An Update on the Impact of Climate Change in Viticulture and Potential Adaptations
Abstract
:1. Introduction
2. Temperature and Drought Effects of Climate Change
2.1. Temperature Effects
2.2. Drought Effects
3. Adaptations to Higher Temperatures
3.1. Later Ripening Varieties
3.2. Later-Ripening Clones
3.3. Later-Ripening Rootstocks
3.4. Increasing Trunk Height
3.5. Reducing Leaf Area to Fruit Weight Ratio
3.6. Late Pruning
3.7. Moving to Higher Altitudes
3.8. Combination of Adaptations
4. Adaptations to Increased Drought
4.1. Drought Resistant Rootstocks
4.2. Drought Resistant Varieties
4.3. Training Systems
4.4. Soil Water Holding Capacity
4.5. Irrigation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jackson, D.I.; Lombard, P.B. Environmental and Management Practices Affecting Grape Composition and Wine Quality—A Review. Am. J. Enol. Vitic. 1993, 44, 409–430. [Google Scholar]
- Fraga, H.; Malheiro, A.-C.; Moutinho-Perreira, J.; Santos, J. An overview of climate change impacts on European viticulture. Food Energy Secur. 2012, 1, 94–110. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Seguin, G. The concept of terroir in viticulture. J. Wine Res. 2006, 17, 1–10. [Google Scholar] [CrossRef]
- Audeguin, L.; Boidron, R.; Bloy, P.; Grenan, S.; Leclair, P.; Boursiquot, J.-M. L’expérimentation des clones de vigne en France. Etat des lieux, méthodologie et perspectives. Revue Française d’Oenologie 2000, 184, 8–11. [Google Scholar]
- Van Leeuwen, C.; Roby, J.-P.; Alonso-Villaverde, V.; Gindro, K. Impact of clonal variability in Vitis vinifera Cabernet franc on grape composition, wine quality, leaf blade stilbene content and downy mildew resistance. J. Agric. Food Chem. 2013, 61, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Ollat, N.; Peccoux, A.; Papura, D.; Esmenjaud, D.; Marguerit, E.; Tandonnet, J.-P.; Bordenave, L.; Cookson, S.; Barrieu, F.; Rossdeutsch, L.; et al. Rootstock as a component of adaptation to environment. In Grapevine in a Changing Environment: A Molecular and Ecophysiological Perspective; Geros, H., Chaves, M., Medrano, H., Delrot, S., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2015. [Google Scholar]
- Smart, R.E. Principles of Grapevine Canopy Microclimate Manipulation with Implications for Yield and Quality. A Review. Am. J. Enol. Vitic. 1985, 36, 230–239. [Google Scholar]
- Wheeler, S.J.; Black, A.S.; Pickering, G.J. Vineyard floor management improves wine quality in highly vigorous Vitis vinifera ‘Cabernet Sauvignon’in New Zealand. N. Z. J. Crop. Hortic. Sci. 2005, 33, 317–328. [Google Scholar] [CrossRef]
- Roby, J.-P.; van Leeuwen, C.; Marguerit, E. Références Vigne. Références Technico-Économiques de Systèmes de Conduite de la Vigne, 2nd ed.; Synthèse, A., Ed.; Lavoisier: Paris, France, 2008. [Google Scholar]
- Van Leeuwen, C.; Tregoat, O.; Chone, X.; Gaudillere, J.-P.; Pernet, D. Different environmental conditions, different results: The effect of controlled environmental stress on grape quality potential and the way to monitor it. In Proceedings of the 13th Australian Wine Industry Technical Conference, Adelaide, Australia, 29 July–2 August 2007. [Google Scholar]
