Optimizing the Infusion Route of Human Bone Marrow Mesenchymal Stromal Cells to Mitigate Liver Ischemia–Reperfusion Injury in a Porcine Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics and Animals
2.2. In Vitro Expansion and Characterization of BM-MSC
2.3. Experimental Procedure
2.4. Tissue and Blood Sampling
2.5. RNA Extraction, cDNA Preparation, and RT-qPCR
2.6. Bulk RNA Sequencing
2.7. Tracking BM-MSC in Pulmonary Circulation
2.8. Immunohistochemistry
2.9. Statistical Analyses
3. Results
3.1. Establishment of the Hepatic Ischemia–Reperfusion Injury Model
3.2. Characterization of BM-MSC and Hemodynamic Effects
3.3. First-Pass Retention of BM-MSCs in Liver and No Localization to Circulation or Other Tissues
3.4. Biological Effects of BM-MSC on IRI
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AK5 | Adenylate kinase 5 |
ALP | Akaline phosphatase |
ALT | Alanine transaminase |
APC | Allophycocyanin |
AST | Aspartate transaminase |
B2M | Beta-2-microglobulin |
BM | Bone marrow |
BM-MSC | Bone marrow-derived MSC |
CCL26 | C-C motif chemokine ligand 26 |
CT | Cycle threshold |
CXCR4 | C-X-C chemokine receptor type 4 |
CYP4F8 | Cytochrome P450 family 4 subfamily F member 8 |
CYP7A1 | Cytochrome P450 family 7 subfamily A member 1 |
DEG | Differentially expressed gene |
EPO | Erythropoietin |
ES | Enrichment score |
FDR | False discovery rate |
FITC | Fluorescein isothiocyanate |
GAPDH | Glyceraldehyde-3-phosphate dehydrogenase |
GGT | Gamma-glutamyl transferase |
GZMB | Granzyme B |
HE | Hematoxyline and eosine |
IQR | Interquartile range |
IRI | Ischemia-reperfusion injury |
LLB | Left lung base |
LLT | Left lung top |
MSC | Mesenchymal stromal cell |
MVD | Mevalonate diphosphate decarboxylase |
MPAP | Mean pulmonary artery pressure |
ND4L | NADH-ubiquinone oxidoreductase chain 4L |
PAP | Pulmonary artery pressure |
PCA | Principal component analysis |
PE | Phycoerythrin |
PPARA | Peroxisome proliferator-activated receptor alpha |
RETN | Resistin |
RLB | Right lung base |
RLT | Right lung top |
RT-qPCR | Reverse transcription-quantitative polymerase chain reaction |
SCN9A | Sodium voltage-gated channel alpha subunit 9 |
SD | Standard deviation |
SNORD21 | Small nucleolar RNA, C/D box 21 |
SNORD24 | Small nucleolar RNA, C/D box 24 |
References
- Peralta, C.; Jiménez-Castro, M.B.; Gracia-Sancho, J. Hepatic ischemia and reperfusion injury: Effects on the liver sinusoidal milieu. J. Hepatol. 2013, 59, 1094–1106. [Google Scholar] [CrossRef] [PubMed]
- Kalogeris, T.; Baines, C.P.; Krenz, M.; Korthuis, R.J. Cell biology of ischemia/reperfusion injury. Int. Rev. Cell Mol. Biol. 2012, 298, 229–317. [Google Scholar] [CrossRef]
- Jaeschke, H. Molecular mechanisms of hepatic ischemia-reperfusion injury and preconditioning. Am. J. Physiol. Gastrointest. Liver Physiol. 2003, 284, G15–G26. [Google Scholar] [CrossRef]
