# Flow Induced Symmetry Breaking in a Conceptual Polarity Model

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Model

## 3. Linear Stability Analysis

#### 3.1. Linearized Dynamics and Basic Results

#### 3.2. Intuition for the Flow-Driven Instability and Upstream Propagation of the Unstable Mode

#### 3.3. Long Wavelength Limit

#### 3.4. Limits of Slow and fast Flow

#### 3.5. Summary and Discussion of Linear Stability

## 4. Pattern Propagation in the Nonlinear Regime

## 5. Flow-Induced Transition from Mesa to Peak Patterns

## 6. Flow-Induced Pattern Formation

## 7. Conclusions and Outlook

## Supplementary Materials

- Growth of a pattern from a homogeneous steady state in the presence of flow. Top: concentration profiles in space; bottom: corresponding density distribution in the phase space. (Parameters: ${D}_{m}=0.1\mathsf{\mu}{\mathrm{m}}^{2}/\mathrm{s},\overline{n}=3\mathsf{\mu}{\mathrm{m}}^{-1}$, $L=20\mathsf{\mu}\mathrm{m}$ and ${v}_{\mathrm{f}}=20\mathsf{\mu}\mathrm{m}/\mathrm{s}$.)
- Simulation with adiabatically increasing flow speed from ${v}_{\mathrm{f}}=0\mathsf{\mu}\mathrm{m}/\mathrm{s}$ to ${v}_{\mathrm{f}}=100\mathsf{\mu}\mathrm{m}/\mathrm{s}$. Note the flattening of the cytosolic concentration profile as the flow speed increases. (Fixed parameters as for Movie 1.)
- Corresponds to the space-time plot in Figure 4A.
- Pattern transformation from a mesa pattern to a peak pattern as flow speed is adiabatically increased from ${v}_{\mathrm{f}}=0$ to ${v}_{\mathrm{f}}=45\mathsf{\mu}\mathrm{m}/\mathrm{s}$. (Fixed parameters as for Movie 1.)
- Pattern formation triggered by mass-redistribution due to a spatially non-uniform flow (parabolic flow profile shown in Figure 6A). After the flow is switched off at $t=200\mathrm{s}$, the pattern is maintained. (Parameters: ${D}_{m}=0.1\mathsf{\mu}{\mathrm{m}}^{2}/\mathrm{s},L=30\mathsf{\mu}\mathrm{m}$, ${v}_{\mathrm{max}}=1\mathsf{\mu}\mathrm{m}/\mathrm{s}$, and $\overline{n}=1\mathsf{\mu}{\mathrm{m}}^{-1}$.)
- As Movie 5, but with lower average mass, $\overline{n}=0.8\mathsf{\mu}{\mathrm{m}}^{-1}$. This mass is not sufficient to maintain a stationary peak in the absence of flow. Therefore, the peak disappears after the flow is switched off ($t>200\mathrm{s}$).

## Author Contributions

## Funding

## Conflicts of Interest

## Abbreviations

McRD | mass-conserving reaction–diffusion |

2cMcRD | two-component mass-conserving reaction–diffusion |

FBS | flux-balance subspace |

## Appendix A. Limit of Slow Flow and Timescale Comparison

## References

- Weiner, O.D. Regulation of Cell Polarity during Eukaryotic Chemotaxis: The Chemotactic Compass. Curr. Opin. Cell Biol.
**2002**, 14, 196–202. [Google Scholar] [CrossRef] [Green Version] - Keilberg, D.; Søgaard-Andersen, L. Regulation of Bacterial Cell Polarity by Small GTPases. Biochemistry
**2014**, 53, 1899–1907. [Google Scholar] [CrossRef] [PubMed] - Bi, E.; Park, H.O. Cell Polarization and Cytokinesis in Budding Yeast. Genetics
**2012**, 191, 347–387. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Chiou, J.G.; Balasubramanian, M.K.; Lew, D.J. Cell Polarity in Yeast. Annu. Rev. Cell Dev. Biol.
**2017**, 33, 77–101. [Google Scholar] [CrossRef] - Goryachev, A.B.; Leda, M. Many Roads to Symmetry Breaking: Molecular Mechanisms and Theoretical Models of Yeast Cell Polarity. Mol. Biol. Cell
**2017**, 28, 370–380. [Google Scholar] [CrossRef] - Turing, A.M. The Chemical Basis of Morphogenesis. Philos. Trans. R. Soc. Lond. B Ser. Biol. Sci.
**1952**, 237, 37–72. [Google Scholar] [CrossRef] - Diegmiller, R.; Montanelli, H.; Muratov, C.B.; Shvartsman, S.Y. Spherical Caps in Cell Polarization. Biophys. J.
**2018**, 115, 26–30. [Google Scholar] [CrossRef] [Green Version] - Klughammer, N.; Bischof, J.; Schnellbächer, N.D.; Callegari, A.; Lénárt, P.; Schwarz, U. Cytoplasmic Flows in Starfish Oocytes Are Fully Determined by Cortical Contractions. PLoS Comput. Biol.
**2018**, 14, e1006588. [Google Scholar] [CrossRef] - Mittasch, M.; Gross, P.; Nestler, M.; Fritsch, A.W.; Iserman, C.; Kar, M.; Munder, M.; Voigt, A.; Alberti, S.; Grill, S.W.; et al. Non-Invasive Perturbations of Intracellular Flow Reveal Physical Principles of Cell Organization. Nat. Cell Biol.
**2018**, 20, 344–351. [Google Scholar] [CrossRef] - Hawkins, R.J.; Bénichou, O.; Piel, M.; Voituriez, R. Rebuilding Cytoskeleton Roads: Active-Transport-Induced Polarization of Cells. Phys. Rev. E
**2009**, 80, 040903. [Google Scholar] [CrossRef] [Green Version] - Calvez, V.; Lepoutre, T.; Meunier, N.; Muller, N. Non-Linear Analysis of a Model for Yeast Cell Communication. ESAIM Math. Model. Numer. Anal.
**2020**, 54, 619–648. [Google Scholar] [CrossRef] - Yochelis, A.; Ebrahim, S.; Millis, B.; Cui, R.; Kachar, B.; Naoz, M.; Gov, N.S. Self-Organization of Waves and Pulse Trains by Molecular Motors in Cellular Protrusions. Sci. Rep.
**2015**, 5, 13521. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Goehring, N.W.; Trong, P.K.; Bois, J.S.; Chowdhury, D.; Nicola, E.M.; Hyman, A.A.; Grill, S.W. Polarization of PAR Proteins by Advective Triggering of a Pattern-Forming System. Science
**2011**, 334, 1137–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Illukkumbura, R.; Bland, T.; Goehring, N.W. Patterning and Polarization of Cells by Intracellular Flows. Curr. Opin. Cell Biol.
**2020**, 62, 123–134. [Google Scholar] [CrossRef] - Gross, P.; Kumar, K.V.; Goehring, N.W.; Bois, J.S.; Hoege, C.; Jülicher, F.; Grill, S.W. Guiding Self-Organized Pattern Formation in Cell Polarity Establishment. Nat. Phys.
**2019**, 15, 293–300. [Google Scholar] [CrossRef] - Ivanov, V.; Mizuuchi, K. Multiple Modes of Interconverting Dynamic Pattern Formation by Bacterial Cell Division Proteins. Proc. Natl. Acad. Sci. USA
**2010**, 107, 8071–8078. [Google Scholar] [CrossRef] [Green Version] - Vecchiarelli, A.G.; Li, M.; Mizuuchi, M.; Mizuuchi, K. Differential Affinities of MinD and MinE to Anionic Phospholipid Influence Min Patterning Dynamics in vitro: Flow and Lipid Composition Effects on Min Patterning. Mol. Microbiol.