- Pons, A.; Allamy, L.; Schüttler, A.; Rauhut, D.; Thibon, C.; Darriet, P. What is the expected impact of climate change on wine aroma compounds and their precursors in grape? OENO One 2017, 51, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Drappier, J.; Thibon, C.; Rabot, A.; Gény, L. Relationship between wine composition and temperature: Impact on Bordeaux wine typicity in the context of global warming. Crit. Rev. Food Sci. Nutr. 2019, 59, 14–30. [Google Scholar] [CrossRef]
- Matthews, M.; Anderson, M. Fruit ripening in Vitis vinifera L.: Responses to seasonal water deficits. Am. J. Enol. Vitic. 1988, 39, 313–320. [Google Scholar]
- Ojeda, H.; Andary, C.; Kraeva, E.; Carbonneau, A.; Deloire, A. Influence of pre- and postveraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera cv. Syrah. Am. J. Enol. Vitic. 2002, 53, 261–267. [Google Scholar]
- Van Leeuwen, C.; Trégoat, O.; Choné, X.; Bois, B.; Pernet, D.; Gaudillère, J.-P. Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes? OENO One 2009, 43, 121–134. [Google Scholar] [CrossRef]
- Triolo, R.; Roby, J.-P.; Pisciotta, A.; Di Lorenzo, R.; van Leeuwen, C. Impact of vine water status on berry mass and berry tissue development of Cabernet franc (Vitis vinifera L.) assessed at berry level. J. Sci. Food Agric. 2019, 99. [Google Scholar] [CrossRef] [PubMed]
- Picard, M.; van Leeuwen, C.; Guyon, F.; Gaillard, L.; de Revel, G.; Marchand, S. Vine water deficit impacts aging bouquet in fine red Bordeaux wine. Front. Chem. 2017, 5, 56. [Google Scholar] [CrossRef] [PubMed]
- Le Menn, N.; van Leeuwen, C.; Picard, M.; Riquier, L.; de Revel, G.; Marchand, S. Effect of vine water and nitrogen status, as well as temperature, on some aroma compounds of aged red Bordeaux wines. J. Agric. Food Chem. 2019. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Roby, J.-P.; de Rességuier, L. Soil related terroir factors, a review. OENO One 2018, 52, 173–188. [Google Scholar] [CrossRef]
- Peyrot des Gachons, C.; van Leeuwen, C.; Tominaga, T.; Soyer, J.-P.; Gaudillere, J.-P.; Dubourdieu, D. Influence of water and nitrogen deficit on fruit ripening and aroma potential of Vitis vinifera L. cv Sauvignon blanc in field conditions. J. Sci. Food Agric. 2005, 85, 73–85. [Google Scholar] [CrossRef]
- Helwi, P.; Guillaumie, S.; Thibon, S.; Keime, C.; Habran, A.; Hilbert, G.; Gomes, E.; Darriet, P.; Delrot, S.; van Leeuwen, C. Vine nitrogen status and volatile thiols and their precursors from plot to transcriptome level. BMC Plant Biol. 2016, 16, 173. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Friant, P.; Chone, X.; Tregoat, O.; Koundouras, S.; Dubourdieu, D. Influence of climate, soil and cultivar on terroir. Am. J. Enol. Vitic. 2004, 55, 207–217. [Google Scholar]
- Schultz, H.R. Climate change and viticulture: A European perspective on climatology, carbon dioxide and UV-B effects. Aust. J. Grape Wine Res. 2000, 6, 2–12. [Google Scholar] [CrossRef]
- Ollat, N.; van Leeuwen, C.; Garcia de Cortazar, I.; Touzard, J.-M. The challenging issue of climate change for sustainable grape and wine production. OENO One 2017, 51, 59–60. [Google Scholar] [CrossRef] [Green Version]
- Storchmann, K. Introduction to the special issue devoted to wine and climate change. J. Wine Econ. 2016, 11, 1–4. [Google Scholar] [CrossRef]