- McDonald, B.; Pittman, K.; Menezes, G.B.; Hirota, S.A.; Slaba, I.; Waterhouse, C.C.M.; Beck, P.L.; Muruve, D.A.; Kubes, P. Intravascular Danger Signals Guide Neutrophils to Sites of Sterile Inflammation. Science 2010, 330, 362–366. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.Y.; Nuñez, G. Sterile inflammation: Sensing and reacting to damage. Nat. Rev. Immunol. 2010, 10, 826–837. [Google Scholar] [CrossRef] [PubMed]
- Uccelli, A.; Moretta, L.; Pistoia, V. Mesenchymal stem cells in health and disease. Nat. Rev. Immunol. 2008, 8, 726–736. [Google Scholar] [CrossRef]
- Shi, M.; Liu, Z.; Wang, F. Immunomodulatory properties and therapeutic application of mesenchymal stem cells. Clin. Exp. Immunol. 2011, 164, 1–8. [Google Scholar] [CrossRef]
- Eggenhofer, E.; Benseler, V.; Kroemer, A.; Popp, F.C.; Geissler, E.K.; Schlitt, H.J.; Baan, C.C.; Dahlke, M.H.; Hoogduijn, M.J. Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Front. Immunol. 2012, 3, 297. [Google Scholar] [CrossRef]
- de Witte, S.F.H.; Merino, A.M.; Franquesa, M.; Strini, T.; van Zoggel, J.A.A.; Korevaar, S.S.; Luk, F.; Gargesha, M.; O’fLynn, L.; Roy, D.; et al. Cytokine treatment optimises the immunotherapeutic effects of umbilical cord-derived MSC for treatment of inflammatory liver disease. Stem Cell Res. Ther. 2017, 8, 140. [Google Scholar] [CrossRef]
- Fischer, U.M.; Harting, M.T.; Jimenez, F.; Monzon-Posadas, W.O.; Xue, H.; Savitz, S.I.; Laine, G.A.; Cox, C.S., Jr. Pulmonary Passage is a Major Obstacle for Intravenous Stem Cell Delivery: The Pulmonary First-Pass Effect. Stem Cells Dev. 2009, 18, 683–692. [Google Scholar] [CrossRef]
- Son, B.-R.; Marquez-Curtis, L.A.; Kucia, M.; Wysoczynski, M.; Turner, A.R.; Ratajczak, J.; Ratajczak, M.Z.; Janowska-Wieczorek, A. Migration of Bone Marrow and Cord Blood Mesenchymal Stem Cells In Vitro Is Regulated by Stromal-Derived Factor-1-CXCR4 and Hepatocyte Growth Factor-c-met Axes and Involves Matrix Metalloproteinases. Stem Cells 2006, 24, 1254–1264. [Google Scholar] [CrossRef]
- Kallis, Y.N.; Alison, M.R.; Forbes, S.J. Bone marrow stem cells and liver disease. Gut 2006, 56, 716–724. [Google Scholar] [CrossRef]
- Chamberlain, G.; Fox, J.; Ashton, B.; Middleton, J. Concise Review: Mesenchymal Stem Cells: Their Phenotype, Differentiation Capacity, Immunological Features, and Potential for Homing. Stem Cells 2007, 25, 2739–2749. [Google Scholar] [CrossRef]
- Gao, J.; Dennis, J.E.; Muzic, R.F.; Lundberg, M.; Caplan, A.I. The Dynamic in vivo Distribution of Bone Marrow-Derived Mesenchymal Stem Cells after Infusion. Cells Tissues Organs 2001, 169, 12–20. [Google Scholar] [CrossRef]
- Gholamrezanezhad, A.; Mirpour, S.; Bagheri, M.; Mohamadnejad, M.; Alimoghaddam, K.; Abdolahzadeh, L.; Saghari, M.; Malekzadeh, R. In vivo tracking of 111In-oxine labeled mesenchymal stem cells following infusion in patients with advanced cirrhosis. Nucl. Med. Biol. 2011, 38, 961–967. [Google Scholar] [CrossRef] [PubMed]
