Next Article in Journal
Arrestin Domain Containing 3 Reverses Epithelial to Mesenchymal Transition and Chemo-Resistance of TNBC Cells by Up-Regulating Expression of miR-200b
Next Article in Special Issue
Rifampicin and Its Derivative Rifampicin Quinone Reduce Microglial Inflammatory Responses and Neurodegeneration Induced In Vitro by α-Synuclein Fibrillary Aggregates
Previous Article in Journal
Hepatocellular Toxicity of Paris Saponins I, II, VI and VII on Two Kinds of Hepatocytes-HL-7702 and HepaRG Cells, and the Underlying Mechanisms
Previous Article in Special Issue
Synthesis and Evaluation of Novel Pyrazole Ethandiamide Compounds as Inhibitors of Human THP-1 Monocytic Cell Neurotoxicity
Open AccessFeature PaperReview

Physical Exercise Inhibits Inflammation and Microglial Activation

by Onanong Mee-inta 1,†, Zi-Wei Zhao 1,† and Yu-Min Kuo 1,2,*
1
Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan
2
Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan 70101, Taiwan
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Cells 2019, 8(7), 691; https://doi.org/10.3390/cells8070691
Received: 5 June 2019 / Revised: 8 July 2019 / Accepted: 9 July 2019 / Published: 9 July 2019
(This article belongs to the Special Issue Microglia in Neurodegenerative Diseases)
Accumulating evidence indicates that exercise can enhance brain function and attenuate neurodegeneration. Besides improving neuroplasticity by altering the synaptic structure and function in various brain regions, exercise also modulates multiple systems that are known to regulate neuroinflammation and glial activation. Activated microglia and several pro-inflammatory cytokines play active roles in the pathogenesis of neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease. The purpose of this review is to highlight the impacts of exercise on microglial activation. Possible mechanisms involved in exercise-modulated microglial activation are also discussed. Undoubtedly, more studies are needed in order to disclose the detailed mechanisms, but this approach offers therapeutic potential for improving the brain health of millions of aging people where pharmacological intervention has failed. View Full-Text
Keywords: neuroinflammation; myokine; growth factor; anti-inflammatory; antioxidant; neurodegeneration neuroinflammation; myokine; growth factor; anti-inflammatory; antioxidant; neurodegeneration
MDPI and ACS Style

Mee-inta, O.; Zhao, Z.-W.; Kuo, Y.-M. Physical Exercise Inhibits Inflammation and Microglial Activation. Cells 2019, 8, 691.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop