The Modern View of B Chromosomes Under the Impact of High Scale Omics Analyses
Abstract
:1. B Research in the Genomic Era
2. Genome Composition, Origin and Evolution of Bs
3. Discovering B Genes: The Current Arena for B-Omics
4. Genomics Strategies for Efficient Gene Hunting on Bs
5. B Genes Evolution. A Parasitic Versus Non-Parasitic Scenario
6. Bs: An Exciting Model System to Study Genome Evolution
6.1. Bs as Tools to Review the Polymorphism and Structural Variations in Genome
6.2. Bs Applications to Explore Genome Architecture
6.3. Bs Research Contribution in Understanding Regulatory Mechanisms of Coding and Non-Coding Genome
7. Future Directions
- Mostly, the presence of Bs do not affect the phenotype; however, there are a few exceptions.
- Bs do not pair with As and do not obey Mendelian laws.
- Bs survive themselves during the cell cycle by drive, although the molecular mechanism is poorly understood.
- Bs generally are highly enriched in repetitive and selfish DNA.
- Bs have a multi-chromosomal origin, i.e., they are derivatives of duplicated sequences sourced from multiple As and some cases with additional organellar DNA.
- Bs possess thousands of fragmented genic sequences and a few complete genes. The completed genes are considered key players in Bs evolution and can also influence diverse phenotypes.
- A complete understanding of evolutionary forces that might have triggered the formation of Bs: There are reports which speculate transpositions, duplications and rearrangements as the principal events (as proposed in our model in Figure 3) acting over B evolution, the molecular mechanisms are still not clearly understood.
- The mechanistic molecular basis of the chromosome drive. This analysis will be crucial to infer how Bs maintenance and survival occurs inside the cell.
- Regulatory role of B-located genic sequences. The latest works have provided a preliminary view that B genes might have effects on the pattern and level of expression of A-located genes. Thus, a detailed examination of the epigenetic status to understand these effects is required.
- A better picture of the sequence composition and organization of the B genome. As pointed out earlier, strategies have been developed to reveal their genomic content, however more accurate analysis is essential. This can possibly be achieved by obtaining high coverage NGS sequences based on new sequencing platforms followed by complete chromosome level assembly of Bs as well as chromatin conformation studies.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Longley, A.E. Supernumerary chromosomes in Zea mays. J. Agric. Res. 1927, 35, 769–784. [Google Scholar]
- Randolph, L.F. Types of supernumerary chromosomes in maize. Anat. Rec. 1928, 41, 102. [Google Scholar]
- Wilson, E.B. The supernumerary chromosomes of Hemiptera. Sci. New Ser. 1907. [Google Scholar]
- Stevens, N.M. The chromosomes in Diabrotica vittata, Diabrotica soror and Diabrotica punctata. A contribution to the literature on heterochromosomes and sex determination. J. Exp. Zool. 1908, 5, 453–470. [Google Scholar] [CrossRef]
- Beukeboom, L.W. Bewildering Bs: An impression of the 1st B-Chromosome Conference. Heredity. 1994, 73, 328–336. [Google Scholar] [CrossRef]
- Jones, R.N.; Viegas, W.; Houben, A. A century of B chromosomes in plants: So what? Ann. Bot. 2008, 101, 767–775. [Google Scholar] [CrossRef]
- D’Ambrosio, U.; Alonso-Lifante, M.P.; Barros, K.; Kovařík, A.; Mas de Xaxars, G.; Garcia, S. B-chrom: A database on B-chromosomes of plants, animals and fungi. New Phytol. 2017, 216, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Potapov, V.A.; Solov’ev, V.V.; Romashchenko, A.G.; Sosnovtsev, S.V.; Ivanov, S.V. Features of the structure and evolution of complex, tandemly organized Bsp-repeats in the fox genome. I. Structure and internal organization of the BamHI-dimer. Mol. Biol. 1990, 24, 1649–1665. [Google Scholar]
- Peppers, J.A.; Wiggins, L.E.; Baker, R.J. Nature of B chromosomes in the harvest mouse Reithrodontomys megalotis by fluorescence in situ hybridization (FISH). Chromosome Res. 1997, 5, 475–479. [Google Scholar] [CrossRef]
- Wurster-Hill, D.H.; Ward, O.G.; Davis, B.H.; Park, J.P.; Moyzis, R.K.; Meyne, J. Fragile sites, telomeric DNA sequences, B chromosomes, and DNA content in raccoon dogs, Nyctereutes procyonoides, with comparative notes on foxes, coyote, wolf, and raccoon: (With i color plate). Cytogenet. Genome Res. 1988, 49, 278–281. [Google Scholar] [CrossRef]
- Szczerbal, I.; Switonski, M. B chromosomes of the Chinese raccoon dog (Nyctereutes procyonoides procyonoides Gray) contain inactive NOR-like sequences. Caryologia 2003, 56, 213–216. [Google Scholar] [CrossRef]