- Mira de Orduna, R. Climate change associated effects on wine quality and production. Food Res. Int. 2010, 43, 1844–1855. [Google Scholar] [CrossRef]
- Xu, Y.; Castel, T.; Richard, Y.; Cuccia, C.; Bois, B. Burgundy regional climate change and its potential impact on grapevines. Clim. Dyn. 2012, 39, 1613–1626. [Google Scholar] [CrossRef]
- Mosedale, J.R.; Abernethy, K.E.; Smart, R.E.; Wilson, R.J.; Maclean, I.M. Climate change impacts and adaptive strategies: Lessons from the grapevine. Glob. Chang. Biol. 2016, 22, 3814–3828. [Google Scholar] [CrossRef] [PubMed]
- Caffarra, A.; Rinaldi, M.; Eccel, E.; Rossi, V.; Pertot, I. Modelling the impact of climate change on the interaction between grapevine and its pests and pathogens: European grapevine moth and powdery mildew. Agric. Ecosyst. Environ. 2012, 148, 89–101. [Google Scholar] [CrossRef]
- Bois, B.; Zito, S.; Calonnec, A. Climate vs grapevine pests and diseases worldwide: The first results of a global survey. OENO One 2017, 51, 133–139. [Google Scholar] [CrossRef]
- Hannah, L.; Roehrdanz, P.R.; Ikegami, M.; Shepard, A.V.; Shaw, M.R.; Tabor, G.; Zhi, L.; Marquet, P.A.; Hijmans, R.J. Climate change, wine, and conservation. Proc. Natl. Acad. Sci. USA 2013, 110, 6907–6912. [Google Scholar] [CrossRef] [Green Version]
- Moriondo, M.; Jones, G.V.; Bois, B.; Dibari, C.; Ferrise, R.; Trombi, G.; Bindi, M. Projected shifts of wine regions in response to climate change. Clim. Chang. 2013, 119, 825–839. [Google Scholar] [CrossRef]
- Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Jones, G.V.; Alves, F.; Pinto, J.G.; Santos, J.A. Very high resolution bioclimatic zoning of Portuguese wine regions: Present and future scenarios. Reg. Environ. Chang. 2014, 14, 295–306. [Google Scholar] [CrossRef]
- Poni, S.; Palliotti, A.; Bernizzoni, F. Calibration and evaluation of a STELLA software-based daily CO2 balance model in Vitis vinifera L. J. Am. Soc. Hortic. Sci. 2006, 131, 273–283. [Google Scholar] [CrossRef]
- Costa, R.; Fraga., H.; Malheiro, A.C.; Santos, J.A. Application of crop modelling to portuguese viticulture: Implementation and added-values for strategic planning. Ciência e Técnica Vitivinícola 2015, 30, 29–42. [Google Scholar] [CrossRef]
- Schultz, H.R.; Stoll, M. Some critical issues in environmental physiology of grapevines: Future challenges and current limitations. Aust. J. Grape Wine Res. 2009, 16, 4–24. [Google Scholar] [CrossRef]
- Ewert, F.; Rodriguez, D.; Jamieson, P.; Semenov, M.A.; Mitchell, R.A.C.; Goudriaan, J.; Weigel, H.J. Effects of elevated CO2 and drought on wheat: Testing crop simulation models for different experimental and climatic conditions. Agric. Ecosyst. Environ. 2002, 93, 249–266. [Google Scholar] [CrossRef]
- Rolli, E.; Marasco, R.; Vigani, G.; Ettoumi, B.; Mapelli, F.; Deangelis, M.-L.; Gandolfi, C.; Casati, E.; Previtali, F.; Gerbino, R.; et al. Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ. Microbiol. 2015, 17, 316–331. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, A.D. Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 1965, 13, 115–155. [Google Scholar]
- Bradshaw, A.D. Unravelling phenotypic plasticity—Why should we bother? New Phytol. 2006, 170, 644–648. [Google Scholar] [CrossRef]
