interaction in dissipative media. Chaos 2008, 18, 026104. [Google Scholar] [CrossRef] [PubMed]
- Argentina, M.; Rudzick, O.; Velarde, M.G. On the back-firing instability. Chaos 2004, 14, 777–783. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zimmermann, M.G.; Firle, S.O.; Natiello, M.A.; Hildebrand, M.; Eiswirth, M.; Bär, M.; Bangia, A.K.; Kevrekidis, I.G. Pulse bifurcation and transition to spatiotemporal chaos in an excitable reaction-diffusion model. Phys. D Nonlinear Phenom. 1997, 110, 92–104. [Google Scholar] [CrossRef]
- Nishiura, Y.; Ueyama, D. Spatio-temporal chaos for the Gray–Scott model. Phys. D: Nonlinear Phenom. 2001, 150, 137–162. [Google Scholar] [CrossRef]
- Bauer, P.R.; Bonnefont, A.; Krischer, K. Dissipative solitons and backfiring in the electrooxidation of CO on Pt. Sci. Rep. 2015, 5, 1–8. [Google Scholar] [CrossRef]
- Geßele, R.; Halatek, J.; Würthner, L.; Frey, E. Geometric cues stabilise long-axis polarisation of PAR protein patterns in C. elegans. Nat. Commun. 2020, 11, 1–12. [Google Scholar] [CrossRef]
- Siton-Mendelson, O.; Bernheim-Groswasser, A. Toward the reconstitution of synthetic cell motility. Cell Adhes. Migr. 2016, 10, 461–474. [Google Scholar] [CrossRef] [PubMed]
- Schwille, P.; Spatz, J.; Landfester, K.; Bodenschatz, E.; Herminghaus, S.; Sourjik, V.; Erb, T.J.; Bastiaens, P.; Lipowsky, R.; Hyman, A.; et al. MaxSynBio: Avenues Towards Creating Cells from the Bottom Up. Angew. Chem. Int. Ed. 2018, 57, 13382–13392. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beta, C.; Gov, N.S.; Yochelis, A. Why a Large-Scale Mode Can Be Essential for Understanding Intracellular Actin Waves. Cells 2020, 9, 1533. https://doi.org/10.3390/cells9061533
Beta C, Gov NS, Yochelis A. Why a Large-Scale Mode Can Be Essential for Understanding Intracellular Actin Waves. Cells. 2020; 9(6):1533. https://doi.org/10.3390/cells9061533
Chicago/Turabian StyleBeta, Carsten, Nir S. Gov, and Arik Yochelis. 2020. "Why a Large-Scale Mode Can Be Essential for Understanding Intracellular Actin Waves" Cells 9, no. 6: 1533. https://doi.org/10.3390/cells9061533
APA StyleBeta, C., Gov, N. S., & Yochelis, A. (2020). Why a Large-Scale Mode Can Be Essential for Understanding Intracellular Actin Waves. Cells, 9(6), 1533. https://doi.org/10.3390/cells9061533