- Stitou, S.; Díaz De La Guardia, R.; Jiménez, R.; Burgos, M. Inactive ribosomal cistrons are spread throughout the B chromosomes of Rattus rattus (Rodentia, Muridae). Implications for their origin and evolution. Chromosome Res. 2000, 8, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Rubtsov, N.B.; Karamysheva, T.V.; Andreenkova, O.V.; Bochkaerev, M.N.; Kartavtseva, I.V.; Roslik, G.V.; Borissov, Y.M. Comparative analysis of micro and macro B chromosomes in the Korean field mouse Apodemus peninsulae (Rodentia, Murinae) performed by chromosome microdissection and FISH. Cytogenet. Genome Res. 2004, 141, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Teruel, M.; Cabrero, J.; Perfectti, F.; Camacho, J.P.M. B chromosome ancestry revealed by histone genes in the migratory locust. Chromosoma 2010, 119, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; O’Brien, P.C.M.; Wienberg, J.; Neitzel, H.; Lin, C.C.; Ferguson-Smith, M.A. Chromosomal evolution of the Chinese muntjac (Muntiacus reevesi). Chromosoma 1997, 106, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; O’Brien, P.C.M.; Milne, B.S.; Graphodatsky, A.S.; Solanky, N.; Trifonov, V.; Rens, W.; Sargan, D.; Ferguson-Smith, M.A. A complete comparative chromosome map for the dog, red fox, and human and its integration with canine genetic maps. Genomics 1999, 62, 189–202. [Google Scholar] [CrossRef] [PubMed]
- Trifonov, V.A.; Perelman, P.L.; Kawada, S.I.; Iwasa, M.A.; Oda, S.I.; Graphodatsky, A.S. Complex structure of B-chromosomes in two mammalian species: Apodemus peninsulae (Rodentia) and Nyctereutes procyonoides (Carnivora). Chromosome Res. 2002, 10, 109–116. [Google Scholar] [CrossRef]
- Houben, A.; Jones, N.; Martins, C.; Trifonov, F. Evolution, composition and regulation of supernumerary B chromosomes. Genes 2018, in press. [Google Scholar]
- Jones, R.N.; Rees, H. B Chromosomes; Academic Press: London, UK, 1982. [Google Scholar]
- Jones, R.N. Transmission and drive Involving parasitic B chromosomes. Genes 2018, 9, 388. [Google Scholar] [CrossRef]
- Jamilena, M.; Ruiz Rejón, C.; Ruiz Rejón, M. A molecular analysis of the origin of the Crepis capillaris B chromosome. J. Cell. Sci. 1994, 107, 703–708. [Google Scholar]
- Wilkes, T.M.; Francki, M.G.; Langridge, P.; Karp, A.; Jones, R.N.; Forster, J.W. Analysis of rye B-chromosome structure using fluorescence in situ hybridization (FISH). Chromosome Res. 1995, 3, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Stark, E.A.; Connerton, I.; Bennett, S.T.; Barnes, S.R.; Parker, J.S.; Forster, J.W. Molecular analysis of the structure of the maize B-chromosome. Chromosome Res. 1996, 4, 15–23. [Google Scholar] [CrossRef]
- Jin, W.; Lamb, J.C.; Vega, J.M.; Dawe, R.K.; Birchler, J.A.; Jiang, J. Molecular and functional dissection of the maize B chromosome centromere. Plant Cell 2005, 17, 1412–1423. [Google Scholar] [CrossRef]
- Valente, G.T.; Conte, M.A.; Fantinatti, B.E.A.; Cabral-De-Mello, D.C.; Carvalho, R.F.; Vicari, M.R.; Kocher, T.D.; Martins, C. Origin and evolution of B chromosomes in the cichlid fish Astatotilapia latifasciata based on integrated genomic analyses. Mol. Biol. Evol. 2014, 31, 2061–2072. [Google Scholar] [CrossRef] [PubMed]
- Camacho, J.P.M.; Sharbel, T.F.; Beukeboom, L.W. B-chromosome evolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2000, 355, 163–178. [Google Scholar] [CrossRef] [Green Version]
- Palestis, B.G.; Burt, A.; Jones, R.N.; Trivers, R. B chromosomes are more frequent in mammals with acrocentric karyotypes: Support for the theory of centromeric drive. Proc. Biol. Sci. 2004, 271, S22–S24. [Google Scholar] [CrossRef] [PubMed]
- Palestis, B.G.; Cabrero, J.; Trivers, R.; Camacho, J.P.M. Prevalence of B chromosomes in Orthoptera is associated with shape and number of A chromosomes. Genetica 2010, 138, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Borisov, Y.M. B-chromosomes and the plasticity of the species. Russ. J. Genet. Appl. Res. 2014, 4, 341–350. [Google Scholar] [CrossRef]
- Galazka, J.M.; Freitag, M. Variability of chromosome structure in pathogenic fungi--of “ends and odds”. Curr. Opin. Microbiol. 2014, 20, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Makunin, A.I.; Dementyeva, P.V.; Graphodatsky, A.S.; Volobouev, V.T.; Kukekova, A.V.; Trifonov, V.A. Genes on B chromosomes of vertebrates. Mol. Cytogenet. 2014, 7, 99. [Google Scholar] [CrossRef]
- Banaei-Moghaddam, A.M.; Martis, M.M.; Macas, J.; Gundlach, H.; Himmelbach, A.; Altschmied, L.; Mayer, K.F.X.; Houben, A. Genes on B chromosomes: Old questions revisited with new tools. Biochim. Biophys. Acta 2015, 1849, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Datta, A.K.; Mandal, A.; Das, D.; Gupta, S.; Saha, A.; Paul, R.; Sengupta, S. B chromosomes in Angiosperm—A review. Tsitol. Genet. 2016, 50, 68–79. [Google Scholar] [CrossRef] [PubMed]
