The Evolving Landscape of Functional Models of Autism Spectrum Disorder
Abstract
1. Introduction
2. Genetic Risk Factors
2.1. Inherited Genetic Variants
2.2. De Novo Variants (DNV)
2.3. Convergent Signaling Modules
2.4. Variants of Uncertain Significance (VUS)
Genes | Protein Function/Role in ASD | Chromosomal Location | Mouse Mutation | Mutant Phenotype | Associated NDDs | Limitations/Strengths | Reference |
---|---|---|---|---|---|---|---|
ANK3 | Scaffold protein, links membrane protein to cytoskeleton | 10q21.2 | Heterozygous KO | Increased anxiety, smaller cortex | Bipolar disorder, Schizophrenia | Lacked exon 37 genomic sequence, driver expressed Cre with enhancer which is less efficient in PNS | [85,92,93] |
CHD8 | Chromatin remodeling | 14q11.2 | Heterozygous KO | Altered social behavior, increased anxiety, repetitive behavior | Overgrowth with macrocephaly, ID | No conclusive evidence of CHD8 haploinsufficiency and abnormal REST activation | [94,95,96,97] |
CNTNAP2 | Cell adhesion molecule responsible for interaction between glia and neurons | 7q35-q36.1 | Homozygous KO | Mitochondrial dysregulation, axonal impairment, synaptic vesicle transport disruption | Cortical dysplasia, focal epilepsy, ID, language impairment, Tourette syndrome | Longer cue duration bisection tasks not employed; rearing influences not considered | [98,99,100,101,102,103] |
FMR1 | Synaptic mRNA translation; leading genetic cause of ASD | Xq27.3 | Hemizygous and Homozygous KO | Learning deficits, hyperactivity, dendritic spine maturation defects | Fragile X-associated tremor/ataxia syndrome (FXTAS), ID | Confirmation of behaviorally induced modulation of neuroplasticity by showing causal inverse relationship between behavior and neuroplasticity not performed; High level FMRP overexpression in Fmr1 KO mice cause aberrant behavior | [56,104,105,106,107] |
GRIN2B | NMDA receptor ion channel subunit: de novo mutations result in neuronal circuit alterations | 12p13.1 | Heterozygous KO, conditional KO | More spontaneous spikes and wave discharges | Epilepsy, ADHD, Schizophrenia, ID, developmental delay | Failure to suckle and death in mouse models; ASD; hypersensitivity due to supraspinal mechanisms | [108,109,110,111] |
MECP2 | Binds to methylated cytosines | Xq28 | Hemizygous and Homozygous KO | Battery of neurological phenotypes, hindlimb clasping | Rett syndrome, ASD, Epilepsy, regression | [55,112,113,114,115,116] | |
MSL2 | Biallelic expression of dosage sensitive genes, histone H4 acetylation | 3q22.3 | Homozygous KO | Heterogenous phenotype and perinatal lethality | Karayol-Borroto-Haghshenas NDD syndrome | Multiple cell type leads to heterogeneity | [61,117] |
NLGN4X | Post-synaptic cell adhesion molecule, binds neurexin | Xp22.32-p22.31 | Hemizygous and Homozygous KO | Reduced excitation: inhibition ratio, reduced social interaction, vocalization | Tourette syndrome, Fragile X syndrome | Network stimulation with 3D multi electrode array used to determine function of Nlgn4 at cortical column | [118,119,120,121] |
NRXN1 | Pre-synaptic cell adhesion molecule, binds neuroligin | 2p16.3 | Homozygous KO | Affected social novelty preference, increased aggression in males | ADHD, Schizophrenia | Nrxn1α KO mice engineered from SV129 mice as these can be targeted by homologous recombination. | [122,123] |
PTCHD1 | Transmembrane protein, Sonic hedgehog signaling | Xp22.11 | Hemizygous and Homozygous KO | Cognitive deficits, synaptic gene expression changes, excitatory synaptic dysfunction | ID | No localization or fluorescence in transfected cells with N terminal GFP tag | [124,125,126,127] |
PTEN | Synaptic inhibition and excitation imbalance | 10q23.31 | Heterozygous KO, conditional KO | Synaptic alterations, hyperactive hippocampal mTOR signaling, microglia activation | Macrocephaly, epilepsy | Only SSC region analyzed | [58,59,128,129,130] |
RELN | Cell positioning during brain development; loss results in neuronal dysplasia | 7q22.1 | Homozygous KO | “Reeler” mice, lamination defects in brain, deficiency in neurogenesis | Epilepsy, Schizophrenia, Bipolar disorder, Lissencephaly with cerebellar hypoplasia | Functional impairment more in Reln deficient mice | [131,132,133,134] |
SCN2A | De novo mutations impair voltage-gated sodium channels and affects dendritic excitability | 2q24.3 | Homozygous KO, Heterozygous KO, conditional KO | Delayed spatial learning, disrupted nesting, mating, anxiety | Epilepsy, movement disorder | Scn2a KO mice showed increased anxiety and little or no mating and nesting, suggesting behavioral abnormalities | [135,136,137,138,139] |
SHANK family | Encodes post-synaptic scaffold proteins, responsible for ~1% of ASD cases | SHANK3 (22q13.33) | Homozygous KO | Abnormal social interaction | Phelan–McDermid syndrome, Schizophrenia, ID, ASD, epilepsy, developmental delay | Mutant Shank3B affect social interaction | [81,140,141,142,143] |
UBE3A | E3 ubiquitin ligase, alteration of synaptic function | 15q11.2 | Ube3am-/p+ | Motor dysfunction, inducible seizures, impaired LTP | Angelman syndrome, ID, ataxia | Importance of nuclear UBE3A established | [144,145,146,147] |
3. Environmental Risk Factors
3.1. External Factors
3.2. Internal Factors
4. Animal Models of ASD
4.1. Murine Models of ASD
4.2. Porcine Models of ASD
4.3. Non-Human Primate Models of ASD
5. Human ASD Models
6. A Comparative Analysis of Current ASD Models
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baxter, A.J.; Brugha, T.S.; Erskine, H.E.; Scheurer, R.W.; Vos, T.; Scott, J.G. The epidemiology and global burden of autism spectrum disorders. Psychol. Med. 2015, 45, 601–613. [Google Scholar] [CrossRef] [PubMed]
- Maenner, M.J.; Warren, Z.; Williams, A.R.; Amoakohene, E.; Bakian, A.V.; Bilder, D.A.; Durkin, M.S.; Fitzgerald, R.T.; Furnier, S.M.; Hughes, M.M.; et al. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2020. MMWR Surveill. Summ. 2023, 72, 1–14. [Google Scholar] [CrossRef]
- Hirota, T.; King, B.H. Autism Spectrum Disorder: A Review. JAMA 2023, 329, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Vrijenhoek, T.; Middelburg, E.M.; Monroe, G.R.; van Gassen, K.L.I.; Geenen, J.W.; Hovels, A.M.; Knoers, N.V.; van Amstel, H.K.P.; Frederix, G.W.J. Whole-exome sequencing in intellectual disability; cost before and after a diagnosis. Eur. J. Hum. Genet. 2018, 26, 1566–1571. [Google Scholar] [CrossRef]
- Gibitova, E.A.; Dobrynin, P.V.; Pomerantseva, E.A.; Musatova, E.V.; Kostareva, A.; Evsyukov, I.; Rychkov, S.Y.; Zhukova, O.V.; Naumova, O.Y.; Grigorenko, E.L. A Study of the Genomic Variations Associated with Autistic Spectrum Disorders in a Russian Cohort of Patients Using Whole-Exome Sequencing. Genes 2022, 13, 920. [Google Scholar] [CrossRef]
- Zeidan, J.; Fombonne, E.; Scorah, J.; Ibrahim, A.; Durkin, M.S.; Saxena, S.; Yusuf, A.; Shih, A.; Elsabbagh, M. Global prevalence of autism: A systematic review update. Autism Res. 2022, 15, 778–790. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.D.; Ahmed, H.U.; Jalal Uddin, M.M.; Chowdhury, W.A.; Iqbal, M.S.; Kabir, R.I.; Chowdhury, I.A.; Aftab, A.; Datta, P.G.; Rabbani, G.; et al. Autism Spectrum disorders (ASD) in South Asia: A systematic review. BMC Psychiatry 2017, 17, 281. [Google Scholar] [CrossRef]
- American Pshychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed. (DSM-5℗’); American Psychiatric Publishing: Washington, DC, USA, 2013. [Google Scholar]
- Anagnostou, E. Clinical trials in autism spectrum disorder: Evidence, challenges and future directions. Curr. Opin. Neurol. 2018, 31, 119–125. [Google Scholar] [CrossRef]
- Antaki, D.; Guevara, J.; Maihofer, A.X.; Klein, M.; Gujral, M.; Grove, J.; Carey, C.E.; Hong, O.; Arranz, M.J.; Hervas, A.; et al. A phenotypic spectrum of autism is attributable to the combined effects of rare variants, polygenic risk and sex. Nat. Genet. 2022, 54, 1284–1292. [Google Scholar] [CrossRef]
- Bicks, L.K.; Geschwind, D.H. Functional neurogenomics in autism spectrum disorders: A decade of progress. Curr. Opin. Neurobiol. 2024, 86, 102858. [Google Scholar] [CrossRef]
- Wigdor, E.M.; Weiner, D.J.; Grove, J.; Fu, J.M.; Thompson, W.K.; Carey, C.E.; Baya, N.; van der Merwe, C.; Walters, R.K.; Satterstrom, F.K.; et al. The female protective effect against autism spectrum disorder. Cell Genom. 2022, 2, 100134. [Google Scholar] [CrossRef]
- Bai, D.; Yip, B.H.K.; Windham, G.C.; Sourander, A.; Francis, R.; Yoffe, R.; Glasson, E.; Mahjani, B.; Suominen, A.; Leonard, H.; et al. Association of Genetic and Environmental Factors with Autism in a 5-Country Cohort. JAMA Psychiatry 2019, 76, 1035–1043. [Google Scholar] [CrossRef]
- Connolly, N.; Anixt, J.; Manning, P.; Ping, I.L.D.; Marsolo, K.A.; Bowers, K. Maternal metabolic risk factors for autism spectrum disorder-An analysis of electronic medical records and linked birth data. Autism Res. 2016, 9, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Taleb, A.; Lin, W.; Xu, X.; Zhang, G.; Zhou, Q.G.; Naveed, M.; Meng, F.; Fukunaga, K.; Han, F. Emerging mechanisms of valproic acid-induced neurotoxic events in autism and its implications for pharmacological treatment. Biomed. Pharmacother. 2021, 137, 111322. [Google Scholar] [CrossRef] [PubMed]