- Nicotra, A.B.; Atkin, O.K.; Bonser, S.P.; Davidson, A.M.; Finnegan, E.J.; Mathesius, U.; Poot, P.; Purugganan, M.D.; Richards, C.L.; Valladares, F. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 2010, 15, 684–692. [Google Scholar] [CrossRef]
- Chitwood, D.H.; Rundell., S.M.; Li, D.Y.; Woodford, Q.L.; Yu, T.T.; Lopez, J.R.; Greenblatt, D.; Kang, J.; Londo, J.P. Climate and developmental plasticity: Interannual variability in grapevine leaf morphology. Plant Physiol. 2016, 170, 1480. [Google Scholar] [CrossRef]
- IPCC. Climate Change Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R., Meyer, L., Eds.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Jones, G.; White, M.; Cooper, O.; Storchmann, K. Climate change and global wine quality. Clim. Chang. 2005, 73, 319–343. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Darriet, P. The impact of climate change on viticulture and wine quality. J. Wine Econ. 2016, 11, 150–167. [Google Scholar] [CrossRef]
- Parker, A.; Garcia de Cortazar, I.; van Leeuwen, C.; Chuine, I. General phenological model to characterise the timing of flowering and veraison of Vitis vinifera L. Aust. J. Grape Wine Res. 2011, 17, 206–216. [Google Scholar] [CrossRef]
- Chuine, I.; Yiou, P.; Viovy, N.; Seguin, B.; Daux, V.; Leroy-Ladurie, E.L.R. Historical phenology: Grape ripening as a past climate indicator. Nature 2014, 432, 289–290. [Google Scholar] [CrossRef] [PubMed]
- Duchêne, E.; Schneider, C. Grapevine and climatic change: A glance at the situation in Alsace. Agron. Sustain. Dev. 2005, 25, 93–99. [Google Scholar] [CrossRef]
- Molitor, D.; Junk, J. Climate change is implicating a two-fold impact on air temperature increase in the ripening period under the conditions of the Luxembourgish grapegrowing region. OENO One 2019, 5. [Google Scholar] [CrossRef]
- Mosedale, J.R.; Wilson, R.J.; Maclean, I.M.D. Climate change and crop exposure to adverse weather: Changes to frost risk and grapevine flowering conditions. PLoS ONE 2015, 10, e0141218. [Google Scholar] [CrossRef]
- Sgubin, G.; Swingedouw, D.; Dayon, G.; Garcia de Cortazar, I.; Ollat, N.; Pagé, C.; van Leeuwen, C. The risk of tardive frost damage in French vineyards in a changing climate. Agric. For. Meteorol. 2018, 250, 226–242. [Google Scholar] [CrossRef]
- McIntyre, G.N.; Lider, L.A.; Ferrari, N.L. The chronological classification of grapevine phenology. Am. J. Enol. Vitic. 1982, 33, 80–85. [Google Scholar]
- Parker, A.; Garcia de Cortázar, I.; Chuine, I.; Barbeau, G.; Bois, B.; Boursiquot, J.-M.; Cahurel, J.-Y.; Claverie, M.; Dufourcq, T.; Gény, L.; et al. Classification of varieties for their timing of flowering and veraison using a modelling approach. A case study for the grapevine species Vitis vinifera L. Agric. For. Meteorol. 2013, 180, 249–264. [Google Scholar] [CrossRef]
- Lereboullet, A.-L.; Beltrando, G.; Bardsley, D.K.; Rouvellac, E. The viticultural system and climate change: Coping with long-term trends in temperature and rainfall in Roussillon, France. Reg. Environ. Chang. 2014, 14, 1955–1966. [Google Scholar] [CrossRef]
- Parker, A.; Garcia de Cortazar, I.; Gény, L.; Spring, J.-L.; Destrac, A.; Schultz, H.; Stoll, M.; Molitor, D.; Lacombe, T.; Graça, A.; et al. The temperature based Grapevine Sugar Ripeness (GSR) model for adapting a wide range of Vitis vinfera L. Cultivars in a Changing Climate. In Proceedings of the 21th International Giesco Meeting, Tessaloniki, Greece, 24–28 June 2019; Koundouras, S., Ed.; pp. 303–308. [Google Scholar]