**2014**, 93, 453–463. [Google Scholar] [CrossRef] [Green Version] - Grill, S.W.; Gönczy, P.; Stelzer, E.H.K.; Hyman, A.A. Polarity Controls Forces Governing Asymmetric Spindle Positioning in the Caenorhabditis Elegans Embryo. Nature
**2001**, 409, 630–633. [Google Scholar] [CrossRef] - Munro, E.; Nance, J.; Priess, J.R. Cortical Flows Powered by Asymmetrical Contraction Transport PAR Proteins to Establish and Maintain Anterior-Posterior Polarity in the Early C. Elegans Embryo. Dev. Cell
**2004**, 7, 413–424. [Google Scholar] [CrossRef] [Green Version] - Hecht, I.; Rappel, W.J.; Levine, H. Determining the Scale of the Bicoid Morphogen Gradient. Proc. Natl. Acad. Sci. USA
**2009**, 106, 1710–1715. [Google Scholar] [CrossRef] [Green Version] - Mayer, M.; Depken, M.; Bois, J.S.; Jülicher, F.; Grill, S.W. Anisotropies in Cortical Tension Reveal the Physical Basis of Polarizing Cortical Flows. Nature
**2010**, 467, 617–621. [Google Scholar] [CrossRef] [PubMed] - Goldstein, R.E.; van de Meent, J.W. A Physical Perspective on Cytoplasmic Streaming. Interface Focus
**2015**, 5, 20150030. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Mogilner, A.; Manhart, A. Intracellular Fluid Mechanics: Coupling Cytoplasmic Flow with Active Cytoskeletal Gel. Annu. Rev. Fluid Mech.
**2018**, 50, 347–370. [Google Scholar] [CrossRef] [Green Version] - Bischof, J.; Brand, C.A.; Somogyi, K.; Májer, I.; Thome, S.; Mori, M.; Schwarz, U.S.; Lénárt, P. A Cdk1 Gradient Guides Surface Contraction Waves in Oocytes. Nat. Commun.
**2017**, 8, 1–10. [Google Scholar] [CrossRef] [PubMed] - Koslover, E.F.; Chan, C.K.; Theriot, J.A. Cytoplasmic Flow and Mixing Due to Deformation of Motile Cells. Biophys. J.
**2017**, 113, 2077–2087. [Google Scholar] [CrossRef] - Mori, Y.; Jilkine, A.; Edelstein-Keshet, L. Wave-Pinning and Cell Polarity from a Bistable Reaction-Diffusion System. Biophys. J.
**2008**, 94, 3684–3697. [Google Scholar] [CrossRef] [Green Version] - Jilkine, A.; Edelstein-Keshet, L. A Comparison of Mathematical Models for Polarization of Single Eukaryotic Cells in Response to Guided Cues. PLoS Comput. Biol.
**2011**, 7, e1001121. [Google Scholar] [CrossRef] [Green Version] - Klünder, B.; Freisinger, T.; Wedlich-Söldner, R.; Frey, E. GDI-Mediated Cell Polarization in Yeast Provides Precise Spatial and Temporal Control of Cdc42 Signaling. PLoS Comput. Biol.
**2013**, 9, e1003396. [Google Scholar] [CrossRef] [Green Version] - Freisinger, T.; Klünder, B.; Johnson, J.; Müller, N.; Pichler, G.; Beck, G.; Costanzo, M.; Boone, C.; Cerione, R.A.; Frey, E.; et al. Establishment of a Robust Single Axis of Cell Polarity by Coupling Multiple Positive Feedback Loops. Nat. Commun.
**2013**, 4, 1807. [Google Scholar] [CrossRef] [Green Version] - Chiou, J.G.; Ramirez, S.A.; Elston, T.C.; Witelski, T.P.; Schaeffer, D.G.; Lew, D.J. Principles That Govern Competition or Co-Existence in Rho-GTPase Driven Polarization. PLoS Comput. Biol.
**2018**, 14, e1006095. [Google Scholar] [CrossRef] [Green Version] - Brauns, F.; Halatek, J.; Frey, E. Phase-Space Geometry of Reaction–Diffusion Dynamics. arXiv
**2018**, arXiv:1812.08684. [Google Scholar] - Goryachev, A.B.; Pokhilko, A.V. Dynamics of Cdc42 Network Embodies a Turing-Type Mechanism of Yeast Cell Polarity. FEBS Lett.
**2008**, 582, 1437–1443. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Trong, P.K.; Nicola, E.M.; Goehring, N.W.; Kumar, K.V.; Grill, S.W. Parameter-Space Topology of Models for Cell Polarity. New J. Phys.
**2014**, 16, 065009. [Google Scholar] [CrossRef] - Otsuji, M.; Ishihara, S.; Co, C.; Kaibuchi, K.; Mochizuki, A.; Kuroda, S. A Mass Conserved Reaction–Diffusion System Captures Properties of Cell Polarity. PLoS Comput. Biol.
**2007**, 3, e108. [Google Scholar] [CrossRef] [Green Version] - Ishihara, S.; Otsuji, M.; Mochizuki, A. Transient and Steady State of Mass-Conserved Reaction-Diffusion Systems. Phys. Rev. E
**2007**, 75, 015203. [Google Scholar] [CrossRef] [Green Version] - Wigbers, M.C.; Brauns, F.; Hermann, T.; Frey, E. Pattern Localization to a Domain Edge. Phys. Rev. E
**2020**, 101, 022414. [Google Scholar] [CrossRef] [Green Version] - Halatek, J.; Brauns, F.; Frey, E. Self-Organization Principles of Intracellular Pattern Formation. Philos. Trans. R. Soc. B Biol. Sci.
**2018**, 373, 20170107. [Google Scholar] [CrossRef] - Allen, N.S.; Allen, R.D. Cytoplasmic Streaming in Green Plants. Annu. Rev. Biophys. Bioeng.