- Tordjman, S.; Somogyi, E.; Coulon, N.; Kermarrec, S.; Cohen, D.; Bronsard, G.; Bonnot, O.; Weismann-Arcache, C.; Botbol, M.; Lauth, B.; et al. Gene x Environment interactions in autism spectrum disorders: Role of epigenetic mechanisms. Front. Psychiatry 2014, 5, 53. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, A.; Parlanti, P.; Cavallo, L.; Farrow, E.; Spivey, T.; Renieri, A.; Mari, F.; Manzini, M.C. A novel framework for functional annotation of variants of uncertain significance in ID/ASD risk gene CC2D1A. Hum. Mol. Genet. 2024, 33, 1229–1240. [Google Scholar] [CrossRef]
- Nishizaki, S.S.; Haghani, N.K.; La, G.N.; Mariano, N.A.F.; Uribe-Salazar, J.M.; Kaya, G.; Regester, M.; Andrews, D.S.; Nordahl, C.W.; Amaral, D.G.; et al. m6A-mRNA Reader YTHDF2 Identified as a Potential Risk Gene in Autism with Disproportionate Megalencephaly. Autism Res. 2025, 18, 966–982. [Google Scholar] [CrossRef]
- Moon, S.J.; Hwang, J.S.; Shin, A.L.; Kim, J.Y.; Bae, S.M.; Sheehy-Knight, J.; Kim, J.W. Accuracy of the Childhood Autism Rating Scale: A systematic review and meta-analysis. Dev. Med. Child Neurol. 2019, 61, 1030–1038. [Google Scholar] [CrossRef]
- Schopler, E.; Reichler, R.J.; DeVellis, R.F.; Daly, K. Toward objective classification of childhood autism: Childhood Autism Rating Scale (CARS). J. Autism Dev. Disord. 1980, 10, 91–103. [Google Scholar] [CrossRef]
- Chlebowski, C.; Green, J.A.; Barton, M.L.; Fein, D. Using the childhood autism rating scale to diagnose autism spectrum disorders. J. Autism Dev. Disord. 2010, 40, 787–799. [Google Scholar] [CrossRef]
- Lord, C.; Rutter, M.; Le Couteur, A. Autism Diagnostic Interview-Revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J. Autism Dev. Disord. 1994, 24, 659–685. [Google Scholar] [CrossRef] [PubMed]
- Lord, C.; Risi, S.; Lambrecht, L.; Cook, E.H., Jr.; Leventhal, B.L.; DiLavore, P.C.; Pickles, A.; Rutter, M. The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. J. Autism Dev. Disord. 2000, 30, 205–223. [Google Scholar] [CrossRef] [PubMed]
- Lefort-Besnard, J.; Vogeley, K.; Schilbach, L.; Varoquaux, G.; Thirion, B.; Dumas, G.; Bzdok, D. Patterns of autism symptoms: Hidden structure in the ADOS and ADI-R instruments. Transl. Psychiatry 2020, 10, 257. [Google Scholar] [CrossRef]
- Zhou, Y.; Song, H.; Ming, G.L. Genetics of human brain development. Nat. Rev. Genet. 2024, 25, 26–45. [Google Scholar] [CrossRef] [PubMed]
- Betancur, C. Etiological heterogeneity in autism spectrum disorders: More than 100 genetic and genomic disorders and still counting. Brain Res. 2011, 1380, 42–77. [Google Scholar] [CrossRef]
- Devlin, B.; Scherer, S.W. Genetic architecture in autism spectrum disorder. Curr. Opin. Genet. Dev. 2012, 22, 229–237. [Google Scholar] [CrossRef]
- Grove, J.; Ripke, S.; Als, T.D.; Mattheisen, M.; Walters, R.K.; Won, H.; Pallesen, J.; Agerbo, E.; Andreassen, O.A.; Anney, R.; et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 2019, 51, 431–444. [Google Scholar] [CrossRef]
- Iossifov, I.; O’Roak, B.J.; Sanders, S.J.; Ronemus, M.; Krumm, N.; Levy, D.; Stessman, H.A.; Witherspoon, K.T.; Vives, L.; Patterson, K.E.; et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature 2014, 515, 216–221. [Google Scholar] [CrossRef]
- Pinto, D.; Pagnamenta, A.T.; Klei, L.; Anney, R.; Merico, D.; Regan, R.; Conroy, J.; Magalhaes, T.R.; Correia, C.; Abrahams, B.S.; et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature 2010, 466, 368–372. [Google Scholar] [CrossRef]
- Robinson, E.B.; St Pourcain, B.; Anttila, V.; Kosmicki, J.A.; Bulik-Sullivan, B.; Grove, J.; Maller, J.; Samocha, K.E.; Sanders, S.J.; Ripke, S.; et al. Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population. Nat. Genet. 2016, 48, 552–555. [Google Scholar] [CrossRef]
- Vorstman, J.A.S.; Parr, J.R.; Moreno-De-Luca, D.; Anney, R.J.L.; Nurnberger, J.I., Jr.; Hallmayer, J.F. Autism genetics: Opportunities and challenges for clinical translation. Nat. Rev. Genet. 2017, 18, 362–376. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Feliciano, P.; Shu, C.; Wang, T.; Astrovskaya, I.; Hall, J.B.; Obiajulu, J.U.; Wright, J.R.; Murali, S.C.; Xu, S.X.; et al. Integrating de novo and inherited variants in 42,607 autism cases identifies mutations in new moderate-risk genes. Nat. Genet. 2022, 54, 1305–1319. [Google Scholar] [CrossRef]
- Linaro, D.; Vermaercke, B.; Iwata, R.; Ramaswamy, A.; Libe-Philippot, B.; Boubakar, L.; Davis, B.A.; Wierda, K.; Davie, K.; Poovathingal, S.; et al. Xenotransplanted Human Cortical Neurons Reveal Species-Specific Development and Functional Integration into Mouse Visual Circuits. Neuron 2019, 104, 972–986.e6. [Google Scholar] [CrossRef]
- Molineris, I.; Grassi, E.; Ala, U.; Di Cunto, F.; Provero, P. Evolution of promoter affinity for transcription factors in the human lineage. Mol. Biol. Evol. 2011, 28, 2173–2183. [Google Scholar] [CrossRef] [PubMed]
- Kilpatrick, S.; Irwin, C.; Singh, K.K. Human pluripotent stem cell (hPSC) and organoid models of autism: Opportunities and limitations. Transl. Psychiatry 2023, 13, 217. [Google Scholar] [CrossRef]
- Birey, F.; Andersen, J.; Makinson, C.D.; Islam, S.; Wei, W.; Huber, N.; Fan, H.C.; Metzler, K.R.C.; Panagiotakos, G.; Thom, N.; et al. Assembly of functionally integrated human forebrain spheroids. Nature 2017, 545, 54–59. [Google Scholar] [CrossRef]
- Lewis, E.M.A.; Meganathan, K.; Baldridge, D.; Gontarz, P.; Zhang, B.; Bonni, A.; Constantino, J.N.; Kroll, K.L. Cellular and molecular characterization of multiplex autism in human induced pluripotent stem cell-derived neurons. Mol. Autism 2019, 10, 51. [Google Scholar] [CrossRef] [PubMed]
- Chahrour, M.; O’Roak, B.J.; Santini, E.; Samaco, R.C.; Kleiman, R.J.; Manzini, M.C. Current Perspectives in Autism Spectrum Disorder: From Genes to Therapy. J. Neurosci. 2016, 36, 11402–11410. [Google Scholar] [CrossRef]
- Iakoucheva, L.M.; Muotri, A.R.; Sebat, J. Getting to the Cores of Autism. Cell 2019, 178, 1287–1298. [Google Scholar] [CrossRef]
- de la Torre-Ubieta, L.; Won, H.; Stein, J.L.; Geschwind, D.H. Advancing the understanding of autism disease mechanisms through genetics. Nat. Med. 2016, 22, 345–361. [Google Scholar] [CrossRef]
- Sandin, S.; Lichtenstein, P.; Kuja-Halkola, R.; Hultman, C.; Larsson, H.; Reichenberg, A. The Heritability of Autism Spectrum Disorder. JAMA 2017, 318, 1182–1184. [Google Scholar] [CrossRef] [PubMed]
- Tick, B.; Bolton, P.; Happe, F.; Rutter, M.; Rijsdijk, F. Heritability of autism spectrum disorders: A meta-analysis of twin studies. J. Child Psychol. Psychiatry 2016, 57, 585–595. [Google Scholar] [CrossRef]
- Rosenberg, R.E.; Law, J.K.; Yenokyan, G.; McGready, J.; Kaufmann, W.E.; Law, P.A. Characteristics and concordance of autism spectrum disorders among 277 twin pairs. Arch. Pediatr. Adolesc. Med. 2009, 163, 907–914. [Google Scholar] [CrossRef]
- De Rubeis, S.; He, X.; Goldberg, A.P.; Poultney, C.S.; Samocha, K.; Cicek, A.E.; Kou, Y.; Liu, L.; Fromer, M.; Walker, S.; et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 2014, 515, 209–215. [Google Scholar] [CrossRef]
- Fu, J.M.; Satterstrom, F.K.; Peng, M.; Brand, H.; Collins, R.L.; Dong, S.; Wamsley, B.; Klei, L.; Wang, L.; Hao, S.P.; et al. Rare coding variation provides insight into the genetic architecture and phenotypic context of autism. Nat. Genet. 2022, 54, 1320–1331. [Google Scholar] [CrossRef] [PubMed]
- Satterstrom, F.K.; Kosmicki, J.A.; Wang, J.; Breen, M.S.; De Rubeis, S.; An, J.Y.; Peng, M.; Collins, R.; Grove, J.; Klei, L.; et al. Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell 2020, 180, 568–584.e23. [Google Scholar] [CrossRef]
- Trost, B.; Thiruvahindrapuram, B.; Chan, A.J.S.; Engchuan, W.; Higginbotham, E.J.; Howe, J.L.; Loureiro, L.O.; Reuter, M.S.; Roshandel, D.; Whitney, J.; et al. Genomic architecture of autism from comprehensive whole-genome sequence annotation. Cell 2022, 185, 4409–4427.e18. [Google Scholar] [CrossRef]
- Jamain, S.; Quach, H.; Betancur, C.; Rastam, M.; Colineaux, C.; Gillberg, I.C.; Soderstrom, H.; Giros, B.; Leboyer, M.; Gillberg, C.; et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat. Genet. 2003, 34, 27–29. [Google Scholar] [CrossRef] [PubMed]
- Gogate, A.; Kaur, K.; Khalil, R.; Bashtawi, M.; Morris, M.A.; Goodspeed, K.; Evans, P.; Chahrour, M.H. The genetic landscape of autism spectrum disorder in an ancestrally diverse cohort. NPJ Genom. Med. 2024, 9, 62. [Google Scholar] [CrossRef]
- Takumi, T.; Tamada, K. CNV biology in neurodevelopmental disorders. Curr. Opin. Neurobiol. 2018, 48, 183–192. [Google Scholar] [CrossRef]
- Kerin, T.; Ramanathan, A.; Rivas, K.; Grepo, N.; Coetzee, G.A.; Campbell, D.B. A noncoding RNA antisense to moesin at 5p14.1 in autism. Sci. Transl. Med. 2012, 4, 128ra140. [Google Scholar] [CrossRef] [PubMed]
- Chahrour, M.; Zoghbi, H.Y. The story of Rett syndrome: From clinic to neurobiology. Neuron 2007, 56, 422–437. [Google Scholar] [CrossRef] [PubMed]
- Darnell, J.C.; Van Driesche, S.J.; Zhang, C.; Hung, K.Y.; Mele, A.; Fraser, C.E.; Stone, E.F.; Chen, C.; Fak, J.J.; Chi, S.W.; et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 2011, 146, 247–261. [Google Scholar] [CrossRef]
- Na, E.S.; Monteggia, L.M. The role of MeCP2 in CNS development and function. Horm. Behav. 2011, 59, 364–368. [Google Scholar] [CrossRef]
- Kazdoba, T.M.; Leach, P.T.; Silverman, J.L.; Crawley, J.N. Modeling fragile X syndrome in the Fmr1 knockout mouse. Intractable Rare Dis. Res. 2014, 3, 118–133. [Google Scholar] [CrossRef]
- Splawski, I.; Timothy, K.W.; Sharpe, L.M.; Decher, N.; Kumar, P.; Bloise, R.; Napolitano, C.; Schwartz, P.J.; Joseph, R.M.; Condouris, K.; et al. Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 2004, 119, 19–31. [Google Scholar] [CrossRef]