- Pan, G.-Z.; Yang, Y.; Zhang, J.; Liu, W.; Wang, G.-Y.; Zhang, Y.-C.; Yang, Q.; Zhai, F.-X.; Tai, Y.; Liu, J.-R.; et al. Bone marrow mesenchymal stem cells ameliorate hepatic ischemia/reperfusion injuries via inactivation of the MEK/ERK signaling pathway in rats. J. Surg. Res. 2012, 178, 935–948. [Google Scholar] [CrossRef]
- Chen, K.; Obara, H.; Matsubara, Y.; Fukuda, K.; Yagi, H.; Ono-Uruga, Y.; Matsubara, K.; Kitagawa, Y. Adipose-Derived Mesenchymal Stromal/Stem Cell Line Prevents Hepatic Ischemia/Reperfusion Injury in Rats by Inhibiting Inflammasome Activation. Cell Transplant. 2022, 31. [Google Scholar] [CrossRef]
- Seki, T.; Yokoyama, Y.; Nagasaki, H.; Kokuryo, T.; Nagino, M. Adipose tissue-derived mesenchymal stem cell transplantation promotes hepatic regeneration after hepatic ischemia-reperfusion and subsequent hepatectomy in rats. J. Surg. Res. 2012, 178, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.C.; Kim, J.O.; Kim, S.-J. Secretome from human adipose-derived stem cells protects mouse liver from hepatic ischemia–reperfusion injury. Surgery 2015, 157, 934–943. [Google Scholar] [CrossRef] [PubMed]
- Hall, S.R.; Jiang, Y.; Leary, E.; Yavanian, G.; Eminli, S.; O’Neill, D.W.; Marasco, W.A. Identification and Isolation of Small CD44-Negative Mesenchymal Stem/Progenitor Cells From Human Bone Marrow Using Elutriation and Polychromatic Flow Cytometry. Stem Cells Transl. Med. 2013, 2, 567–578. [Google Scholar] [CrossRef]
- Cao, H.; Yang, J.; Yu, J.; Pan, Q.; Li, J.; Zhou, P.; Li, Y.; Pan, X.; Li, J.; Wang, Y.; et al. Therapeutic potential of transplanted placental mesenchymal stem cells in treating Chinese miniature pigs with acute liver failure. BMC Med. 2012, 10, 56. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, L.; Xin, J.; Jiang, L.; Zhang, T.; Jin, L.; Li, J.; Zhou, P.; Hao, S.; Cao, H.; et al. Immediate intraportal transplantation of human bone marrow mesenchymal stem cells prevents death from fulminant hepatic failure in pigs. Hepatology 2012, 56, 1044–1052. [Google Scholar] [CrossRef]
- Afgan, E.; Baker, D.; Batut, B.; van den Beek, M.; Bouvier, D.; Čech, M.; Chilton, J.; Clements, D.; Coraor, N.; Grüning, B.A.; et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018, 46, W537–W544. [Google Scholar] [CrossRef]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef]
- Wang, H.P.; Chen, C.H.; Wei, B.K.; Miao, Y.L.; Huang, H.F.; Zeng, Z. Integrative analyses of genes related to liver ischemia reperfusion injury. Hereditas 2022, 159, 39. [Google Scholar] [CrossRef]
- Liu, X.; Xie, W.; Meng, S.; Kang, X.; Liu, Y.; Guo, L.; Wang, C. Small Nucleolar RNAs and Their Comprehensive Biological Functions in Hepatocellular Carcinoma. Cells 2022, 11, 2654. [Google Scholar] [CrossRef]
- Zhai, Y.; Busuttil, R.W.; Kupiec-Weglinski, J.W. Liver Ischemia and Reperfusion Injury: New Insights into Mechanisms of Innate—Adaptive Immune-Mediated Tissue Inflammation. Am. J. Transplant. 2011, 11, 1563–1569. [Google Scholar] [CrossRef]
- Bernardo, M.E.; Fibbe, W.E. Mesenchymal Stromal Cells: Sensors and Switchers of Inflammation. Cell Stem Cell 2013, 13, 392–402. [Google Scholar] [CrossRef]
- Sang, J.-F.; Shi, X.-L.; Han, B.; Huang, T.; Huang, X.; Ren, H.-Z.; Ding, Y.-T. Intraportal mesenchymal stem cell transplantation prevents acute liver failure through promoting cell proliferation and inhibiting apoptosis. Hepatobiliary Pancreat. Dis. Int. 2016, 15, 602–611. [Google Scholar] [CrossRef] [PubMed]
- Laing, R.W.; Stubblefield, S.; Wallace, L.; Roobrouck, V.D.; Bhogal, R.H.; Schlegel, A.; Boteon, Y.L.; Reynolds, G.M.; Ting, A.E.; Mirza, D.F.; et al. The Delivery of Multipotent Adult Progenitor Cells to Extended Criteria Human Donor Livers Using Normothermic Machine Perfusion. Front. Immunol. 2020, 11, 1226. [Google Scholar] [CrossRef] [PubMed]
- Verstegen, M.M.; Mezzanotte, L.; Ridwan, R.Y.; Wang, K.; de Haan, J.; Schurink, I.J.; Parraga, J.M.S.; Hoogduijn, M.; Kessler, B.M.; Huang, H.; et al. First Report on Ex Vivo Delivery of Paracrine Active Human Mesenchymal Stromal Cells to Liver Grafts During Machine Perfusion. Transplantation 2020, 104, e5–e7. [Google Scholar] [CrossRef]
- Cillo, U.; Lonati, C.; Bertacco, A.; Magnini, L.; Battistin, M.; Liver NMP Consortium; Ventrella, D.; Aniballi, C.; Carbonaro, M.; Carlin, A.; et al. A proof-of-concept study in small and large animal models for coupling liver normothermic machine perfusion with mesenchymal stromal cell bioreactors. Nat. Commun. 2025, 16, 283. [Google Scholar] [CrossRef] [PubMed]
- Clavien, P.-A.; Dutkowski, P.; Mueller, M.; Eshmuminov, D.; Borrego, L.B.; Weber, A.; Muellhaupt, B.; Da Silva, R.X.S.; Burg, B.R.; von Rohr, P.R.; et al. Transplantation of a human liver following 3 days of ex situ normothermic preservation. Nat. Biotechnol. 2022, 40, 1610–1616. [Google Scholar] [CrossRef] [PubMed]
- Eshmuminov, D.; Becker, D.; Borrego, L.B.; Hefti, M.; Schuler, M.J.; Hagedorn, C.; Muller, X.; Mueller, M.; Onder, C.; Graf, R.; et al. An integrated perfusion machine preserves injured human livers for 1 week. Nat. Biotechnol. 2020, 38, 189–198. [Google Scholar] [CrossRef]
- Cimino, M.; Gonçalves, R.M.; Barrias, C.C.; Martins, M.C.L. Xeno-Free Strategies for Safe Human Mesenchymal Stem/Stromal Cell Expansion: Supplements and Coatings. Stem Cells Int. 2017, 2017, 6597815. [Google Scholar] [CrossRef]
- Slankamenac, K.; Breitenstein, S.; Held, U.; Beck-Schimmer, B.; Puhan, M.A.; Clavien, P.-A. Development and Validation of a Prediction Score for Postoperative Acute Renal Failure Following Liver Resection. Ann. Surg. 2009, 250, 720–728. [Google Scholar] [CrossRef] [PubMed]
- Ojo, A.O.; Held, P.J.; Port, F.K.; Wolfe, R.A.; Leichtman, A.B.; Young, E.W.; Arndorfer, J.; Christensen, L.; Merion, R.M. Chronic Renal Failure after Transplantation of a Nonrenal Organ. N. Engl. J. Med. 2003, 349, 931–940. [Google Scholar] [CrossRef]