**1978**, 7, 497–526. [Google Scholar] [CrossRef] - Siero, E.; Doelman, A.; Eppinga, M.; Rademacher, J.D.; Rietkerk, M.; Siteur, K. Striped Pattern Selection by Advective Reaction-Diffusion Systems: Resilience of Banded Vegetation on Slopes. Chaos Interdiscip. J. Nonlinear Sci.
**2015**, 25, 036411. [Google Scholar] [CrossRef] [Green Version] - Perumpanani, A.J.; Sherratt, J.A.; Maini, P.K. Phase Differences in Reaction-Diffusion-Advection Systems and Applications to Morphogenesis. IMA J. Appl. Math.
**1995**, 55, 19–33. [Google Scholar] [CrossRef] - Samuelson, R.; Singer, Z.; Weinburd, J.; Scheel, A. Advection and Autocatalysis as Organizing Principles for Banded Vegetation Patterns. J. Nonlinear Sci.
**2019**, 29, 255–285. [Google Scholar] [CrossRef] [Green Version] - Wolfram Research, Inc. Mathematica; Wolfram Research, Inc.: Champaign, IL, USA, 2019. [Google Scholar]
- Brauns, F.; Weyer, H.; Halatek, J.; Yoon, J.; Frey, E. Coarsening in (Nearly) Mass-Conserving Two-Component Reaction Diffusion Systems. arXiv
**2020**, arXiv:2005.01495. [Google Scholar] - Fivaz, M.; Bandara, S.; Inoue, T.; Meyer, T. Robust Neuronal Symmetry Breaking by Ras-Triggered Local Positive Feedback. Curr. Biol.
**2008**, 18, 44–50. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Wang, Y.; Ku, C.J.; Zhang, E.R.; Artyukhin, A.B.; Weiner, O.D.; Wu, L.F.; Altschuler, S.J. Identifying Network Motifs That Buffer Front-to-Back Signaling in Polarized Neutrophils. Cell Rep.
**2013**, 3, 1607–1616. [Google Scholar] [CrossRef] [Green Version] - Wang, S.C.; Low, T.Y.F.; Nishimura, Y.; Gole, L.; Yu, W.; Motegi, F. Cortical Forces and CDC-42 Control Clustering of PAR Proteins for Caenorhabditis Elegans Embryonic Polarization. Nat. Cell Biol.
**2017**, 19, 988–995. [Google Scholar] [CrossRef] - Halatek, J.; Frey, E. Rethinking Pattern Formation in Reaction–Diffusion Systems. Nat. Phys.
**2018**, 14, 507–514. [Google Scholar] [CrossRef] - Loose, M.; Fischer-Friedrich, E.; Ries, J.; Kruse, K.; Schwille, P. Spatial Regulators for Bacterial Cell Division Self-Organize into Surface Waves in Vitro. Science
**2008**, 320, 789–792. [Google Scholar] [CrossRef] - Glock, P.; Ramm, B.; Heermann, T.; Kretschmer, S.; Schweizer, J.; Mücksch, J.; Alagöz, G.; Schwille, P. Stationary Patterns in a Two-Protein Reaction-Diffusion System. ACS Synth. Biol.
**2019**, 8, 148–157. [Google Scholar] [CrossRef] - Huang, K.C.; Meir, Y.; Wingreen, N.S. Dynamic Structures in Escherichia Coli: Spontaneous Formation of MinE Rings and MinD Polar Zones. Proc. Natl. Acad. Sci. USA
**2003**, 100, 12724–12728. [Google Scholar] [CrossRef] [Green Version] - Halatek, J.; Frey, E. Highly Canalized MinD Transfer and MinE Sequestration Explain the Origin of Robust MinCDE-Protein Dynamics. Cell Rep.
**2012**, 1, 741–752. [Google Scholar] [CrossRef] [Green Version] - Deneke, V.E.; Puliafito, A.; Krueger, D.; Narla, A.V.; De Simone, A.; Primo, L.; Vergassola, M.; De Renzis, S.; Di Talia, S. Self-Organized Nuclear Positioning Synchronizes the Cell Cycle in Drosophila Embryos. Cell
**2019**, 177, 925–941.e17. [Google Scholar] [CrossRef] - Iden, S.; Collard, J.G. Crosstalk between Small GTPases and Polarity Proteins in Cell Polarization. Nat. Rev. Mol. Cell Biol.
**2008**, 9, 846–859. [Google Scholar] [CrossRef] [PubMed] - Bois, J.S.; Jülicher, F.; Grill, S.W. Pattern Formation in Active Fluids. Phys. Rev. Lett.
**2011**, 106, 028103. [Google Scholar] [CrossRef] [PubMed] - Radszuweit, M.; Alonso, S.; Engel, H.; Bär, M. Intracellular Mechanochemical Waves in an Active Poroelastic Model. Phys. Rev. Lett.
**2013**, 110, 138102. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Kumar, K.V.; Bois, J.S.; Jülicher, F.; Grill, S.W. Pulsatory Patterns in Active Fluids. Phys. Rev. Lett.
**2014**, 112. [Google Scholar] [CrossRef] - Nakagaki, T.; Yamada, H.; Ito, M. Reaction–Diffusion–Advection Model for Pattern Formation of Rhythmic Contraction in a Giant Amoeboid Cell of thePhysarumPlasmodium. J. Theor. Biol.
**1999**, 197, 497–506. [Google Scholar] [CrossRef] [PubMed]

**Figure 1.**One-dimensional two-component system with cytosolic flow into the positive x-direction. The reaction kinetics include (

**1**) attachment, (

**2**) self-recruitment, and (

**3**) enzyme-driven detachment.

**Figure 2.**(

**A**) Sketch of real (solid) and imaginary (dotted) part of a typical dispersion relation with a band $[0,{q}_{\mathrm{max}}]$ of unstable modes. (

**B**) The initial dynamics of a spatially homogeneous state with a small random perturbation (blue thin line). The direction of cytosolic flow is indicated by a blue arrow. The typical wavelength ($\lambda $) of the initial pattern is determined by the fastest growing mode ${q}^{*}$ and the phase velocity is determined by the value of the imaginary part of dispersion relation at the fastest growing mode (${v}_{\mathrm{phase}}=-\mathrm{Im}\sigma \left({q}^{*}\right)/{q}^{*}$). The growth of the pattern is indicated by orange arrows, while the traveling direction is indicated by pink arrows.

**Figure 3.**Sketch of the initial dynamics of an laterally unstable spatially homogeneous steady state. The role of reactions (

**A**), diffusion (

**B**), and advection (

**C**) for a mass-redistribution instability are presented for the membrane (top) and cytosolic (middle) concentration profiles and in phase space (bottom). (

**A**) A small perturbation of the spatially homogeneous membrane concentration (orange dashed lines in top panel) leads to a spatially varying local total density $n\left(x\right)$, with a larger total density at the maximum of the membrane profile (open circle) and a smaller total density at the minimum (open star). These local variations in total density lead to attachment zones (green region) and detachment zones (red region). The reactive flow, indicated by the red and green arrows, points along the reactive subspace (gray lines) in phase space towards the shifted local equilibria (black circles). These reactive flows lead to the solid orange density profiles after a small amount of time. (

**B**) Faster diffusion in the cytosol compared to the membrane (indicated by the large and small blue arrows in the middle and top panel, respectively), lead to net mass transport from the detachment zone to the attachment zone. Again, dashed and solid lines indicate the state before and after a short time interval of diffusive transport. (

**C**) Cytosolic flow shifts the cytosolic concentration with respect to the membrane concentration (orange dashed to orange solid lines), increasing the cytosolic concentration on the upstream side of the pattern and decreasing the cytosolic concentration on the downstream side. In phase space, the trajectory of this density profile forms a ‘loop’.