- Rademacher, S.; Eickholt, B.J. PTEN in Autism and Neurodevelopmental Disorders. Cold Spring Harb. Perspect. Med. 2019, 9, a036780. [Google Scholar] [CrossRef] [PubMed]
- Narvaiz, D.A.; Sullens, D.G.; Santana-Coelho, D.; Lugo, J.N. Neuronal subset-specific phosphatase and tensin homolog knockout mice exhibit age and brain region-associated alterations in microglia/macrophage activation. Neuroreport 2022, 33, 476–480. [Google Scholar] [CrossRef]
- Sztainberg, Y.; Zoghbi, H.Y. Lessons learned from studying syndromic autism spectrum disorders. Nat. Neurosci. 2016, 19, 1408–1417. [Google Scholar] [CrossRef]
- Sun, Y.; Wiese, M.; Hmadi, R.; Karayol, R.; Seyfferth, J.; Martinez Greene, J.A.; Erdogdu, N.U.; Deboutte, W.; Arrigoni, L.; Holz, H.; et al. MSL2 ensures biallelic gene expression in mammals. Nature 2023, 624, 173–181. [Google Scholar] [CrossRef]
- Manzini, M.C.; Xiong, L.; Shaheen, R.; Tambunan, D.E.; Di Costanzo, S.; Mitisalis, V.; Tischfield, D.J.; Cinquino, A.; Ghaziuddin, M.; Christian, M.; et al. CC2D1A regulates human intellectual and social function as well as NF-kappaB signaling homeostasis. Cell Rep. 2014, 8, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.W.; Chahrour, M.H.; Coulter, M.E.; Jiralerspong, S.; Okamura-Ikeda, K.; Ataman, B.; Schmitz-Abe, K.; Harmin, D.A.; Adli, M.; Malik, A.N.; et al. Using whole-exome sequencing to identify inherited causes of autism. Neuron 2013, 77, 259–273. [Google Scholar] [CrossRef]
- Martin, H.C.; Jones, W.D.; McIntyre, R.; Sanchez-Andrade, G.; Sanderson, M.; Stephenson, J.D.; Jones, C.P.; Handsaker, J.; Gallone, G.; Bruntraeger, M.; et al. Quantifying the contribution of recessive coding variation to developmental disorders. Science 2018, 362, 1161–1164. [Google Scholar] [CrossRef] [PubMed]
- Chundru, V.K.; Zhang, Z.; Walter, K.; Lindsay, S.J.; Danecek, P.; Eberhardt, R.Y.; Gardner, E.J.; Malawsky, D.S.; Wigdor, E.M.; Torene, R.; et al. Federated analysis of autosomal recessive coding variants in 29,745 developmental disorder patients from diverse populations. Nat. Genet. 2024, 56, 2046–2053. [Google Scholar] [CrossRef] [PubMed]
- Basel-Vanagaite, L.; Attia, R.; Yahav, M.; Ferland, R.J.; Anteki, L.; Walsh, C.A.; Olender, T.; Straussberg, R.; Magal, N.; Taub, E.; et al. The CC2D1A, a member of a new gene family with C2 domains, is involved in autosomal recessive non-syndromic mental retardation. J. Med. Genet. 2006, 43, 203–210. [Google Scholar] [CrossRef]
- Havdahl, A.; Niarchou, M.; Starnawska, A.; Uddin, M.; van der Merwe, C.; Warrier, V. Genetic contributions to autism spectrum disorder. Psychol. Med. 2021, 51, 2260–2273. [Google Scholar] [CrossRef]
- Choi, S.W.; O’Reilly, P.F. PRSice-2: Polygenic Risk Score software for biobank-scale data. Gigascience 2019, 8, giz082. [Google Scholar] [CrossRef]
- Lewis, C.M.; Vassos, E. Polygenic risk scores: From research tools to clinical instruments. Genome Med. 2020, 12, 44. [Google Scholar] [CrossRef]
- Myers, S.M.; Challman, T.D.; Bernier, R.; Bourgeron, T.; Chung, W.K.; Constantino, J.N.; Eichler, E.E.; Jacquemont, S.; Miller, D.T.; Mitchell, K.J.; et al. Insufficient Evidence for “Autism-Specific” Genes. Am. J. Hum. Genet. 2020, 106, 587–595. [Google Scholar] [CrossRef]
- Sanders, S.J.; Murtha, M.T.; Gupta, A.R.; Murdoch, J.D.; Raubeson, M.J.; Willsey, A.J.; Ercan-Sencicek, A.G.; DiLullo, N.M.; Parikshak, N.N.; Stein, J.L.; et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 2012, 485, 237–241. [Google Scholar] [CrossRef]
- O’Roak, B.J.; Deriziotis, P.; Lee, C.; Vives, L.; Schwartz, J.J.; Girirajan, S.; Karakoc, E.; Mackenzie, A.P.; Ng, S.B.; Baker, C.; et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat. Genet. 2011, 43, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Gonzalez, A.; Rodriguez-Fontenla, C.; Carracedo, A. De novo Mutations (DNMs) in Autism Spectrum Disorder (ASD): Pathway and Network Analysis. Front. Genet. 2018, 9, 406. [Google Scholar] [CrossRef] [PubMed]
- Iossifov, I.; Ronemus, M.; Levy, D.; Wang, Z.; Hakker, I.; Rosenbaum, J.; Yamrom, B.; Lee, Y.H.; Narzisi, G.; Leotta, A.; et al. De novo gene disruptions in children on the autistic spectrum. Neuron 2012, 74, 285–299. [Google Scholar] [CrossRef] [PubMed]
- O’Roak, B.J.; Vives, L.; Girirajan, S.; Karakoc, E.; Krumm, N.; Coe, B.P.; Levy, R.; Ko, A.; Lee, C.; Smith, J.D.; et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 2012, 485, 246–250. [Google Scholar] [CrossRef]
- Geschwind, D.H.; State, M.W. Gene hunting in autism spectrum disorder: On the path to precision medicine. Lancet Neurol. 2015, 14, 1109–1120. [Google Scholar] [CrossRef]
- Prem, S.; Dev, B.; Peng, C.; Mehta, M.; Alibutud, R.; Connacher, R.J.; St Thomas, M.; Zhou, X.; Matteson, P.; Xing, J.; et al. Dysregulation of mTOR signaling mediates common neurite and migration defects in both idiopathic and 16p11.2 deletion autism neural precursor cells. eLife 2024, 13, e82809. [Google Scholar] [CrossRef]
- Notwell, J.H.; Heavner, W.E.; Darbandi, S.F.; Katzman, S.; McKenna, W.L.; Ortiz-Londono, C.F.; Tastad, D.; Eckler, M.J.; Rubenstein, J.L.; McConnell, S.K.; et al. TBR1 regulates autism risk genes in the developing neocortex. Genome Res. 2016, 26, 1013–1022. [Google Scholar] [CrossRef]
- Wagnon, J.L.; Briese, M.; Sun, W.; Mahaffey, C.L.; Curk, T.; Rot, G.; Ule, J.; Frankel, W.N. CELF4 regulates translation and local abundance of a vast set of mRNAs, including genes associated with regulation of synaptic function. PLoS Genet. 2012, 8, e1003067. [Google Scholar] [CrossRef] [PubMed]
- Parikshak, N.N.; Luo, R.; Zhang, A.; Won, H.; Lowe, J.K.; Chandran, V.; Horvath, S.; Geschwind, D.H. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell 2013, 155, 1008–1021. [Google Scholar] [CrossRef]
- Shi, R.; Redman, P.; Ghose, D.; Hwang, H.; Liu, Y.; Ren, X.; Ding, L.J.; Liu, M.; Jones, K.J.; Xu, W. Shank Proteins Differentially Regulate Synaptic Transmission. eNeuro 2017, 4, ENEURO.0163-15.2017. [Google Scholar] [CrossRef]
- Zaslavsky, K.; Zhang, W.B.; McCready, F.P.; Rodrigues, D.C.; Deneault, E.; Loo, C.; Zhao, M.; Ross, P.J.; El Hajjar, J.; Romm, A.; et al. SHANK2 mutations associated with autism spectrum disorder cause hyperconnectivity of human neurons. Nat. Neurosci. 2019, 22, 556–564. [Google Scholar] [CrossRef]
- Fischer, I.; Shohat, S.; Leichtmann-Bardoogo, Y.; Nayak, R.; Wiener, G.; Rosh, I.; Shemen, A.; Tripathi, U.; Rokach, M.; Bar, E.; et al. Shank3 mutation impairs glutamate signaling and myelination in ASD mouse model and human iPSC-derived OPCs. Sci. Adv. 2024, 10, eadl4573. [Google Scholar] [CrossRef] [PubMed]
- Bi, C.; Wu, J.; Jiang, T.; Liu, Q.; Cai, W.; Yu, P.; Cai, T.; Zhao, M.; Jiang, Y.H.; Sun, Z.S. Mutations of ANK3 identified by exome sequencing are associated with autism susceptibility. Hum. Mutat. 2012, 33, 1635–1638. [Google Scholar] [CrossRef]
- Furia, F.; Levy, A.M.; Theunis, M.; Bamshad, M.J.; Bartos, M.N.; Bijlsma, E.K.; Brancati, F.; Cejudo, L.; Chong, J.X.; De Luca, C.; et al. The phenotypic and genotypic spectrum of individuals with mono- or biallelic ANK3 variants. Clin. Genet. 2024, 106, 574–584. [Google Scholar] [CrossRef] [PubMed]
- Keller, C.I.; Akhtar, A. The MSL complex: Juggling RNA-protein interactions for dosage compensation and beyond. Curr. Opin. Genet. Dev. 2015, 31, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Karayol, R.; Borroto, M.C.; Haghshenas, S.; Namasivayam, A.; Reilly, J.; Levy, M.A.; Relator, R.; Kerkhof, J.; McConkey, H.; Shvedunova, M.; et al. MSL2 variants lead to a neurodevelopmental syndrome with lack of coordination, epilepsy, specific dysmorphisms, and a distinct episignature. Am. J. Hum. Genet. 2024, 111, 1330–1351. [Google Scholar] [CrossRef]
- Lovato, D.V.; Herai, R.R.; Pignatari, G.C.; Beltrao-Braga, P.C.B. The Relevance of Variants with Unknown Significance for Autism Spectrum Disorder Considering the Genotype-Phenotype Interrelationship. Front. Psychiatry 2019, 10, 409. [Google Scholar] [CrossRef]
- Starita, L.M.; Ahituv, N.; Dunham, M.J.; Kitzman, J.O.; Roth, F.P.; Seelig, G.; Shendure, J.; Fowler, D.M. Variant Interpretation: Functional Assays to the Rescue. Am. J. Hum. Genet. 2017, 101, 315–325. [Google Scholar] [CrossRef]
- Anderson, C.L.; Munawar, S.; Reilly, L.; Kamp, T.J.; January, C.T.; Delisle, B.P.; Eckhardt, L.L. How Functional Genomics Can Keep Pace with VUS Identification. Front. Cardiovasc. Med. 2022, 9, 900431. [Google Scholar] [CrossRef]
- Calhoun, J.D.; Aziz, M.C.; Happ, H.C.; Gunti, J.; Gleason, C.; Mohamed, N.; Zeng, K.; Hiller, M.; Bryant, E.; Mithal, D.S.; et al. mTORC1 functional assay reveals SZT2 loss-of-function variants and a founder in-frame deletion. Brain 2022, 145, 1939–1948. [Google Scholar] [CrossRef]
- Yoon, S.; Piguel, N.H.; Penzes, P. Roles and mechanisms of ankyrin-G in neuropsychiatric disorders. Exp. Mol. Med. 2022, 54, 867–877. [Google Scholar] [CrossRef] [PubMed]
- van der Werf, I.M.; Van Dam, D.; Missault, S.; Yalcin, B.; De Deyn, P.P.; Vandeweyer, G.; Kooy, R.F. Behavioural characterization of AnkyrinG deficient mice, a model for ANK3 related disorders. Behav. Brain Res. 2017, 328, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Haddad Derafshi, B.; Danko, T.; Chanda, S.; Batista, P.J.; Litzenburger, U.; Lee, Q.Y.; Ng, Y.H.; Sebin, A.; Chang, H.Y.; Sudhof, T.C.; et al. The autism risk factor CHD8 is a chromatin activator in human neurons and functionally dependent on the ERK-MAPK pathway effector ELK1. Sci. Rep. 2022, 12, 22425. [Google Scholar] [CrossRef]
- Dingemans, A.J.M.; Truijen, K.M.G.; van de Ven, S.; Bernier, R.; Bongers, E.; Bouman, A.; de Graaff-Herder, L.; Eichler, E.E.; Gerkes, E.H.; De Geus, C.M.; et al. The phenotypic spectrum and genotype-phenotype correlations in 106 patients with variants in major autism gene CHD8. Transl. Psychiatry 2022, 12, 421. [Google Scholar] [CrossRef]
- Katayama, Y.; Nishiyama, M.; Shoji, H.; Ohkawa, Y.; Kawamura, A.; Sato, T.; Suyama, M.; Takumi, T.; Miyakawa, T.; Nakayama, K.I. CHD8 haploinsufficiency results in autistic-like phenotypes in mice. Nature 2016, 537, 675–679. [Google Scholar] [CrossRef] [PubMed]
- Sorrentino, U.; Boesch, S.; Doummar, D.; Ravelli, C.; Serranova, T.; Indelicato, E.; Winkelmann, J.; Burglen, L.; Jech, R.; Zech, M. CHD8-related disorders redefined: An expanding spectrum of dystonic phenotypes. J. Neurol. 2024, 271, 2859–2865. [Google Scholar] [CrossRef]
- Zhang, Q.; Xing, M.; Bao, Z.; Xu, L.; Bai, Y.; Chen, W.; Pan, W.; Cai, F.; Wang, Q.; Guo, S.; et al. Contactin-associated protein-like 2 (CNTNAP2) mutations impair the essential alpha-secretase cleavages, leading to autism-like phenotypes. Signal Transduct. Target Ther. 2024, 9, 51. [Google Scholar] [CrossRef]
- Jang, W.E.; Park, J.H.; Park, G.; Bang, G.; Na, C.H.; Kim, J.Y.; Kim, K.Y.; Kim, K.P.; Shin, C.Y.; An, J.Y.; et al. Cntnap2-dependent molecular networks in autism spectrum disorder revealed through an integrative multi-omics analysis. Mol. Psychiatry 2023, 28, 810–821. [Google Scholar] [CrossRef]
- Toma, C.; Pierce, K.D.; Shaw, A.D.; Heath, A.; Mitchell, P.B.; Schofield, P.R.; Fullerton, J.M. Comprehensive cross-disorder analyses of CNTNAP2 suggest it is unlikely to be a primary risk gene for psychiatric disorders. PLoS Genet. 2018, 14, e1007535. [Google Scholar] [CrossRef]
- St George-Hyslop, F.; Kivisild, T.; Livesey, F.J. The role of contactin-associated protein-like 2 in neurodevelopmental disease and human cerebral cortex evolution. Front. Mol. Neurosci. 2022, 15, 1017144. [Google Scholar] [CrossRef]
- Poulin, C.J.; Fox, A.E. Preliminary evidence for timing abnormalities in the CNTNAP2 knockout rat. Behav. Process. 2021, 190, 104449. [Google Scholar] [CrossRef] [PubMed]
- Chalkiadaki, K.; Statoulla, E.; Zafeiri, M.; Voudouri, G.; Amvrosiadis, T.; Typou, A.; Theodoridou, N.; Moschovas, D.; Avgeropoulos, A.; Samiotaki, M.; et al. GABA/Glutamate Neuron Differentiation Imbalance and Increased AKT/mTOR Signaling in CNTNAP2-/- Cerebral Organoids. Biol. Psychiatry Glob. Open Sci. 2025, 5, 100413. [Google Scholar] [CrossRef] [PubMed]
- Bakker, C.E.; Verheij, C.; Willemsen, R.; Van der Helm, R.; Oerlemans, F.; Vermey, M.; Bygrave, A.; Hoogeveen, A.T.; Oostra, B.A.; Reyniers, E.; et al. Fmr1 knockout mice: A model to study fragile X mental retardation. The Dutch-Belgian Fragile X Consortium. Cell 1994, 78, 23–33. [Google Scholar]
- Fyke, W.; Velinov, M. FMR1 and Autism, an Intriguing Connection Revisited. Genes 2021, 12, 1218. [Google Scholar] [CrossRef]
- Ascano, M., Jr.; Mukherjee, N.; Bandaru, P.; Miller, J.B.; Nusbaum, J.D.; Corcoran, D.L.; Langlois, C.; Munschauer, M.; Dewell, S.; Hafner, M.; et al. FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature 2012, 492, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Borreca, A.; De Luca, M.; Ferrante, A.; Boussadia, Z.; Pignataro, A.; Martire, A.; Ammassari-Teule, M. Fmr1-KO mice failure to detect object novelty associates with a post-test decrease of structural and synaptic plasticity upstream of the hippocampus. Sci. Rep. 2023, 13, 755. [Google Scholar] [CrossRef]
- Pan, Y.; Chen, J.; Guo, H.; Ou, J.; Peng, Y.; Liu, Q.; Shen, Y.; Shi, L.; Liu, Y.; Xiong, Z.; et al. Association of genetic variants of GRIN2B with autism. Sci. Rep. 2015, 5, 8296. [Google Scholar] [CrossRef]
- Kutsuwada, T.; Sakimura, K.; Manabe, T.; Takayama, C.; Katakura, N.; Kushiya, E.; Natsume, R.; Watanabe, M.; Inoue, Y.; Yagi, T.; et al. Impairment of suckling response, trigeminal neuronal pattern formation, and hippocampal LTD in NMDA receptor epsilon 2 subunit mutant mice. Neuron 1996, 16, 333–344. [Google Scholar] [CrossRef]
- Sabo, S.L.; Lahr, J.M.; Offer, M.; Weekes, A.; Sceniak, M.P. GRIN2B-related neurodevelopmental disorder: Current understanding of pathophysiological mechanisms. Front. Synaptic Neurosci. 2022, 14, 1090865. [Google Scholar] [CrossRef]
- Lee, S.; Jung, W.B.; Moon, H.; Im, G.H.; Noh, Y.W.; Shin, W.; Kim, Y.G.; Yi, J.H.; Hong, S.J.; Jung, Y.; et al. Anterior cingulate cortex-related functional hyperconnectivity underlies sensory hypersensitivity in Grin2b-mutant mice. Mol. Psychiatry 2024, 29, 3195–3207. [Google Scholar] [CrossRef]
- Quaderi, N.A.; Meehan, R.R.; Tate, P.H.; Cross, S.H.; Bird, A.P.; Chatterjee, A.; Herman, G.E.; Brown, S.D. Genetic and physical mapping of a gene encoding a methyl CpG binding protein, Mecp2, to the mouse X chromosome. Genomics 1994, 22, 648–651. [Google Scholar] [CrossRef] [PubMed]
- Arsenault, J.; Hooper, A.W.M.; Gholizadeh, S.; Kong, T.; Pacey, L.K.; Koxhioni, E.; Niibori, Y.; Eubanks, J.H.; Wang, L.Y.; Hampson, D.R. Interregulation between fragile X mental retardation protein and methyl CpG binding protein 2 in the mouse posterior cerebral cortex. Hum. Mol. Genet. 2021, 29, 3744–3756. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.K.; Kim, S.T.; Johnston, M.V.; Kadam, S.D. Temporal- and Location-Specific Alterations of the GABA Recycling System in Mecp2 KO Mouse Brains. J. Cent. Nerv. Syst. Dis. 2014, 6, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Guy, J.; Hendrich, B.; Holmes, M.; Martin, J.E.; Bird, A. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat. Genet. 2001, 27, 322–326. [Google Scholar] [CrossRef]
- Guy, J.; Gan, J.; Selfridge, J.; Cobb, S.; Bird, A. Reversal of neurological defects in a mouse model of Rett syndrome. Science 2007, 315, 1143–1147. [Google Scholar] [CrossRef]
- Lu, X.; Ng, K.; Pinto, E.V.F.; Collins, J.; Cohn, R.; Riley, K.; Agre, K.; Gavrilova, R.; Klee, E.W.; Rosenfeld, J.A.; et al. Novel protein-truncating variants of a chromatin-modifying gene MSL2 in syndromic neurodevelopmental disorders. Eur. J. Hum. Genet. 2024, 32, 879–883. [Google Scholar] [CrossRef]
- El-Kordi, A.; Winkler, D.; Hammerschmidt, K.; Kastner, A.; Krueger, D.; Ronnenberg, A.; Ritter, C.; Jatho, J.; Radyushkin, K.; Bourgeron, T.; et al. Development of an autism severity score for mice using Nlgn4 null mutants as a construct-valid model of heritable monogenic autism. Behav. Brain Res. 2013, 251, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Delattre, V.; La Mendola, D.; Meystre, J.; Markram, H.; Markram, K. Nlgn4 knockout induces network hypo-excitability in juvenile mouse somatosensory cortex in vitro. Sci. Rep. 2013, 3, 2897. [Google Scholar] [CrossRef]
- Toya, A.; Fukada, M.; Aoki, E.; Matsuki, T.; Ueda, M.; Eda, S.; Hashizume, Y.; Iio, A.; Masaki, S.; Nakayama, A. The distribution of neuroligin4, an autism-related postsynaptic molecule, in the human brain. Mol. Brain 2023, 16, 20. [Google Scholar] [CrossRef]
- Nguyen, T.A.; Wu, K.; Pandey, S.; Lehr, A.W.; Li, Y.; Bemben, M.A.; Badger, J.D., 2nd; Lauzon, J.L.; Wang, T.; Zaghloul, K.A.; et al. A Cluster of Autism-Associated Variants on X-Linked NLGN4X Functionally Resemble NLGN4Y. Neuron 2020, 106, 759–768.e7. [Google Scholar] [CrossRef]
- Grayton, H.M.; Missler, M.; Collier, D.A.; Fernandes, C. Altered social behaviours in neurexin 1alpha knockout mice resemble core symptoms in neurodevelopmental disorders. PLoS ONE 2013, 8, e67114. [Google Scholar] [CrossRef]
- Onay, H.; Kacamak, D.; Kavasoglu, A.N.; Akgun, B.; Yalcinli, M.; Kose, S.; Ozbaran, B. Mutation analysis of the NRXN1 gene in autism spectrum disorders. Balkan J. Med. Genet. 2016, 19, 17–22. [Google Scholar] [CrossRef]
- Noor, A.; Whibley, A.; Marshall, C.R.; Gianakopoulos, P.J.; Piton, A.; Carson, A.R.; Orlic-Milacic, M.; Lionel, A.C.; Sato, D.; Pinto, D.; et al. Disruption at the PTCHD1 Locus on Xp22.11 in Autism spectrum disorder and intellectual disability. Sci. Transl. Med. 2010, 2, 49ra68. [Google Scholar] [CrossRef]
- Filges, I.; Rothlisberger, B.; Blattner, A.; Boesch, N.; Demougin, P.; Wenzel, F.; Huber, A.R.; Heinimann, K.; Weber, P.; Miny, P. Deletion in Xp22.11: PTCHD1 is a candidate gene for X-linked intellectual disability with or without autism. Clin. Genet. 2011, 79, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Tora, D.; Gomez, A.M.; Michaud, J.F.; Yam, P.T.; Charron, F.; Scheiffele, P. Cellular Functions of the Autism Risk Factor PTCHD1 in Mice. J. Neurosci. 2017, 37, 11993–12005. [Google Scholar] [CrossRef] [PubMed]
- Ung, D.C.; Iacono, G.; Meziane, H.; Blanchard, E.; Papon, M.A.; Selten, M.; van Rhijn, J.R.; Montjean, R.; Rucci, J.; Martin, S.; et al. Ptchd1 deficiency induces excitatory synaptic and cognitive dysfunctions in mouse. Mol. Psychiatry 2018, 23, 1356–1367. [Google Scholar] [CrossRef] [PubMed]
- DeSpenza, T., Jr.; Carlson, M.; Panchagnula, S.; Robert, S.; Duy, P.Q.; Mermin-Bunnell, N.; Reeves, B.C.; Kundishora, A.; Elsamadicy, A.A.; Smith, H.; et al. PTEN mutations in autism spectrum disorder and congenital hydrocephalus: Developmental pleiotropy and therapeutic targets. Trends Neurosci. 2021, 44, 961–976. [Google Scholar] [CrossRef]
- Cheung, S.K.K.; Kwok, J.; Or, P.M.Y.; Wong, C.W.; Feng, B.; Choy, K.W.; Chang, R.C.C.; Burbach, J.P.H.; Cheng, A.S.L.; Chan, A.M. Neuropathological signatures revealed by transcriptomic and proteomic analysis in Pten-deficient mouse models. Sci. Rep. 2023, 13, 6763. [Google Scholar] [CrossRef]
- Narvaiz, D.A.; Blandin, K.J.; Sullens, D.G.; Womble, P.D.; Pilcher, J.B.; O’Neill, G.; Wiley, T.A.; Kwok, E.M.; Chilukuri, S.V.; Lugo, J.N. NS-Pten knockout mice exhibit sex and hippocampal subregion-specific increases in microglia/macrophage density. Epilepsy Res. 2024, 206, 107440. [Google Scholar] [CrossRef]
- Won, S.J.; Kim, S.H.; Xie, L.; Wang, Y.; Mao, X.O.; Jin, K.; Greenberg, D.A. Reelin-deficient mice show impaired neurogenesis and increased stroke size. Exp. Neurol. 2006, 198, 250–259. [Google Scholar] [CrossRef]
- Lammert, D.B.; Howell, B.W. RELN Mutations in Autism Spectrum Disorder. Front. Cell. Neurosci. 2016, 10, 84. [Google Scholar] [CrossRef]
- D’Arcangelo, G.; Miao, G.G.; Chen, S.C.; Soares, H.D.; Morgan, J.I.; Curran, T. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 1995, 374, 719–723. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.E.; Shugart, Y.Y.; Huang, D.T.; Shahwan, S.A.; Grant, P.E.; Hourihane, J.O.; Martin, N.D.; Walsh, C.A. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat. Genet. 2000, 26, 93–96. [Google Scholar] [CrossRef]
- Spratt, P.W.E.; Ben-Shalom, R.; Keeshen, C.M.; Burke, K.J., Jr.; Clarkson, R.L.; Sanders, S.J.; Bender, K.J. The Autism-Associated Gene Scn2a Contributes to Dendritic Excitability and Synaptic Function in the Prefrontal Cortex. Neuron 2019, 103, 673–685.e5. [Google Scholar] [CrossRef] [PubMed]
- Tatsukawa, T.; Raveau, M.; Ogiwara, I.; Hattori, S.; Miyamoto, H.; Mazaki, E.; Itohara, S.; Miyakawa, T.; Montal, M.; Yamakawa, K. Scn2a haploinsufficient mice display a spectrum of phenotypes affecting anxiety, sociability, memory flexibility and ampakine CX516 rescues their hyperactivity. Mol. Autism 2019, 10, 15. [Google Scholar] [CrossRef]
- Eaton, M.; Zhang, J.; Ma, Z.; Park, A.C.; Lietzke, E.; Romero, C.M.; Liu, Y.; Coleman, E.R.; Chen, X.; Xiao, T.; et al. Generation and basic characterization of a gene-trap knockout mouse model of Scn2a with a substantial reduction of voltage-gated sodium channel Nav 1.2 expression. Genes Brain Behav. 2021, 20, e12725. [Google Scholar] [CrossRef] [PubMed]
- Hedrich, U.B.S.; Lauxmann, S.; Lerche, H. SCN2A channelopathies: Mechanisms and models. Epilepsia 2019, 60, S68–S76. [Google Scholar] [CrossRef]
- Kruth, K.A.; Grisolano, T.M.; Ahern, C.A.; Williams, A.J. SCN2A channelopathies in the autism spectrum of neuropsychiatric disorders: A role for pluripotent stem cells? Mol. Autism 2020, 11, 23. [Google Scholar] [CrossRef]
- Woelfle, S.; Pedro, M.T.; Wagner, J.; Schon, M.; Boeckers, T.M. Expression profiles of the autism-related SHANK proteins in the human brain. BMC Biol. 2023, 21, 254. [Google Scholar] [CrossRef]
- Peca, J.; Feliciano, C.; Ting, J.T.; Wang, W.; Wells, M.F.; Venkatraman, T.N.; Lascola, C.D.; Fu, Z.; Feng, G. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 2011, 472, 437–442. [Google Scholar] [CrossRef]
- Uchino, S.; Waga, C. SHANK3 as an autism spectrum disorder-associated gene. Brain Dev. 2013, 35, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Poot, M. SHANK Mutations May Disorder Brain Development. Mol. Syndromol. 2015, 6, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Gustin, R.M.; Bichell, T.J.; Bubser, M.; Daily, J.; Filonova, I.; Mrelashvili, D.; Deutch, A.Y.; Colbran, R.J.; Weeber, E.J.; Haas, K.F. Tissue-specific variation of Ube3a protein expression in rodents and in a mouse model of Angelman syndrome. Neurobiol. Dis. 2010, 39, 283–291. [Google Scholar] [CrossRef]
- Vatsa, N.; Jana, N.R. UBE3A and Its Link with Autism. Front. Mol. Neurosci. 2018, 11, 448. [Google Scholar] [CrossRef]
- Avagliano Trezza, R.; Sonzogni, M.; Bossuyt, S.N.V.; Zampeta, F.I.; Punt, A.M.; van den Berg, M.; Rotaru, D.C.; Koene, L.M.C.; Munshi, S.T.; Stedehouder, J.; et al. Loss of nuclear UBE3A causes electrophysiological and behavioral deficits in mice and is associated with Angelman syndrome. Nat. Neurosci. 2019, 22, 1235–1247. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Armstrong, D.; Albrecht, U.; Atkins, C.M.; Noebels, J.L.; Eichele, G.; Sweatt, J.D.; Beaudet, A.L. Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 1998, 21, 799–811. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, S.; Institute of Medicine (U.S.); National Institute of Mental Health (U.S.). Discovering the Brain; National Academy Press: Washington, DC, USA, 1992; pp. 1–194. [Google Scholar]
- Zhao, H.; Wang, Q.; Yan, T.; Zhang, Y.; Xu, H.J.; Yu, H.P.; Tu, Z.; Guo, X.; Jiang, Y.H.; Li, X.J.; et al. Maternal valproic acid exposure leads to neurogenesis defects and autism-like behaviors in non-human primates. Transl. Psychiatry 2019, 9, 267. [Google Scholar] [CrossRef]
- Qiu, S.; Jia, J.; Xu, B.; Wu, N.; Cao, H.; Xie, S.; Cui, J.; Ma, J.; Pan, Y.H.; Yuan, X.B. Development and evaluation of an autism pig model. Lab. Anim. 2024, 53, 376–386. [Google Scholar] [CrossRef]
- Christensen, J.; Gronborg, T.K.; Sorensen, M.J.; Schendel, D.; Parner, E.T.; Pedersen, L.H.; Vestergaard, M. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA 2013, 309, 1696–1703. [Google Scholar] [CrossRef]
- Daugaard, C.A.; Pedersen, L.; Sun, Y.; Dreier, J.W.; Christensen, J. Association of Prenatal Exposure to Valproate and Other Antiepileptic Drugs with Intellectual Disability and Delayed Childhood Milestones. JAMA Netw. Open 2020, 3, e2025570. [Google Scholar] [CrossRef]
- Blotiere, P.O.; Miranda, S.; Weill, A.; Mikaeloff, Y.; Peyre, H.; Ramus, F.; Mahmoud, Z.; Coste, J.; Dray-Spira, R. Risk of early neurodevelopmental outcomes associated with prenatal exposure to the antiepileptic drugs most commonly used during pregnancy: A French nationwide population-based cohort study. BMJ Open 2020, 10, e034829. [Google Scholar] [CrossRef] [PubMed]
- Gurvich, N.; Tsygankova, O.M.; Meinkoth, J.L.; Klein, P.S. Histone deacetylase is a target of valproic acid-mediated cellular differentiation. Cancer Res. 2004, 64, 1079–1086. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, M.K.; Ojha, S.K.; Kartawy, M.; Hamoudi, W.; Choudhary, A.; Stern, S.; Aran, A.; Amal, H. The NO Answer for Autism Spectrum Disorder. Adv. Sci. 2023, 10, e2205783. [Google Scholar] [CrossRef] [PubMed]
- Emberti Gialloreti, L.; Mazzone, L.; Benvenuto, A.; Fasano, A.; Alcon, A.G.; Kraneveld, A.; Moavero, R.; Raz, R.; Riccio, M.P.; Siracusano, M.; et al. Risk and Protective Environmental Factors Associated with Autism Spectrum Disorder: Evidence-Based Principles and Recommendations. J. Clin. Med. 2019, 8, 217. [Google Scholar] [CrossRef]
- Lam, J.; Sutton, P.; Kalkbrenner, A.; Windham, G.; Halladay, A.; Koustas, E.; Lawler, C.; Davidson, L.; Daniels, N.; Newschaffer, C.; et al. A Systematic Review and Meta-Analysis of Multiple Airborne Pollutants and Autism Spectrum Disorder. PLoS ONE 2016, 11, e0161851. [Google Scholar] [CrossRef]
- Modabbernia, A.; Velthorst, E.; Reichenberg, A. Environmental risk factors for autism: An evidence-based review of systematic reviews and meta-analyses. Mol. Autism 2017, 8, 13. [Google Scholar] [CrossRef]
- Yoshimasu, K.; Kiyohara, C.; Takemura, S.; Nakai, K. A meta-analysis of the evidence on the impact of prenatal and early infancy exposures to mercury on autism and attention deficit/hyperactivity disorder in the childhood. Neurotoxicology 2014, 44, 121–131. [Google Scholar] [CrossRef]
- Harrington, R.A.; Lee, L.C.; Crum, R.M.; Zimmerman, A.W.; Hertz-Picciotto, I. Prenatal SSRI use and offspring with autism spectrum disorder or developmental delay. Pediatrics 2014, 133, e1241–e1248. [Google Scholar] [CrossRef]
- Kaplan, Y.C.; Keskin-Arslan, E.; Acar, S.; Sozmen, K. Prenatal selective serotonin reuptake inhibitor use and the risk of autism spectrum disorder in children: A systematic review and meta-analysis. Reprod. Toxicol. 2016, 66, 31–43. [Google Scholar] [CrossRef]
- Boukhris, T.; Sheehy, O.; Mottron, L.; Berard, A. Antidepressant Use During Pregnancy and the Risk of Autism Spectrum Disorder in Children. JAMA Pediatr. 2016, 170, 117–124. [Google Scholar] [CrossRef]
- Kapra, O.; Rotem, R.; Gross, R. The Association Between Prenatal Exposure to Antidepressants and Autism: Some Research and Public Health Aspects. Front. Psychiatry 2020, 11, 555740. [Google Scholar] [CrossRef] [PubMed]
- Love, C.; Sominsky, L.; O’Hely, M.; Berk, M.; Vuillermin, P.; Dawson, S.L. Prenatal environmental risk factors for autism spectrum disorder and their potential mechanisms. BMC Med. 2024, 22, 393. [Google Scholar] [CrossRef]
- Yu, R.; Hafeez, R.; Ibrahim, M.; Alonazi, W.B.; Li, B. The complex interplay between autism spectrum disorder and gut microbiota in children: A comprehensive review. Behav. Brain Res. 2024, 473, 115177. [Google Scholar] [CrossRef] [PubMed]
- Taniya, M.A.; Chung, H.J.; Al Mamun, A.; Alam, S.; Aziz, M.A.; Emon, N.U.; Islam, M.M.; Hong, S.S.; Podder, B.R.; Ara Mimi, A.; et al. Role of Gut Microbiome in Autism Spectrum Disorder and Its Therapeutic Regulation. Front. Cell. Infect. Microbiol. 2022, 12, 915701. [Google Scholar] [CrossRef]
- Salehi, A.M.; Ayubi, E.; Khazaei, S.; Jenabi, E.; Bashirian, S.; Salimi, Z. Neonatal risk factors associated with autism spectrum disorders: An umbrella review. Clin. Exp. Pediatr. 2024, 67, 459–464. [Google Scholar] [CrossRef]
- Kanner, L. Autistic disturbances of affective contact. Acta Paedopsychiatr. 1968, 35, 100–136. [Google Scholar] [PubMed]
- Li, Z.; Zhu, Y.X.; Gu, L.J.; Cheng, Y. Understanding autism spectrum disorders with animal models: Applications, insights, and perspectives. Zool. Res. 2021, 42, 800–824. [Google Scholar] [CrossRef]
- Kazdoba, T.M.; Leach, P.T.; Crawley, J.N. Behavioral phenotypes of genetic mouse models of autism. Genes Brain Behav. 2016, 15, 7–26. [Google Scholar] [CrossRef]
- Crawley, J.N. Mouse behavioral assays relevant to the symptoms of autism. Brain Pathol. 2007, 17, 448–459. [Google Scholar] [CrossRef]
- Kazdoba, T.M.; Leach, P.T.; Yang, M.; Silverman, J.L.; Solomon, M.; Crawley, J.N. Translational Mouse Models of Autism: Advancing Toward Pharmacological Therapeutics. Curr. Top. Behav. Neurosci. 2016, 28, 1–52. [Google Scholar] [CrossRef]
- Crawley, J.N. Twenty years of discoveries emerging from mouse models of autism. Neurosci. Biobehav. Rev. 2023, 146, 105053. [Google Scholar] [CrossRef] [PubMed]
- Patterson, P.H. Modeling autistic features in animals. Pediatr. Res. 2011, 69, 34R–40R. [Google Scholar] [CrossRef]
- Silverman, J.L.; Thurm, A.; Ethridge, S.B.; Soller, M.M.; Petkova, S.P.; Abel, T.; Bauman, M.D.; Brodkin, E.S.; Harony-Nicolas, H.; Wohr, M.; et al. Reconsidering animal models used to study autism spectrum disorder: Current state and optimizing future. Genes Brain Behav. 2022, 21, e12803. [Google Scholar] [CrossRef]
- Ergaz, Z.; Weinstein-Fudim, L.; Ornoy, A. Genetic and non-genetic animal models for autism spectrum disorders (ASD). Reprod. Toxicol. 2016, 64, 116–140. [Google Scholar] [CrossRef] [PubMed]
- Jiao, D.; Xu, Y.; Tian, F.; Zhou, Y.; Chen, D.; Wang, Y. Establishment of animal models and behavioral studies for autism spectrum disorders. J. Int. Med. Res. 2024, 52, 3000605241245293. [Google Scholar] [CrossRef]
- Pond, H.L.; Heller, A.T.; Gural, B.M.; McKissick, O.P.; Wilkinson, M.K.; Manzini, M.C. Digging behavior discrimination test to probe burrowing and exploratory digging in male and female mice. J. Neurosci. Res. 2021, 99, 2046–2058. [Google Scholar] [CrossRef] [PubMed]
- Dalla Vecchia, E.; Mortimer, N.; Palladino, V.S.; Kittel-Schneider, S.; Lesch, K.P.; Reif, A.; Schenck, A.; Norton, W.H.J. Cross-species models of attention-deficit/hyperactivity disorder and autism spectrum disorder: Lessons from CNTNAP2, ADGRL3, and PARK2. Psychiatr. Genet. 2019, 29, 1–17. [Google Scholar] [CrossRef]
- Kozol, R.A.; Cukier, H.N.; Zou, B.; Mayo, V.; De Rubeis, S.; Cai, G.; Griswold, A.J.; Whitehead, P.L.; Haines, J.L.; Gilbert, J.R.; et al. Two knockdown models of the autism genes SYNGAP1 and SHANK3 in zebrafish produce similar behavioral phenotypes associated with embryonic disruptions of brain morphogenesis. Hum. Mol. Genet. 2015, 24, 4006–4023. [Google Scholar] [CrossRef]
- Liu, C.X.; Li, C.Y.; Hu, C.C.; Wang, Y.; Lin, J.; Jiang, Y.H.; Li, Q.; Xu, X. CRISPR/Cas9-induced shank3b mutant zebrafish display autism-like behaviors. Mol. Autism 2018, 9, 23. [Google Scholar] [CrossRef]
- Berendzen, K.M.; Sharma, R.; Mandujano, M.A.; Wei, Y.; Rogers, F.D.; Simmons, T.C.; Seelke, A.M.H.; Bond, J.M.; Larios, R.; Goodwin, N.L.; et al. Oxytocin receptor is not required for social attachment in prairie voles. Neuron 2023, 111, 787–796.e4. [Google Scholar] [CrossRef]
- Danoff, J.S.; Ramos, E.N.; Hinton, T.D.; Perkeybile, A.M.; Graves, A.J.; Quinn, G.C.; Lightbody-Cimer, A.R.; Gordevicius, J.; Milciute, M.; Brooke, R.T.; et al. Father’s care uniquely influences male neurodevelopment. Proc. Natl. Acad. Sci. USA 2023, 120, e2308798120. [Google Scholar] [CrossRef] [PubMed]
- Mossa, A.; Manzini, M.C. Molecular causes of sex-specific deficits in rodent models of neurodevelopmental disorders. J. Neurosci. Res. 2021, 99, 37–56. [Google Scholar] [CrossRef] [PubMed]
- Berg, E.L.; Jami, S.A.; Petkova, S.P.; Berz, A.; Fenton, T.A.; Lerch, J.P.; Segal, D.J.; Gray, J.A.; Ellegood, J.; Wohr, M.; et al. Excessive Laughter-like Vocalizations, Microcephaly, and Translational Outcomes in the Ube3a Deletion Rat Model of Angelman Syndrome. J. Neurosci. 2021, 41, 8801–8814. [Google Scholar] [CrossRef]
- Till, S.M.; Hickson, R.D.L.; Kind, P.C. Cross-species considerations in models of neurodevelopmental disorders. Trends Neurosci. 2022, 45, 171–172. [Google Scholar] [CrossRef] [PubMed]
- Simmons, D.H.; Titley, H.K.; Hansel, C.; Mason, P. Behavioral Tests for Mouse Models of Autism: An Argument for the Inclusion of Cerebellum-Controlled Motor Behaviors. Neuroscience 2021, 462, 303–319. [Google Scholar] [CrossRef]
- Kim, K.C.; Gonzales, E.L.; Lazaro, M.T.; Choi, C.S.; Bahn, G.H.; Yoo, H.J.; Shin, C.Y. Clinical and Neurobiological Relevance of Current Animal Models of Autism Spectrum Disorders. Biomol. Ther. 2016, 24, 207–243. [Google Scholar] [CrossRef]
- Zhao, H.; Jiang, Y.H.; Zhang, Y.Q. Modeling autism in non-human primates: Opportunities and challenges. Autism Res. 2018, 11, 686–694. [Google Scholar] [CrossRef]
- Tian, R.; Li, Y.; Zhao, H.; Lyu, W.; Zhao, J.; Wang, X.; Lu, H.; Xu, H.; Ren, W.; Tan, Q.Q.; et al. Modeling SHANK3-associated autism spectrum disorder in Beagle dogs via CRISPR/Cas9 gene editing. Mol. Psychiatry 2023, 28, 3739–3750. [Google Scholar] [CrossRef]
- Watanabe, S.; Kurotani, T.; Oga, T.; Noguchi, J.; Isoda, R.; Nakagami, A.; Sakai, K.; Nakagaki, K.; Sumida, K.; Hoshino, K.; et al. Functional and molecular characterization of a non-human primate model of autism spectrum disorder shows similarity with the human disease. Nat. Commun. 2021, 12, 5388. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, J.; Niu, Y.; Qin, D.; Liu, H.; Li, G.; Hu, Y.; Wang, J.; Lu, Y.; Kang, Y.; et al. Modeling Rett Syndrome Using TALEN-Edited MECP2 Mutant Cynomolgus Monkeys. Cell 2017, 169, 945–955.e10. [Google Scholar] [CrossRef]
- Bauman, M.D.; Schumann, C.M. Advances in nonhuman primate models of autism: Integrating neuroscience and behavior. Exp. Neurol. 2018, 299, 252–265. [Google Scholar] [CrossRef] [PubMed]
- Delling, J.P.; Boeckers, T.M. Comparison of SHANK3 deficiency in animal models: Phenotypes, treatment strategies, and translational implications. J. Neurodev. Disord. 2021, 13, 55. [Google Scholar] [CrossRef] [PubMed]
- Gora, C.; Dudas, A.; Court, L.; Annamneedi, A.; Lefort, G.; Nakahara, T.S.; Azzopardi, N.; Acquistapace, A.; Laine, A.L.; Trouillet, A.C.; et al. Effect of the social environment on olfaction and social skills in wild-type and a mouse model of autism. Transl. Psychiatry 2024, 14, 464. [Google Scholar] [CrossRef] [PubMed]
- Gora, C.; Dudas, A.; Vaugrente, O.; Drobecq, L.; Pecnard, E.; Lefort, G.; Pellissier, L.P. Deciphering autism heterogeneity: A molecular stratification approach in four mouse models. Transl. Psychiatry 2024, 14, 416. [Google Scholar] [CrossRef]
- Haetzel, L.M.; Iafrati, J.; Cording, K.R.; Farhan, M.; Noveir, S.D.; Rumbaugh, G.; Bateup, H.S. Haploinsufficiency of Syngap1 in Striatal Indirect Pathway Neurons Alters Motor and Goal-Directed Behaviors in Mice. J. Neurosci. 2024, 44, e1264232024. [Google Scholar] [CrossRef]
- Fan, L.; Li, Q.; Shi, Y.; Li, X.; Liu, Y.; Chen, J.; Sun, Y.; Chen, A.; Yang, Y.; Zhang, X.; et al. Involvement of sphingosine-1-phosphate receptor 1 in pain insensitivity in a BTBR mouse model of autism spectrum disorder. BMC Med. 2024, 22, 504. [Google Scholar] [CrossRef]
- Drehmer, I.; Santos-Terra, J.; Gottfried, C.; Deckmann, I. mTOR signaling pathway as a pathophysiologic mechanism in preclinical models of autism spectrum disorder. Neuroscience 2024, 563, 33–42. [Google Scholar] [CrossRef]
- Teixeira, J.R.; Szeto, R.A.; Carvalho, V.M.A.; Muotri, A.R.; Papes, F. Transcription factor 4 and its association with psychiatric disorders. Transl. Psychiatry 2021, 11, 19. [Google Scholar] [CrossRef]
- Chen, H.Y.; Phan, B.N.; Shim, G.; Hamersky, G.R.; Sadowski, N.; O’Donnell, T.S.; Sripathy, S.R.; Bohlen, J.F.; Pfenning, A.R.; Maher, B.J. Psychiatric risk gene Transcription Factor 4 (TCF4) regulates the density and connectivity of distinct inhibitory interneuron subtypes. Mol. Psychiatry 2023, 28, 4679–4692. [Google Scholar] [CrossRef]
- Papes, F.; Camargo, A.P.; de Souza, J.S.; Carvalho, V.M.A.; Szeto, R.A.; LaMontagne, E.; Teixeira, J.R.; Avansini, S.H.; Sanchez-Sanchez, S.M.; Nakahara, T.S.; et al. Transcription Factor 4 loss-of-function is associated with deficits in progenitor proliferation and cortical neuron content. Nat. Commun. 2022, 13, 2387. [Google Scholar] [CrossRef]
- Han, X.; Zhang, Q.; Wang, C.; Han, B. Clinical Characteristics and Novel ZEB2 Gene Mutation Analysis of Three Chinese Patients with Mowat-Wilson Syndrome. Pharmgenomics Pers. Med. 2023, 16, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Xie, S.; Duan, J.; Tian, B.; Ren, P.; Hu, E.; Huang, Q.; Mao, H.; Zou, Y.; Chen, Q.; et al. Imbalance between hippocampal projection cell and parvalbumin interneuron architecture increases epileptic susceptibility in mouse model of methyl CpG binding protein 2 duplication syndrome. Epilepsia 2024, 65, 2483–2496. [Google Scholar] [CrossRef] [PubMed]
- Camasio, A.; Panzeri, E.; Mancuso, L.; Costa, T.; Manuello, J.; Ferraro, M.; Duca, S.; Cauda, F.; Liloia, D. Linking neuroanatomical abnormalities in autism spectrum disorder with gene expression of candidate ASD genes: A meta-analytic and network-oriented approach. PLoS ONE 2022, 17, e0277466. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Qi, S.; Calhoun, V.; Dai, J.; Yu, B.; Zhang, K.; Pei, M.; Li, C.; Wei, Y.; Jiang, R.; et al. Aberrant brain functional and structural developments in MECP2 duplication rats. Neurobiol. Dis. 2022, 173, 105838. [Google Scholar] [CrossRef] [PubMed]
- Srinath, S.; Kalal, A.; Anand, P.; Mohapatra, S.; Chakraborty, P. Small SNPs, Big Effects: A Review of Single Nucleotide Variations and Polymorphisms in Key Genes Associated with Autism Spectrum Disorder. Int. J. Dev. Neurosci. 2025, 85, e70016. [Google Scholar] [CrossRef]
- Niu, X.; Huang, F.; Lyu, H.; Liu, J.; Zhang, X.; Bian, J.; Gao, Z.; Liu, B. The Deficiency of the ASD-Related Gene CHD8 Disrupts Behavioral Patterns and Inhibits Hippocampal Neurogenesis in Mice. J. Mol. Neurosci. 2024, 74, 103. [Google Scholar] [CrossRef]
- Hui, K.; Katayama, Y.; Nakayama, K.I.; Nomura, J.; Sakurai, T. Characterizing vulnerable brain areas and circuits in mouse models of autism: Towards understanding pathogenesis and new therapeutic approaches. Neurosci. Biobehav. Rev. 2020, 110, 77–91. [Google Scholar] [CrossRef]
- Meng, J.; Pan, P.; Guo, G.; Chen, A.; Meng, X.; Liu, H. Transient CSF1R inhibition ameliorates behavioral deficits in Cntnap2 knockout and valproic acid-exposed mouse models of autism. J. Neuroinflammation 2024, 21, 262. [Google Scholar] [CrossRef]
- Rein, B.; Yan, Z. 16p11.2 Copy Number Variations and Neurodevelopmental Disorders. Trends Neurosci. 2020, 43, 886–901. [Google Scholar] [CrossRef]
- Horev, G.; Ellegood, J.; Lerch, J.P.; Son, Y.E.; Muthuswamy, L.; Vogel, H.; Krieger, A.M.; Buja, A.; Henkelman, R.M.; Wigler, M.; et al. Dosage-dependent phenotypes in models of 16p11.2 lesions found in autism. Proc. Natl. Acad. Sci. USA 2011, 108, 17076–17081. [Google Scholar] [CrossRef]
- Lopez-Tobon, A.; Shyti, R.; Villa, C.E.; Cheroni, C.; Fuentes-Bravo, P.; Trattaro, S.; Caporale, N.; Troglio, F.; Tenderini, E.; Mihailovich, M.; et al. GTF2I dosage regulates neuronal differentiation and social behavior in 7q11.23 neurodevelopmental disorders. Sci. Adv. 2023, 9, eadh2726. [Google Scholar] [CrossRef]
- Al-Beltagi, M.; Saeed, N.K.; Bediwy, A.S.; Bediwy, E.A.; Elbeltagi, R. Decoding the genetic landscape of autism: A comprehensive review. World J. Clin. Pediatr. 2024, 13, 98468. [Google Scholar] [CrossRef] [PubMed]
- Fard, Y.A.; Sadeghi, E.N.; Pajoohesh, Z.; Gharehdaghi, Z.; Khatibi, D.M.; Khosravifar, S.; Pishkari, Y.; Nozari, S.; Hijazi, A.; Pakmehr, S.; et al. Epigenetic underpinnings of the autistic mind: Histone modifications and prefrontal excitation/inhibition imbalance. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2024, 195, e32986. [Google Scholar] [CrossRef]
- Brauer, B.; Ancaten-Gonzalez, C.; Ahumada-Marchant, C.; Meza, R.C.; Merino-Veliz, N.; Nardocci, G.; Varela-Nallar, L.; Arriagada, G.; Chavez, A.E.; Bustos, F.J. Impact of KDM6B mosaic brain knockout on synaptic function and behavior. Sci. Rep. 2024, 14, 20416. [Google Scholar] [CrossRef]
- Lamonica, J.M.; Zhou, Z. Disentangling chromatin architecture to gain insights into the etiology of brain disorders. Curr. Opin. Genet. Dev. 2019, 55, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Shin, T.; Song, J.H.T.; Kosicki, M.; Kenny, C.; Beck, S.G.; Kelley, L.; Antony, I.; Qian, X.; Bonacina, J.; Papandile, F.; et al. Rare variation in non-coding regions with evolutionary signatures contributes to autism spectrum disorder risk. Cell Genom. 2024, 4, 100609. [Google Scholar] [CrossRef] [PubMed]
- Zerbi, V.; Pagani, M.; Markicevic, M.; Matteoli, M.; Pozzi, D.; Fagiolini, M.; Bozzi, Y.; Galbusera, A.; Scattoni, M.L.; Provenzano, G.; et al. Brain mapping across 16 autism mouse models reveals a spectrum of functional connectivity subtypes. Mol. Psychiatry 2021, 26, 7610–7620. [Google Scholar] [CrossRef]
- Gozzi, A.; Zerbi, V. Modeling Brain Dysconnectivity in Rodents. Biol. Psychiatry 2023, 93, 419–429. [Google Scholar] [CrossRef]
- Moy, S.S.; Nadler, J.J.; Magnuson, T.R.; Crawley, J.N. Mouse models of autism spectrum disorders: The challenge for behavioral genetics. Am. J. Med. Genet. C Semin. Med. Genet. 2006, 142C, 40–51. [Google Scholar] [CrossRef]
- Porta-Sanchez, A.; Mazzanti, A.; Tarifa, C.; Kukavica, D.; Trancuccio, A.; Mohsin, M.; Zanfrini, E.; Perota, A.; Duchi, R.; Hernandez-Lopez, K.; et al. Unexpected impairment of I(Na) underpins reentrant arrhythmias in a knock-in swine model of Timothy syndrome. Nat. Cardiovasc. Res. 2023, 2, 1291–1309. [Google Scholar] [CrossRef]
- Xu, S.; Wang, J.; Mao, K.; Jiao, D.; Li, Z.; Zhao, H.; Sun, Y.; Feng, J.; Lai, Y.; Peng, R.; et al. Generation and transcriptomic characterization of MIR137 knockout miniature pig model for neurodevelopmental disorders. Cell Biosci. 2024, 14, 86. [Google Scholar] [CrossRef] [PubMed]
- Tu, Z.; Zhao, H.; Li, B.; Yan, S.; Wang, L.; Tang, Y.; Li, Z.; Bai, D.; Li, C.; Lin, Y.; et al. CRISPR/Cas9-mediated disruption of SHANK3 in monkey leads to drug-treatable autism-like symptoms. Hum. Mol. Genet. 2019, 28, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Veenstra-VanderWeele, J.; O’Reilly, K.C.; Dennis, M.Y.; Uribe-Salazar, J.M.; Amaral, D.G. Translational Neuroscience Approaches to Understanding Autism. Am. J. Psychiatry 2023, 180, 265–276. [Google Scholar] [CrossRef]
- Aida, T.; Feng, G. The dawn of non-human primate models for neurodevelopmental disorders. Curr. Opin. Genet. Dev. 2020, 65, 160–168. [Google Scholar] [CrossRef]
- Krienen, F.M.; Goldman, M.; Zhang, Q.; Del Rosario, R.C.H.; Florio, M.; Machold, R.; Saunders, A.; Levandowski, K.; Zaniewski, H.; Schuman, B.; et al. Author Correction: Innovations present in the primate interneuron repertoire. Nature 2020, 588, E17. [Google Scholar] [CrossRef]
- Bae, B.I.; Tietjen, I.; Atabay, K.D.; Evrony, G.D.; Johnson, M.B.; Asare, E.; Wang, P.P.; Murayama, A.Y.; Im, K.; Lisgo, S.N.; et al. Evolutionarily dynamic alternative splicing of GPR56 regulates regional cerebral cortical patterning. Science 2014, 343, 764–768. [Google Scholar] [CrossRef]
- Kikuchi, Y.; Uddin, M.; Veltman, J.A.; Wells, S.; Morris, C.; Woodbury-Smith, M. Evolutionary constrained genes associated with autism spectrum disorder across 2,054 nonhuman primate genomes. Mol. Autism 2025, 16, 5. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Tu, Z.; Xu, H.; Yan, S.; Yan, H.; Zheng, Y.; Yang, W.; Zheng, J.; Li, Z.; Tian, R.; et al. Altered neurogenesis and disrupted expression of synaptic proteins in prefrontal cortex of SHANK3-deficient non-human primate. Cell Res. 2017, 27, 1293–1297. [Google Scholar] [CrossRef]
- Zhou, Y.; Sharma, J.; Ke, Q.; Landman, R.; Yuan, J.; Chen, H.; Hayden, D.S.; Fisher, J.W., 3rd; Jiang, M.; Menegas, W.; et al. Atypical behaviour and connectivity in SHANK3-mutant macaques. Nature 2019, 570, 326–331. [Google Scholar] [CrossRef]
- Santana-Coelho, D.; Layne-Colon, D.; Valdespino, R.; Ross, C.C.; Tardif, S.D.; O’Connor, J.C. Advancing Autism Research From Mice to Marmosets: Behavioral Development of Offspring Following Prenatal Maternal Immune Activation. Front. Psychiatry 2021, 12, 705554. [Google Scholar] [CrossRef]
- Vermaercke, B.; Iwata, R.; Wierda, K.; Boubakar, L.; Rodriguez, P.; Ditkowska, M.; Bonin, V.; Vanderhaeghen, P. SYNGAP1 deficiency disrupts synaptic neoteny in xenotransplanted human cortical neurons in vivo. Neuron 2024, 112, 3058–3068.e8. [Google Scholar] [CrossRef] [PubMed]
- Quaid, K.; Xing, X.; Chen, Y.H.; Miao, Y.; Neilson, A.; Selvamani, V.; Tran, A.; Cui, X.; Hu, M.; Wang, T. iPSCs and iPSC-derived cells as a model of human genetic and epigenetic variation. Nat. Commun. 2025, 16, 1750. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 2007, 1, 39–49. [Google Scholar] [CrossRef]
- Connacher, R.; Williams, M.; Prem, S.; Yeung, P.L.; Matteson, P.; Mehta, M.; Markov, A.; Peng, C.; Zhou, X.; McDermott, C.R.; et al. Autism NPCs from both idiopathic and CNV 16p11.2 deletion patients exhibit dysregulation of proliferation and mitogenic responses. Stem Cell Rep. 2022, 17, 1380–1394. [Google Scholar] [CrossRef] [PubMed]
- Prilutsky, D.; Palmer, N.P.; Smedemark-Margulies, N.; Schlaeger, T.M.; Margulies, D.M.; Kohane, I.S. iPSC-derived neurons as a higher-throughput readout for autism: Promises and pitfalls. Trends Mol. Med. 2014, 20, 91–104. [Google Scholar] [CrossRef]
- Chiola, S.; Edgar, N.U.; Shcheglovitov, A. iPSC toolbox for understanding and repairing disrupted brain circuits in autism. Mol. Psychiatry 2022, 27, 249–258. [Google Scholar] [CrossRef]
- Pintacuda, G.; Hsu, Y.H.; Tsafou, K.; Li, K.W.; Martin, J.M.; Riseman, J.; Biagini, J.C.; Ching, J.K.T.; Mena, D.; Gonzalez-Lozano, M.A.; et al. Protein interaction studies in human induced neurons indicate convergent biology underlying autism spectrum disorders. Cell Genom. 2023, 3, 100250. [Google Scholar] [CrossRef]
- Li, S.; Zhao, S.; Sinson, J.C.; Bajic, A.; Rosenfeld, J.A.; Neeley, M.B.; Pena, M.; Worley, K.C.; Burrage, L.C.; Weisz-Hubshman, M.; et al. The clinical utility and diagnostic implementation of human subject cell transdifferentiation followed by RNA sequencing. Am. J. Hum. Genet. 2024, 111, 841–862. [Google Scholar] [CrossRef]
- Zhang, Y.; Pak, C.; Han, Y.; Ahlenius, H.; Zhang, Z.; Chanda, S.; Marro, S.; Patzke, C.; Acuna, C.; Covy, J.; et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 2013, 78, 785–798. [Google Scholar] [CrossRef]
- Chen, M.; Maimaitili, M.; Habekost, M.; Gill, K.P.; Mermet-Joret, N.; Nabavi, S.; Febbraro, F.; Denham, M. Rapid generation of regionally specified CNS neurons by sequential patterning and conversion of human induced pluripotent stem cells. Stem Cell Res. 2020, 48, 101945. [Google Scholar] [CrossRef]
- Shan, X.; Zhang, A.; Rezzonico, M.G.; Tsai, M.C.; Sanchez-Priego, C.; Zhang, Y.; Chen, M.B.; Choi, M.; Andrade Lopez, J.M.; Phu, L.; et al. Fully defined NGN2 neuron protocol reveals diverse signatures of neuronal maturation. Cell Rep. Methods 2024, 4, 100858. [Google Scholar] [CrossRef] [PubMed]
- Shan, X.; Cramer, A.L.; Jeong, C.G. Protocol for generating NGN2 iPSC lines and large-scale human neuron production. STAR Protoc. 2025, 6, 103654. [Google Scholar] [CrossRef] [PubMed]
- Chapman, G.; Alsaqati, M.; Lunn, S.; Singh, T.; Linden, S.C.; Linden, D.E.J.; van den Bree, M.B.M.; Ziller, M.; Owen, M.J.; Hall, J.; et al. Using induced pluripotent stem cells to investigate human neuronal phenotypes in 1q21.1 deletion and duplication syndrome. Mol. Psychiatry 2022, 27, 819–830. [Google Scholar] [CrossRef]
- Zhang, H.; McCarroll, A.; Peyton, L.; Diaz de Leon-Guerrerro, S.; Zhang, S.; Gowda, P.; Sirkin, D.; ElAchwah, M.; Duhe, A.; Wood, W.G.; et al. Scaled and efficient derivation of loss-of-function alleles in risk genes for neurodevelopmental and psychiatric disorders in human iPSCs. Stem Cell Rep. 2024, 19, 1489–1504. [Google Scholar] [CrossRef]
- Uzquiano, A.; Arlotta, P. Brain organoids: The quest to decipher human-specific features of brain development. Curr. Opin. Genet. Dev. 2022, 75, 101955. [Google Scholar] [CrossRef]
- Pagliaro, A.; Artegiani, B.; Hendriks, D. Emerging approaches to enhance human brain organoid physiology. Trends Cell Biol. 2025; Online ahead of print. [Google Scholar] [CrossRef]
- Paulsen, B.; Velasco, S.; Kedaigle, A.J.; Pigoni, M.; Quadrato, G.; Deo, A.J.; Adiconis, X.; Uzquiano, A.; Sartore, R.; Yang, S.M.; et al. Autism genes converge on asynchronous development of shared neuron classes. Nature 2022, 602, 268–273. [Google Scholar] [CrossRef]
- Trujillo, C.A.; Gao, R.; Negraes, P.D.; Gu, J.; Buchanan, J.; Preissl, S.; Wang, A.; Wu, W.; Haddad, G.G.; Chaim, I.A.; et al. Complex Oscillatory Waves Emerging from Cortical Organoids Model Early Human Brain Network Development. Cell Stem Cell 2019, 25, 558–569.e7. [Google Scholar] [CrossRef]
- Dhaliwal, N.; Choi, W.W.Y.; Muffat, J.; Li, Y. Modeling PTEN overexpression-induced microcephaly in human brain organoids. Mol. Brain 2021, 14, 131. [Google Scholar] [CrossRef] [PubMed]
- Niu, W.; Yu, S.; Li, X.; Wang, Z.; Chen, R.; Michalski, C.; Jahangiri, A.; Zohdy, Y.; Chern, J.J.; Whitworth, T.J.; et al. Longitudinal multi-omics reveals pathogenic TSC2 variants disrupt developmental trajectories of human cortical organoids derived from Tuberous Sclerosis Complex. bioRxiv 2024. [Google Scholar] [CrossRef]
- Kanton, S.; Boyle, M.J.; He, Z.; Santel, M.; Weigert, A.; Sanchis-Calleja, F.; Guijarro, P.; Sidow, L.; Fleck, J.S.; Han, D.; et al. Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature 2019, 574, 418–422. [Google Scholar] [CrossRef]
- Cugola, F.R.; Fernandes, I.R.; Russo, F.B.; Freitas, B.C.; Dias, J.L.; Guimaraes, K.P.; Benazzato, C.; Almeida, N.; Pignatari, G.C.; Romero, S.; et al. The Brazilian Zika virus strain causes birth defects in experimental models. Nature 2016, 534, 267–271. [Google Scholar] [CrossRef]
- Kanton, S.; Pasca, S.P. Human assembloids. Development 2022, 149, dev201120. [Google Scholar] [CrossRef] [PubMed]
- Onesto, M.M.; Kim, J.I.; Pasca, S.P. Assembloid models of cell-cell interaction to study tissue and disease biology. Cell Stem Cell 2024, 31, 1563–1573. [Google Scholar] [CrossRef] [PubMed]
- Birey, F.; Li, M.Y.; Gordon, A.; Thete, M.V.; Valencia, A.M.; Revah, O.; Pasca, A.M.; Geschwind, D.H.; Pasca, S.P. Dissecting the molecular basis of human interneuron migration in forebrain assembloids from Timothy syndrome. Cell Stem Cell 2022, 29, 248–264 e247. [Google Scholar] [CrossRef]
- Semendeferi, K.; Teffer, K.; Buxhoeveden, D.P.; Park, M.S.; Bludau, S.; Amunts, K.; Travis, K.; Buckwalter, J. Spatial organization of neurons in the frontal pole sets humans apart from great apes. Cereb. Cortex 2011, 21, 1485–1497. [Google Scholar] [CrossRef]
- Levy, R.J.; Pasca, S.P. From Organoids to Assembloids: Experimental Approaches to Study Human Neuropsychiatric Disorders. Annu. Rev. Neurosci. 2025; Online ahead of print. [Google Scholar] [CrossRef]
- Miura, Y.; Kim, J.I.; Jurjut, O.; Kelley, K.W.; Yang, X.; Chen, X.; Thete, M.V.; Revah, O.; Cui, B.; Pachitariu, M.; et al. Assembloid model to study loop circuits of the human nervous system. bioRxiv 2024. [Google Scholar] [CrossRef]
- Li, C.; Fleck, J.S.; Martins-Costa, C.; Burkard, T.R.; Themann, J.; Stuempflen, M.; Peer, A.M.; Vertesy, A.; Littleboy, J.B.; Esk, C.; et al. Single-cell brain organoid screening identifies developmental defects in autism. Nature 2023, 621, 373–380. [Google Scholar] [CrossRef]
- Zhou, H.; Ye, P.; Xiong, W.; Duan, X.; Jing, S.; He, Y.; Zeng, Z.; Wei, Y.; Ye, Q. Genome-scale CRISPR-Cas9 screening in stem cells: Theories, applications and challenges. Stem Cell Res. Ther. 2024, 15, 218. [Google Scholar] [CrossRef]
- He, Z.; Dony, L.; Fleck, J.S.; Szalata, A.; Li, K.X.; Sliskovic, I.; Lin, H.C.; Santel, M.; Atamian, A.; Quadrato, G.; et al. An integrated transcriptomic cell atlas of human neural organoids. Nature 2024, 635, 690–698. [Google Scholar] [CrossRef]
- Birtele, M.; Lancaster, M.; Quadrato, G. Modelling human brain development and disease with organoids. Nat. Rev. Mol. Cell. Biol. 2025, 26, 389–412. [Google Scholar] [CrossRef]
- Cook, S.J.; Jarrell, T.A.; Brittin, C.A.; Wang, Y.; Bloniarz, A.E.; Yakovlev, M.A.; Nguyen, K.C.Q.; Tang, L.T.; Bayer, E.A.; Duerr, J.S.; et al. Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature 2019, 571, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Marcogliese, P.C.; Deal, S.L.; Andrews, J.; Harnish, J.M.; Bhavana, V.H.; Graves, H.K.; Jangam, S.; Luo, X.; Liu, N.; Bei, D.; et al. Drosophila functional screening of de novo variants in autism uncovers damaging variants and facilitates discovery of rare neurodevelopmental diseases. Cell Rep. 2022, 38, 110517. [Google Scholar] [CrossRef] [PubMed]
- Kwan, K.Y.; Lam, M.M.; Johnson, M.B.; Dube, U.; Shim, S.; Rasin, M.R.; Sousa, A.M.; Fertuzinhos, S.; Chen, J.G.; Arellano, J.I.; et al. Species-dependent posttranscriptional regulation of NOS1 by FMRP in the developing cerebral cortex. Cell 2012, 149, 899–911. [Google Scholar] [CrossRef] [PubMed]
- Olmos-Serrano, J.L.; Kang, H.J.; Tyler, W.A.; Silbereis, J.C.; Cheng, F.; Zhu, Y.; Pletikos, M.; Jankovic-Rapan, L.; Cramer, N.P.; Galdzicki, Z.; et al. Down Syndrome Developmental Brain Transcriptome Reveals Defective Oligodendrocyte Differentiation and Myelination. Neuron 2016, 89, 1208–1222. [Google Scholar] [CrossRef]
- Tabbaa, M.; Knoll, A.; Levitt, P. Mouse population genetics phenocopies heterogeneity of human Chd8 haploinsufficiency. Neuron 2023, 111, 539–556 e535. [Google Scholar] [CrossRef]
- Veeraragavan, S.; Wan, Y.W.; Connolly, D.R.; Hamilton, S.M.; Ward, C.S.; Soriano, S.; Pitcher, M.R.; McGraw, C.M.; Huang, S.G.; Green, J.R.; et al. Loss of MeCP2 in the rat models regression, impaired sociability and transcriptional deficits of Rett syndrome. Hum. Mol. Genet. 2016, 25, 3284–3302. [Google Scholar] [CrossRef]
- Chen, R.Z.; Akbarian, S.; Tudor, M.; Jaenisch, R. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat. Genet. 2001, 27, 327–331. [Google Scholar] [CrossRef]
- Patterson, K.C.; Hawkins, V.E.; Arps, K.M.; Mulkey, D.K.; Olsen, M.L. MeCP2 deficiency results in robust Rett-like behavioural and motor deficits in male and female rats. Hum. Mol. Genet. 2016, 25, 3303–3320. [Google Scholar] [CrossRef]
- Liu, H.; Chen, Y.; Niu, Y.; Zhang, K.; Kang, Y.; Ge, W.; Liu, X.; Zhao, E.; Wang, C.; Lin, S.; et al. TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys. Cell Stem Cell 2014, 14, 323–328. [Google Scholar] [CrossRef]
- Kinkade, J.A.; Singh, P.; Verma, M.; Khan, T.; Ezashi, T.; Bivens, N.J.; Roberts, R.M.; Joshi, T.; Rosenfeld, C.S. Small and Long Non-Coding RNA Analysis for Human Trophoblast-Derived Extracellular Vesicles and Their Effect on the Transcriptome Profile of Human Neural Progenitor Cells. Cells 2024, 13, 1867. [Google Scholar] [CrossRef]
- Pasca, S.P.; Arlotta, P.; Bateup, H.S.; Camp, J.G.; Cappello, S.; Gage, F.H.; Knoblich, J.A.; Kriegstein, A.R.; Lancaster, M.A.; Ming, G.L.; et al. A nomenclature consensus for nervous system organoids and assembloids. Nature 2022, 609, 907–910. [Google Scholar] [CrossRef] [PubMed]
- Pasca, S.P.; Arlotta, P.; Bateup, H.S.; Camp, J.G.; Cappello, S.; Gage, F.H.; Knoblich, J.A.; Kriegstein, A.R.; Lancaster, M.A.; Ming, G.L.; et al. A framework for neural organoids, assembloids and transplantation studies. Nature 2025, 639, 315–320. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ranjan, J.; Bhattacharya, A. The Evolving Landscape of Functional Models of Autism Spectrum Disorder. Cells 2025, 14, 908. https://doi.org/10.3390/cells14120908
Ranjan J, Bhattacharya A. The Evolving Landscape of Functional Models of Autism Spectrum Disorder. Cells. 2025; 14(12):908. https://doi.org/10.3390/cells14120908
Chicago/Turabian StyleRanjan, Jai, and Aniket Bhattacharya. 2025. "The Evolving Landscape of Functional Models of Autism Spectrum Disorder" Cells 14, no. 12: 908. https://doi.org/10.3390/cells14120908
APA StyleRanjan, J., & Bhattacharya, A. (2025). The Evolving Landscape of Functional Models of Autism Spectrum Disorder. Cells, 14(12), 908. https://doi.org/10.3390/cells14120908