- Valente, G.T.; Nakajima, R.T.; Fantinatti, B.E.A.; Marques, D.F.; Almeida, R.O.; Simões, R.P.; Martins, C. B chromosomes: From cytogenetics to systems biology. Chromosoma 2017, 126, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Soyer, J.L.; Balesdent, M.-H.; Rouxel, T.; Dean, R.A. To B or not to B: A tale of unorthodox chromosomes. Curr. Opin. Microbiol. 2018, 46, 50–57. [Google Scholar] [CrossRef]
- Bertazzoni, S.; Williams, A.H.; Jones, D.A.; Syme, R.A.; Tan, K.-C.; Hane, J.K. Accessories make the outfit: Accessory chromosomes and other dispensable DNA regions in plant-pathogenic fungi. Mol. Plant Microbe Interact. 2018, 31, 779–788. [Google Scholar] [CrossRef] [PubMed]
- Hanlon, S.L.; Hawley, R.S. B Chromosomes in the Drosophila Genus. Genes 2018, 9, 470. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.B.; Belyakin, S.N. L Chromosome behaviour and chromosomal imprinting in Sciara coprophila. Genes 2018, 9, 440. [Google Scholar] [CrossRef]
- Vujošević, M.; Rajičić, M.; Blagojević, J. B Chromosomes in populations of mammals revisited. Genes 2018, 9, 487. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.; Klemme, S.; Houben, A. Evolution of plant B chromosome enriched sequences. Genes 2018, 9, 515. [Google Scholar] [CrossRef]
- Rubtsov, N.B.; Borisov, Y.M. Sequence composition and evolution of mammalian B chromosomes. Genes 2018, 9, 490. [Google Scholar] [CrossRef]
- Su, H.; Liu, Y.; Liu, Y.; Birchler, J.A.; Han, F. The behavior of the maize B chromosome and centromere. Genes 2018, 9, 476. [Google Scholar] [CrossRef] [PubMed]
- Martis, M.M.; Klemme, S.; Banaei-Moghaddam, A.M.; Blattner, F.R.; Macas, J.; Schmutzer, T.; Scholz, U.; Gundlach, H.; Wicker, T.; Šimková, H.; et al. Selfish supernumerary chromosome reveals its origin as a mosaic of host genome and organellar sequences. Proc. Natl. Acad. Sci. USA 2012, 109, 13343–13346. [Google Scholar] [CrossRef] [Green Version]
- Clark, F.E.; Conte, M.A.; Kocher, T.D. Genomic characterization of a B chromosome in Lake Malawi cichlid fishes. Genes 2018, 9, 610. [Google Scholar] [CrossRef]
- Becker, S.E.D.; Thomas, R.; Trifonov, V.A.; Wayne, R.K.; Graphodatsky, A.S.; Breen, M. Anchoring the dog to its relatives reveals new evolutionary breakpoints across 11 species of the Canidae and provides new clues for the role of B chromosomes. Chromosome Res. 2011, 19, 685–708. [Google Scholar] [CrossRef] [PubMed]
- Bauerly, E.; Hughes, S.E.; Vietti, D.R.; Miller, D.E.; McDowell, W.; Hawley, R.S. Discovery of supernumerary B chromosomes in Drosophila melanogaster. Genetics 2014, 196, 1007–1016. [Google Scholar] [CrossRef] [PubMed]
- Milani, D.; Bardella, V.B.; Ferretti, A.B.S.M.; Palacios-Gimenez, O.M.; Melo, A.d.S.; Moura, R.C.; Loreto, V.; Song, H.; Cabral-de-Mello, D.C. Satellite DNAs unveil clues about the ancestry and composition of B chromosomes in three grasshopper species. Genes 2018, 9, 523. [Google Scholar] [CrossRef] [PubMed]
- Jetybayev, I.Y.; Bugrov, A.G.; Dzuybenko, V.V.; Rubtsov, N.B. B Chromosomes in grasshoppers: Different origins and pathways to the modern Bs. Genes 2018, 9, 509. [Google Scholar] [CrossRef]
- Hanlon, S.L.; Miller, D.E.; Eche, S.; Hawley, R.S. Origin, composition, and structure of the supernumerary B chromosome of Drosophila melanogaster. Genetics 2018, 210, 1197–1212. [Google Scholar] [CrossRef]
- Hayman, D.L.; Martin, P.G.; Waller, P.F. Parallel mosaicism of supernumerary chromosomes and sex chromosomes in Echymipera kalabu (Marsupialia). Chromosoma 1969, 27, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Berend, S.A.; Hale, D.W.; Engstrom, M.D.; Greenbaum, I.F. Cytogenetics of collared lemmings (Dicrostonyx groenlandicus). II. Meiotic behavior of B chromosomes suggests a Y-chromosome origin of supernumerary chromosomes. Cytogenet. Cell Genet. 2001, 95, 85–91. [Google Scholar] [CrossRef]
- Oarab, Y.; Sasaki, S. Fluorescent approaches on the origin of B chromosomes of Apodemus argenteus hokkaidi. Chromosome Science 1997, 1, 1–5. [Google Scholar]
- Karamysheva, T.V.; Andreenkova, O.V.; Bochkaerev, M.N.; Borissov, Y.M.; Bogdanchikova, N.; Borodin, P.M.; Rubtsov, N.B. B chromosomes of Korean field mouse Apodemus peninsulae (Rodentia, Murinae) analysed by microdissection and FISH. Cytogenet. Genome Res. 2002, 96, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Rajičić, M.; Romanenko, S.A.; Karamysheva, T.V.; Blagojević, J.; Adnađević, T.; Budinski, I.; Bogdanov, A.S.; Trifonov, V.A.; Rubtsov, N.B.; Vujošević, M. The origin of B chromosomes in yellow-necked mice (Apodemus flavicollis)—Break rules but keep playing the game. PLoS ONE 2017, 12, e0172704. [Google Scholar] [CrossRef] [PubMed]
- Makunin, A.I.; Kichigin, I.G.; Larkin, D.M.; O’Brien, P.C.M.; Ferguson-Smith, M.A.; Yang, F.; Proskuryakova, A.A.; Vorobieva, N.V.; Chernyaeva, E.N.; O’Brien, S.J.; et al. Contrasting origin of B chromosomes in two cervids (Siberian roe deer and grey brocket deer) unravelled by chromosome-specific DNA sequencing. BMC Genomics 2016, 17, 618. [Google Scholar] [CrossRef] [PubMed]