**Figure 4.**Pattern dynamics far from the spatially homogeneous steady state. (

**A**) Time evolution of the membrane-bound protein concentration. At time ${t}_{0}=240\mathrm{s}$ a constant cytosolic flow with velocity ${v}_{\mathrm{f}}=20\mathsf{\mu}\mathrm{m}/\mathrm{s}$ towards the right is switched on (cf. Movie 3). (

**B**) Relation between the peak speed (${v}_{\mathrm{p}}$) and flow speed (${v}_{\mathrm{f}}$). Results from finite element simulations (black open squares) are compared to the phase velocity of the mode ${q}_{\mathrm{max}}$ obtained from linear stability analysis (green solid line) and to an approximation (orange open circles) of the area enclosed by the density distribution trajectory in phase space (area enclosed by the ‘loop’ in

**D**). (The domain size, $L=10\mathsf{\mu}\mathrm{m}$, is chosen large enough compared to the peak width such that boundary effects are negligible.) (

**C**) A schematic of the phase portrait corresponding to the pattern in

**D**. The density distribution in the absence of flow is embedded in the flux-balance subspace (FBS) (blue straight line). In the presence of flow, the density distribution trajectory forms a ‘loop’ in phase space. The upstream and downstream side of the pattern are highlighted in cyan and magenta, respectively. Red and green arrows indicate the direction of the reactive flow in the attachment and detachment zones, respectively. At intersection points of the density distribution with the nullcline (${c}_{\mathrm{L}}$ and ${c}_{\mathrm{R}}$) the system is at its local reactive equilibrium. (

**D**) Sketch of the membrane (orange solid line, top) and cytosolic (orange dashed line, bottom) concentration profiles for a stationary pattern in the absence of cytosolic flow. Flow shifts the cytosol profile downstream (orange solid line, bottom).

**Figure 5.**Demonstration of the transition from a mesa pattern to a peak pattern. Each panel shows a snapshot from finite element simulations in steady state. Top concentration profiles in real space; bottom: corresponding trajectory (blue solid line) in phase space. (

**A**) Mesa pattern in the case of slow cytosol diffusion and no flow. The two plateaus (blue dots) and the inflection point (gray dot) of the pattern correspond to the intersection points of the FBS (blue dashed line) with the reactive nullcline (black line). (

**B**) For fast cytosol diffusion, the third intersection point between FBS and nullcline lies at much higher membrane concentration such that it no longer limits the pattern amplitude. Therefore, a peak forms whose amplitude is limited by the total protein mass in the system. (

**C**) Slow flow only slightly deforms the mesa pattern, compare to (

**A**). Fast cytosolic flow leads to formation of a peak pattern (

**D**), similarly to fast diffusion. Parameters: $\overline{n}=7\mathsf{\mu}{\mathrm{m}}^{-1},{D}_{m}=0.1\mathsf{\mu}{\mathrm{m}}^{2}/\mathrm{s}$, and $L=20\mathsf{\mu}\mathrm{m}$.

**Figure 6.**Flow-driven protein mass accumulation can induce pattern formation by triggering a regional lateral instability. (

**A**) Top: quadratic flow velocity profile: ${v}_{f}\left(x\right)/{v}_{\mathrm{max}}=1-4{\left(\right)}^{x}2$. Bottom: illustration of the total density profiles at different time points starting from a homogeneous steady state (i) to the final pattern (iv); see Movie 5. Mass redistribution due to the non-uniform flow velocity drives mass towards the right hand side of the system, as indicated by the blue arrows. The range of total densities shaded in orange indicates the laterally unstable regime determined by linear stability analysis. Once the total density reaches this regime locally, a regional lateral instability is triggered resulting in the self-organized formation of a peak (orange arrow). (

**B**) Sketch of the phase space representation corresponding to the profiles shown in A. Note that the concentrations are slaved to the reactive nullcline (black line) until the regional lateral instability is triggered. (

**C**) Schematic representation of the state space of concentration patterns in a case where both the homogeneous steady state and a stationary polarity pattern are stable. Thin trajectories indicate the dynamics in the absence of flow and the pattern’s basin of attraction is shaded in orange. The thick trajectory connecting both steady states shows the flow-induced dynamics, corresponding to the sequence of states (i)–(iv) shown in

**A**and

**B**.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wigbers, M.C.; Brauns, F.; Leung, C.Y.; Frey, E.
Flow Induced Symmetry Breaking in a Conceptual Polarity Model. *Cells* **2020**, *9*, 1524.
https://doi.org/10.3390/cells9061524

**AMA Style**

Wigbers MC, Brauns F, Leung CY, Frey E.
Flow Induced Symmetry Breaking in a Conceptual Polarity Model. *Cells*. 2020; 9(6):1524.
https://doi.org/10.3390/cells9061524

**Chicago/Turabian Style**

Wigbers, Manon C., Fridtjof Brauns, Ching Yee Leung, and Erwin Frey.
2020. "Flow Induced Symmetry Breaking in a Conceptual Polarity Model" *Cells* 9, no. 6: 1524.
https://doi.org/10.3390/cells9061524