- Leithead, J.A.; Rajoriya, N.; Gunson, B.K.; Muiesan, P.; Ferguson, J.W. The evolving use of higher risk grafts is associated with an increased incidence of acute kidney injury after liver transplantation. J. Hepatol. 2014, 60, 1180–1186. [Google Scholar] [CrossRef]
- Tautenhahn, H.-M.; Brückner, S.; Uder, C.; Erler, S.; Hempel, M.; von Bergen, M.; Brach, J.; Winkler, S.; Pankow, F.; Gittel, C.; et al. Mesenchymal stem cells correct haemodynamic dysfunction associated with liver injury after extended resection in a pig model. Sci. Rep. 2017, 7, 2617. [Google Scholar] [CrossRef]
Ischemic Control, n = 5 Median (IQR) | Portal MSC Infusion, n = 5 Median (IQR) | Arterial MSC Infusion, n = 6 Median (IQR) | p-Value * | |
---|---|---|---|---|
Weight (kg) | 20.5 (20.0–24.7) | 23.7 (21.0–24.1) | 26.9 (24.6–31.2) | 0.061 |
HR (bpm) | 100.0 (71.5–138.0) | 97.0 (79.5–102.5) | 81.5 (72.3–113.1) | 0.835 |
MABP (mmHg) | 61.0 (51.0–74.0) | 88.0 (68.0–97.1) | 97.8 (71.4–110.0) | 0.068 |
MPABP (mmHg) | 9.4 (9.4–9.4) | 16.1 (11.3–20.8) | 16.7 (8.5–26.8) | 0.644 |
SpO2 (%) | 100.0 (90.0–100.0) | 98.4 (92.9–99.6) | 98.4 (95.3–99.0) | 0.867 |
etCO2 (mmHg) | 4.3 (3.1–5.5) | 5.5 (5.0–6.2) | 5.0 (4.7–5.8) | 0.268 |
Temperature (°C) | 37.9 (36.8–38.5) | 38.8 (38.0–39.5) | 38.0 (37.4–38.4) | 0.159 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luijmes, S.H.; van Kooten, J.P.; Roest, H.P.; de Haan, J.; Doukas, M.; Verhoeven, C.J.; Wang, K.; Willemse, J.; van der Laan, L.J.W.; Verstegen, M.M.A.; et al. Optimizing the Infusion Route of Human Bone Marrow Mesenchymal Stromal Cells to Mitigate Liver Ischemia–Reperfusion Injury in a Porcine Model. Cells 2025, 14, 1496. https://doi.org/10.3390/cells14191496
Luijmes SH, van Kooten JP, Roest HP, de Haan J, Doukas M, Verhoeven CJ, Wang K, Willemse J, van der Laan LJW, Verstegen MMA, et al. Optimizing the Infusion Route of Human Bone Marrow Mesenchymal Stromal Cells to Mitigate Liver Ischemia–Reperfusion Injury in a Porcine Model. Cells. 2025; 14(19):1496. https://doi.org/10.3390/cells14191496
Chicago/Turabian StyleLuijmes, Stefan H., Job P. van Kooten, Henk P. Roest, Jubi de Haan, Michail Doukas, Cornelia J. Verhoeven, Kairong Wang, Jorke Willemse, Luc J. W. van der Laan, Monique M. A. Verstegen, and et al. 2025. "Optimizing the Infusion Route of Human Bone Marrow Mesenchymal Stromal Cells to Mitigate Liver Ischemia–Reperfusion Injury in a Porcine Model" Cells 14, no. 19: 1496. https://doi.org/10.3390/cells14191496
APA StyleLuijmes, S. H., van Kooten, J. P., Roest, H. P., de Haan, J., Doukas, M., Verhoeven, C. J., Wang, K., Willemse, J., van der Laan, L. J. W., Verstegen, M. M. A., & de Jonge, J. (2025). Optimizing the Infusion Route of Human Bone Marrow Mesenchymal Stromal Cells to Mitigate Liver Ischemia–Reperfusion Injury in a Porcine Model. Cells, 14(19), 1496. https://doi.org/10.3390/cells14191496