- Makunin, A.I.; Romanenko, S.A.; Beklemisheva, V.R.; Perelman, P.L.; Druzhkova, A.S.; Petrova, K.O.; Prokopov, D.Y.; Chernyaeva, E.N.; Johnson, J.L.; Kukekova, A.V.; et al. Sequencing of supernumerary chromosomes of red fox and raccoon dog confirms a non-random gene acquisition by B chromosomes. Genes 2018, 9, 405. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.-J.; van der Does, H.C.; Borkovich, K.A.; Coleman, J.J.; Daboussi, M.-J.; Di Pietro, A.; Dufresne, M.; Freitag, M.; Grabherr, M.; Henrissat, B.; et al. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 2010, 464, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Grandaubert, J.; Bhattacharyya, A.; Stukenbrock, E.H. RNA-seq-based gene annotation and comparative genomics of four fungal grass pathogens in the genus Zymoseptoria identify novel orphan genes and species-specific invasions of transposable elements. G3 2015, 5, 1323–1333. [Google Scholar] [CrossRef] [PubMed]
- Balesdent, M.-H.; Fudal, I.; Ollivier, B.; Bally, P.; Grandaubert, J.; Eber, F.; Chèvre, A.-M.; Leflon, M.; Rouxel, T. The dispensable chromosome of Leptosphaeria maculans shelters an effector gene conferring avirulence towards Brassica rapa. New Phytol. 2013, 198, 887–898. [Google Scholar] [CrossRef]
- Dallery, J.-F.; Lapalu, N.; Zampounis, A.; Pigné, S.; Luyten, I.; Amselem, J.; Wittenberg, A.H.J.; Zhou, S.; de Queiroz, M.V.; Robin, G.P.; et al. Gapless genome assembly of Colletotrichum higginsianum reveals chromosome structure and association of transposable elements with secondary metabolite gene clusters. BMC Genomics 2017, 18, 667. [Google Scholar] [CrossRef]
- Sandery, M.J.; Forster, J.W.; Blunden, R.; Jones, R.N. Identification of a family of repeated sequences on the rye B chromosome. Genome 1990, 33, 908–913. [Google Scholar] [CrossRef]
- Alfenito, M.R.; Birchler, J.A. Molecular characterization of a maize B chromosome centric sequence. Genetics 1993, 135, 589–597. [Google Scholar] [PubMed]
- Ziegler, C.G.; Lamatsch, D.K.; Steinlein, C.; Engel, W.; Schartl, M.; Schmid, M. The giant B chromosome of the cyprinid fish Alburnus alburnus harbours a retrotransposon-derived repetitive DNA sequence. Chromosome Res. 2003, 11, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Lamb, J.C.; Riddle, N.C.; Cheng, Y.-M.; Theuri, J.; Birchler, J.A. Localization and transcription of a retrotransposon-derived element on the maize B chromosome. Chromosome Res. 2007, 15, 383–398. [Google Scholar] [CrossRef] [PubMed]
- Coleman, J.J.; Rounsley, S.D.; Rodriguez-Carres, M.; Kuo, A.; Wasmann, C.C.; Grimwood, J.; Schmutz, J.; Taga, M.; White, G.J.; Zhou, S.; et al. The genome of Nectria haematococca: Contribution of supernumerary chromosomes to gene expansion. PLoS Genet. 2009, 5, e1000618. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.; Banaei-Moghaddam, A.M.; Klemme, S.; Blattner, F.R.; Niwa, K.; Guerra, M.; Houben, A. B chromosomes of rye are highly conserved and accompanied the development of early agriculture. Ann. Bot. 2013, 112, 527–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coan, R.L.B.; Martins, C. Landscape of transposable elements focusing on the B chromosome of the cichlid fish Astatotilapia latifasciata. Genes 2018, 9, 269. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Ruano, F.J.; Castillo-Martínez, J.; Cabrero, J.; Gómez, R.; Camacho, J.P.M.; López-León, M.D. High-throughput analysis of satellite DNA in the grasshopper Pyrgomorpha conica reveals abundance of homologous and heterologous higher-order repeats. Chromosoma 2018, 127, 323–340. [Google Scholar] [CrossRef] [PubMed]
- Klemme, S.; Banaei-Moghaddam, A.M.; Macas, J.; Wicker, T.; Novák, P.; Houben, A. High-copy sequences reveal distinct evolution of the rye B chromosome. New Phytol. 2013, 199, 550–558. [Google Scholar] [CrossRef] [Green Version]
- Ganko, E.W.; Bhattacharjee, V.; Schliekelman, P.; McDonald, J.F. Evidence for the contribution of LTR retrotransposons to C. elegans gene evolution. Mol. Biol. Evol. 2003, 20, 1925–1931. [Google Scholar] [CrossRef]
- DeBarry, J.D.; Ganko, E.W.; McCarthy, E.M.; McDonald, J.F. The contribution of LTR retrotransposon sequences to gene evolution in Mus musculus. Mol. Biol. Evol. 2006, 23, 479–481. [Google Scholar] [CrossRef]
- Biémont, C.; Vieira, C. Genetics: Junk DNA as an evolutionary force. Nature 2006, 443, 521–524. [Google Scholar] [CrossRef]
- Feschotte, C. Transposable elements and the evolution of regulatory networks. Nat. Rev. Genet. 2008, 9, 397–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banaei-Moghaddam, A.M.; Meier, K.; Karimi-Ashtiyani, R.; Houben, A. Formation and expression of pseudogenes on the B chromosome of rye. Plant Cell 2013, 25, 2536–2544. [Google Scholar] [CrossRef] [PubMed]
- Kichigin, I.G.; Lisachov, A.P.; Giovannotti, M.; Makunin, A.I.; Kabilov, M.R.; O’Brien, P.C.M.; Ferguson-Smith, M.A.; Graphodatsky, A.S.; Trifonov, V.A. First report on B chromosome content in a reptilian species: The case of Anolis carolinensis. Mol. Genet. Genomics 2018. [Google Scholar] [CrossRef] [PubMed]
- Rubtsov, N.B.; Borisov, I.M.; Karamysheva, T.V.; Bochkarev, M.N. The mechanisms of formation and evolution of B chromosomes in Korean field mice Apodemus peninsulae (Mammalia, Rodentia). Genetika 2009, 45, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Gabriel, T.S.; Martis, M.M.; Gursinsky, T.; Schubert, V.; Vrána, J.; Doležel, J.; Grundlach, H.; Altschmied, L.; Scholz, U.; et al. Rye B chromosomes encode a functional Argonaute-like protein with in vitro slicer activities similar to its A chromosome paralog. New Phytol. 2017, 213, 916–928. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Domínguez, B.; Ruiz-Ruano, F.J.; Cabrero, J.; Corral, J.M.; López-León, M.D.; Sharbel, T.F.; Camacho, J.P.M. Protein-coding genes in B chromosomes of the grasshopper Eyprepocnemis plorans. Sci. Rep. 2017, 7, 45200. [Google Scholar] [CrossRef] [PubMed]
- Komissarov, A.; Vij, S.; Yurchenko, A.; Trifonov, V.; Thevasagayam, N.; Saju, J.; Sridatta, P.S.R.; Purushothaman, K.; Graphodatsky, A.; Orbán, L.; et al. B Chromosomes of the Asian seabass (Lates calcarifer) contribute to genome variations at the level of individuals and populations. Genes 2018, 9, 464. [Google Scholar] [CrossRef]
- Liehr, T.; Mrasek, K.; Kosyakova, N.; Ogilvie, C.M.; Vermeesch, J.; Trifonov, V.; Rubtsov, N. Small supernumerary marker chromosomes (sSMC) in humans; are there B chromosomes hidden among them. Mol. Cytogenet. 2008, 1, 12. [Google Scholar] [CrossRef] [Green Version]
- Houben, A. B Chromosomes - A matter of chromosome drive. Front Plant Sci. 2017, 8, 210. [Google Scholar] [CrossRef]
- Green, D.M.; Zeyl, C.W.; Sharbel, T.F. The evolution of hypervariable sex and supernumerary (B) chromosomes in the relict New Zealand frog, Leiopelma hochstetteri. J. Evol. Biol. 1993, 6, 417–441. [Google Scholar] [CrossRef]
- Rimpau, J.; Flavell, R.B. Characterisation of rye B chromosome DNA by DNA/DNA hybridisation. Chromosoma 1975, 52, 207–217. [Google Scholar] [CrossRef]
- Donald, T.M.; Leach, C.R.; Clough, A.; Timmis, J.N. Ribosomal RNA genes and the B chromosome of Brachycome dichromosomatica. Heredity 1995, 74, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Leach, C.R.; Houben, A.; Field, B.; Pistrick, K.; Demidov, D.; Timmis, J.N. Molecular evidence for transcription of genes on a B chromosome in Crepis capillaris. Genetics 2005, 171, 269–278. [Google Scholar] [CrossRef]
- Van Vugt, J.J.F.A.; de Nooijer, S.; Stouthamer, R.; de Jong, H. NOR activity and repeat sequences of the paternal sex ratio chromosome of the parasitoid wasp Trichogramma kaykai. Chromosoma 2005, 114, 410–419. [Google Scholar] [CrossRef]
- Ruíz-Estévez, M.; López-León, M.D.; Cabrero, J.; Camacho, J.P.M. Ribosomal DNA is active in different B chromosome variants of the grasshopper Eyprepocnemis plorans. Genetica 2013, 141, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Poletto, A.B.; Ferreira, I.A.; Martins, C. The B chromosomes of the African cichlid fish Haplochromis obliquidens harbour 18S rRNA gene copies. BMC Genetics 2010, 11, 1. [Google Scholar] [CrossRef] [PubMed]
- Friebe, B.; Jiang, J.; Gill, B. Detection of 5S rDNA and other repeated DNA on supernumerary B chromosomes of Triticum species (Poaceae). Pl. Syst. Evol. 1995, 196, 131–139. [Google Scholar] [CrossRef]
- Bueno, D.; Palacios-Gimenez, O.M.; Cabral-de-Mello, D.C. Chromosomal mapping of repetitive DNAs in the grasshopper Abracris flavolineata reveal possible ancestry of the B chromosome and H3 histone spreading. PLoS ONE 2013, 8, e66532. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Estévez, M.; Badisco, L.; Broeck, J.V.; Perfectti, F.; López-León, M.D.; Cabrero, J.; Camacho, J.P.M. B chromosomes showing active ribosomal RNA genes contribute insignificant amounts of rRNA in the grasshopper Eyprepocnemis plorans. Mol. Genet. Genomics 2014, 289, 1209–1216. [Google Scholar] [CrossRef]
- Silva, D.M.Z.d.A.; Pansonato-Alves, J.C.; Utsunomia, R.; Araya-Jaime, C.; Ruiz-Ruano, F.J.; Daniel, S.N.; Hashimoto, D.T.; Oliveira, C.; Camacho, J.P.M.; Porto-Foresti, F.; et al. Delimiting the origin of a B chromosome by FISH mapping, chromosome painting and DNA sequence analysis in Astyanax paranae (Teleostei, Characiformes). PLoS ONE 2014, 9. [Google Scholar] [CrossRef]
- Dherawattana, A.; Sadanaga, K. Cytogenetics of a crown rust-resistant hexaploid oat with 42 + 2 fragment chromosomes 1. Crop Science 1973, 13, 591–594. [Google Scholar] [CrossRef]
- Miao, V.P.; Covert, S.F.; VanEtten, H.D. A fungal gene for antibiotic resistance on a dispensable (“B”) chromosome. Science 1991, 254, 1773–1776. [Google Scholar] [CrossRef]
- Miao, V.P.W.; Matthews, D.E.; VanEtten, H.D. Identification and chromosomal locations of a family of cytochrome P-450 genes for pisatin detoxification in the fungus Nectria haematococca. Mol. Gen. Genet. 1991, 226, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Liu, X.; Benny, U.; Kistler, H.C.; VanEtten, H.D. Genes determining pathogenicity to pea are clustered on a supernumerary chromosome in the fungal plant pathogen Nectria haematococca. Plant J. 2001, 25, 305–314. [Google Scholar] [CrossRef]
- Graphodatsky, A.S.; Kukekova, A.V.; Yudkin, D.V.; Trifonov, V.A.; Vorobieva, N.V.; Beklemisheva, V.R.; Perelman, P.L.; Graphodatskaya, D.A.; Trut, L.N.; Yang, F.; et al. The proto-oncogene C-KIT maps to canid B-chromosomes. Chromosome Res. 2005, 13, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Trifonov, V.A.; Dementyeva, P.V.; Larkin, D.M.; O’Brien, P.C.M.; Perelman, P.L.; Yang, F.; Ferguson-Smith, M.A.; Graphodatsky, A.S. Transcription of a protein-coding gene on B chromosomes of the Siberian roe deer (Capreolus pygargus). BMC Biol. 2013, 11, 90. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Terai, Y.; Mizoiri, S.; Aibara, M.; Nishihara, H.; Watanabe, M.; Kuroiwa, A.; Hirai, H.; Hirai, Y.; Matsuda, Y.; et al. B chromosomes have a functional effect on female sex determination in Lake Victoria cichlid fishes. PLoS Genet. 2011, 7, e1002203. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhu, H.; Huang, Q.; Zhao, L.; Zhang, G.; Roy, S.W.; Vicoso, B.; Xuan, Z.; Ruan, J.; Zhang, Y.; et al. Deciphering neo-sex and B chromosome evolution by the draft genome of Drosophila albomicans. BMC Genomics 2012, 13, 109. [Google Scholar] [CrossRef]
- Akbari, O.S.; Antoshechkin, I.; Hay, B.A.; Ferree, P.M. Transcriptome profiling of Nasonia vitripennis testis reveals novel transcripts expressed from the selfish B chromosome, paternal sex ratio. G3 2013, 3, 1597–1605. [Google Scholar] [CrossRef]
- Huang, W.; Du, Y.; Zhao, X.; Jin, W. B chromosome contains active genes and impacts the transcription of A chromosomes in maize (Zea mays L.). BMC Plant Biol. 2016, 16, 88. [Google Scholar] [CrossRef] [PubMed]
- Jehangir, M.; Ahmad, S.F.; Cardoso, A.L.; Ramos, E.; Valente, G.T.; Martins, C. De novo genome assembly of the cichlid fish Astatotilapia latifasciata reveals a higher level of genomic polymorphism and genes related to B chromosomes. Chromosoma. (under review).
- Tanić, N.; Vujošević, M.; Dedović-Tanić, N.; Dimitrijević, B. Differential gene expression in yellow-necked mice Apodemus flavicollis (Rodentia, Mammalia) with and without B chromosomes. Chromosoma 2005, 113, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Ruban, A.; Schmutzer, T.; Scholz, U.; Houben, A. How next-generation sequencing has aided our understanding of the sequence composition and origin of B chromosomes. Genes 2017, 8, 294. [Google Scholar] [CrossRef] [PubMed]
- Makunin, A.I.; Rajičić, M.; Karamysheva, T.V.; Romanenko, S.A.; Druzhkova, A.S.; Blagojević, J.; Vujošević, M.; Rubtsov, N.B.; Graphodatsky, A.S.; Trifonov, V.A. Low-pass single-chromosome sequencing of human small supernumerary marker chromosomes (sSMCs) and Apodemus B chromosomes. Chromosoma 2018, 127, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Domínguez, B.; Martín-Peciña, M.; Ruiz-Ruano, F.J.; Cabrero, J.; Corral, J.M.; López-León, M.D.; Sharbel, T.F.; Camacho, J.P.M. Gene expression changes elicited by a parasitic B chromosome in the grasshopper Eyprepocnemis plorans are consistent with its phenotypic effects. Chromosoma 2019. (online first). [Google Scholar]
- Eden, E.; Navon, R.; Steinfeld, I.; Lipson, D.; Yakhini, Z. GOrilla: A tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 2009, 10, 48. [Google Scholar] [CrossRef] [PubMed]
- Supek, F.; Bošnjak, M.; Škunca, N.; Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 2011, 6, e21800. [Google Scholar] [CrossRef] [PubMed]
- Harrow, J.; Nagy, A.; Reymond, A.; Alioto, T.; Patthy, L.; Antonarakis, S.E.; Guigó, R. Identifying protein-coding genes in genomic sequences. Genome Biol. 2009, 10, 201. [Google Scholar] [CrossRef] [Green Version]
- Tomaszkiewicz, M.; Medvedev, P.; Makova, K.D. Y and W chromosome assemblies: Approaches and discoveries. Trends Genet. 2017, 33, 266–282. [Google Scholar] [CrossRef]
- Mahajan, S.; Wei, K.H.-C.; Nalley, M.J.; Gibilisco, L.; Bachtrog, D. De novo assembly of a young Drosophila Y chromosome using single-molecule sequencing and chromatin conformation capture. PLoS Biol. 2018, 16, e2006348. [Google Scholar] [CrossRef] [PubMed]
- Östergren, G. Heterochromatic B-chromosomes in Anthoxanthum. Hereditas 1947, 33, 261–296. [Google Scholar] [CrossRef]
- Shaw, M.W.; Hewitt, G.M. The genetic control of meiotic drive acting on the B-chromosome of Myrmeleotettix maculatus (Orthoptera: Acrididae). Heredity 1985, 54, 187–194. [Google Scholar] [CrossRef]
- Lopez-Leon, M.D.; Cabrero, J.; Camacho, J.P.M.; Cano, M.I.; Santos, J.L. A widespread B chromosome polymorphism maintained without apparent drive. Evolution 1992, 46, 529–539. [Google Scholar] [CrossRef] [PubMed]
- López-León, M.D.; Pardo, M.C.; Cabrero, J.; Camacho, J.P.M. Random mating and absence of sexual selection for B chromosomes in two natural populations of the grasshopper Eyprepocnemis plorans. Heredity 1992, 69, 558–561. [Google Scholar] [CrossRef]
- Camacho, J.P.M.; Cabrero, J.; Lépez-León, M.D.; Shaw, M.W. Evolution of a near-neutral B chromosome. Chromosom. Today 1997, 12, 301–318. [Google Scholar]
- Camacho, J.P.; Shaw, M.W.; López-León, M.D.; Pardo, M.C.; Cabrero, J. Population dynamics of a selfish B chromosome neutralized by the standard genome in the grasshopper Eyprepocnemis plorans. Am. Nat. 1997, 149, 1030–1050. [Google Scholar] [CrossRef]
- Martín Alganza, A.; Cabrero, J.; López-León, M.D.; Perfectti, F.; Camacho, J.P.M. Supernumerary heterochromatin does not affect several morphological and physiological traits in the grasshopper Eyprepocnemis plorans. Hereditas 1997, 126, 187–189. [Google Scholar] [CrossRef]
- Montiel, E.E.; Cabrero, J.; Ruiz-Estévez, M.; Burke, W.D.; Eickbush, T.H.; Camacho, J.P.M.; López-León, M.D. Preferential occupancy of R2 retroelements on the B chromosomes of the grasshopper Eyprepocnemis plorans. PLoS ONE 2014, 9, e91820. [Google Scholar] [CrossRef]
- Nicholson, J. Imbalance is not an impediment: Understanding the natural imbalances of sex and B-chromosomes in species by understanding cancer karyotypes. The Winnower 2015. [Google Scholar] [CrossRef]
- Lu, Y. Functional significance of genetic polymorphisms. Front. Biol. China 2009, 4, 266–270. [Google Scholar] [CrossRef]
- Eichler, E.E.; Sankoff, D. Structural dynamics of eukaryotic chromosome evolution. Science 2003, 301, 793–797. [Google Scholar] [CrossRef]
- Bonev, B.; Cavalli, G. Organization and function of the 3D genome. Nat. Rev. Genet. 2016, 17, 661–678. [Google Scholar] [CrossRef] [PubMed]
- Ghiurcuta, C.G.; Moret, B.M.E. Evaluating synteny for improved comparative studies. Bioinformatics 2014, 30, i9–i18. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Liu, Y.; Dubchak, I.; Shon, J.; Park, J. Comparative genomics approaches to study organism similarities and differences. J. Biomed. Inform. 2002, 35, 142–150. [Google Scholar] [CrossRef] [Green Version]
- Scacheri, C.A.; Scacheri, P.C. Mutations in the non-coding genome. Curr. Opin. Pediatr. 2015, 27, 659–664. [Google Scholar] [CrossRef] [PubMed]
- Alexander, R.P.; Fang, G.; Rozowsky, J.; Snyder, M.; Gerstein, M.B. Annotating non-coding regions of the genome. Nat. Rev. Genet. 2010, 11, 559–571. [Google Scholar] [CrossRef] [PubMed]
- The ENCODE project consortium an integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489, 57–74. [CrossRef]
- Ramos, E.; Cardoso, A.L.; Brown, J.; Marques, D.F.; Fantinatti, B.E.A.; Cabral-de-Mello, D.C.; Oliveira, R.A.; O’Neill, R.J.; Martins, C. The repetitive DNA element BncDNA, enriched in the B chromosome of the cichlid fish Astatotilapia latifasciata, transcribes a potentially noncoding RNA. Chromosoma 2017, 126, 313–323. [Google Scholar] [CrossRef]
- Li, Y.; Jing, X.A.; Aldrich, J.C.; Clifford, C.; Chen, J.; Akbari, O.S.; Ferree, P.M. Unique sequence organization and small RNA expression of a “selfish” B chromosome. Chromosoma 2017, 126, 753–768. [Google Scholar] [CrossRef]
Gene | Organism | Gene Function | Reference |
---|---|---|---|
Proto-oncogene C-KIT | V. vulpes N. procynoides | Proto-oncogene, encoding a type 3 transmembrane receptor | [55,56,97] |
LRP1B (Low density lipoprotein receptor-related protein 1B) | V. vulpes | Cell process of receptor-mediated endocytosis | [56] |
CTNND2 (Cadherin-associated protein) | V. vulpes | Neuronal cell adhesion and tissue morphogenesis | [56] |
45S ribosomal RNA | S. cereale B. dichromosomatica C. capillaris T. kaykai E. plorans A. latifasciata | Protein formation | [83,84,85,86,87,91,103] |
FHIT (Fragile histidine triad) | A. flavicollis | Tumor suppressor and protein binding and hydrolase activity | [104] |
CCT6B (Chaperonin containing TCP1 subunit 6B) | A. flavicollis | Folding of actin and tubulin | [104] |
TCP-1 (T-complex protein 1) | A. flavicollis | Folding of actin and tubulin | [104] |
KDR (Kinase insert domain receptor) | N. procynoides | Angiogenesis, vascular development, vascular permeability, and embryonic hematopoiesis | [56] |
H3 and H4 histones | L. migratoria A. flavolineata | Transcription regulation, DNA repair, DNA replication and chromosomal stability | [14,90] |
RET (Ret proto-oncogene) | N. procynoides | Protooncogene, encoding a tyrosine kinase receptor | [56] |
LRIG1 (Leucine rich repeats and immunoglobulin like Domains 1) | N. procynoides | Negative regulator of signaling by receptor tyrosine kinases | [56] |
IHHB (Indian hedgehog b) | L. rubripinnis A. latifasciata | Developmental processes including growth, patterning and morphogenesis | [99,103] |
Ryanodine receptor–like unnamed protein | Tetraodon nigroviridis | Calcium channels | [99] |
VPS10 domain receptor protein SORCS 3–like | L. rubripinnis | Neuropeptide receptor | [99] |
Lysosomal amannosidase | L. rubripinnis | Exoglycosidase | [99] |
Ribonuclease-like 2 | L. rubripinnis | Ribonuclease | [99] |
KDR (kinase insert domain receptor) | N. procyonoides | Protooncogene, encoding a tyrosine kinase receptor | [105] |
FPGT (Fucose-1-phosphate guanylyltransferase) | Capreolus pygargus | Guanylyltransferase | [98] |
LRRIQ3 (Leucine-rich repeats and IQ motif containing 3) | C. pygargus | Protein-protein interaction | [98] |
P-450 (Pda) | Nectria haematococca | Synthesis and breakdown (metabolism) of various molecules | [93,94] |
GRMZM2G11056718 (genic sequence) | Z. mays | Protein binding | [102] |
GRMZM2G013761 (genic sequence) | Z. mays | DEAD-box ATP-dependent RNA helicase 7 | [102] |
AF466202.2_FG007 (genic sequence) | Z. mays | Putative aldose reductase-related protein | [102] |
GRMZM2G356653 (genic sequence) | Z. mays | Conserved mid region of cactin | [102] |
CKAP2 (Cytoskeleton associated protein 2) | E. plorans | Cell cycling, and cell death | [78] |
CAP-G (Capping actin protein, gelsolin) | E. plorans | Regulation of the mitochondrial ribosome assembly and of translational activity | [78] |
MTG1(Mitochondrial ribosome associated GTPase 1) | E. plorans | Regulation of the mitochondrial ribosome assembly and of translational activity | [78] |
HYI (Hydroxypyruvate isomerase) | E. plorans | Carbohydrate transport and metabolism | [78] |
CIP2A (Cell proliferation regulating inhibitor of protein phosphatase 2A) | E. plorans | Anchorage-independent cell growth and tumor formation | [78] |
KIF20A (Kinesin family member 20A) | E. plorans | Transport of Golgi membranes and associated vesicles along microtubules | [78] |
MYCB2 (MYC binding protein 2) | E. plorans | Protein homodimerization activity and ligase activity | [78] |
SLIT (Slit guidance ligand 1) | E. plorans | Calcium ion binding | [78] |
TOP2A Topoisomerase (DNA) II alpha | E. plorans | Poly(A) RNA binding and protein heterodimerization activity | [78] |
CAP-G (Capping actin protein, gelsolin) | E. plorans | Actin binding | [78] |
GTPB6 (GTP binding protein 6) | E. plorans | Binding protein | [78] |
(RTEL) 1-like Argonaute-like protein | S. cereale | Gene silencing by RNA | [77] |
XRCC2 | A. latifasciata | DNA repair protein | [25] |
(SYCP) 2 Synaptonemal complex protein 2 | A. latifasciata | DNA binding | [25] |
(CENP) E Centromere-associated protein | A. latifasciata | Chromosome congression, microtubule-kinetochore conjugation and spindle assembly checkpoint activation | [25] |
ESPL Separin-like | A. latifasciata | Chromosome segregation | [25] |
Aurora kinase (AURK) A-B-like | A. latifasciata | Microtubule formation and/or stabilization at the spindle pole during chromosome segregation | [25] |
Kinesin-like protein KIF11-like | A. latifasciata | Establishing a bipolar spindle during mitosis | [25] |
Tubulin beta-5 (TUBB5) chain-like | A. latifasciata | Structural component of microtubules | [25] |
Spindle and kinetochore-associated (SKA) protein 1 | A. latifasciata | Chromosome segregation | [25] |
(RTEL) Regulator of telomere elongation Helicase 1-like | A. latifasciata | Stability, protection and elongation of telomeres and interacts with proteins in the shelterin complex known to protect telomeres during DNA replication | [25] |
(TUBB1) Tubulin beta-1 chain-like) | A. latifasciata | Microtubules formation | [25] |
INCENP (Inner centromere protein) | Anolis carolinensi | Binding centromere proteins | [74] |
SPIRE2 (Spire type actin nucleation factor 2) | Anolis carolinensi | Actin binding | [74] |
Vrk1 (Vaccinia-related kinase gene) | A. flavicollis Apodemus peninsulae | Regulate cell proliferation | [106] |
18S rDNA | Lates calcarifer | Codon recognition by tRNAs | [79] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, S.F.; Martins, C. The Modern View of B Chromosomes Under the Impact of High Scale Omics Analyses. Cells 2019, 8, 156. https://doi.org/10.3390/cells8020156
Ahmad SF, Martins C. The Modern View of B Chromosomes Under the Impact of High Scale Omics Analyses. Cells. 2019; 8(2):156. https://doi.org/10.3390/cells8020156
Chicago/Turabian StyleAhmad, Syed Farhan, and Cesar Martins. 2019. "The Modern View of B Chromosomes Under the Impact of High Scale Omics Analyses" Cells 8, no. 2: 156. https://doi.org/10.3390/cells8020156
APA StyleAhmad, S. F., & Martins, C. (2019). The Modern View of B Chromosomes Under the Impact of High Scale Omics Analyses. Cells, 8(2), 156. https://doi.org/10.3390/cells8020156