- Petrie, P.; Sadras, V. Advancement of grapevine maturity in Australia between 1993 and 2006: Putative causes, magnitude of trends and viticultural consequences. Aust. J. Grape Wine Res. 2008, 14, 33–45. [Google Scholar] [CrossRef]
- Guilpart, N.; Metay, A.; Gary, C. Grapevine bud fertility and number of berries per bunch are determined by water and nitrogen stress around flowering in the previous year. Eur. J. Agron. 2014, 54, 9–20. [Google Scholar] [CrossRef]
- Ollé, D.; Guiraud, J.L.; Souquet, J.M.; Terrier, N.; Ageorges, A.; Cheynier, V.; Verries, C. Effect of pre-and post-veraison water deficit on proanthocyanidin and anthocyanin accumulation during Shiraz berry development. Aust. J. Grape Wine Res. 2011, 17, 90–100. [Google Scholar] [CrossRef]
- Spayd, S.; Tarara, J.; Mee, D.; Ferguson, J. Separation of sunlight and temperature effects on the composition of Vitis vinifera cv. Merlot berries. Am. J. Enol. Vitic. 2002, 53, 171–182. [Google Scholar]
- Sadras, V.O.; Moran, M.A. Elevated temperature decouples anthocyanins and sugars in berries of Shiraz and Cabernet Franc. Aust. J. Grape Wine Res. 2012, 18, 115–122. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Destrac, A. Modified grape composition under climate change conditions requires adaptations in the vineyard. OENO One 2017, 51, 147–154. [Google Scholar] [CrossRef]
- Destrac-Irvine, A.; van Leeuwen, C. VitAdapt: An experimental program to study the behavior of a wide range of Vitis vinifera varieties in a Context of Climate Change in the Bordeaux Vineyards. In Proceedings of the Conference Climwine, Sustainable Grape and Wine Production in the Context of Climate change, Bordeaux, France, 11–13 April 2016; Ollat, N., Ed.; pp. 165–171. [Google Scholar]
- Wolkovich, E.M.; de Cortázar-Atauri, I.G.; Morales-Castilla, I.; Nicholas, K.A.; Lacombe, T. From Pinot to Xinomavro in the world’s future wine-growing regions. Nat. Clim. Chang. 2018, 8, 29. [Google Scholar] [CrossRef]
- Bordenave, L.; Tandonnet, J.P.; Decroocq, S.; Marguerit, E.; Cookson, S.J.; Esmenjaud, D.; Ollat, N. Wild vitis as a germplasm resource for rootstocks. In Proceedings of the Exploitation of Autochtonous and More Used Vines Varieties—Oenoviti International Network Meeting, Geisenheim, Germany, 3 November 2014. [Google Scholar]
- Marguerit, E.; Lagalle, L.; Lafargue, M.; Tandonnet, J.-P.; Goutouly, J.-P.; Beccavin, I.; Roques, M.; Audeguin, L.; Ollat, N. GreffAdapt: A relevant experimental vineyard to speed up the selection of grapevine rootstocks. In Proceedings of the 21th International Giesco meeting, Tessaloniki, Greece, 24–28 June 2019; Koundouras, S., Ed.; pp. 204–208. [Google Scholar]
- Poni, S.; Bernizzoni, F.; Civardi, S.; Libelli, N. Effects of pre-bloom leaf removal on growth of berry tissues and must composition in two red Vitis vinifera L. cultivars. Aust. J. Grape Wine Res. 2009, 15, 185–193. [Google Scholar] [CrossRef]
- Kliewer, W.; Dokoozlian, N. Leaf area/crop weight ratios of grapevines: Influence on fruit composition and wine quality. Am. J. Enol. Vitic. 2005, 56, 170–181. [Google Scholar]
- Parker, A.; Hofmann, R.; van Leeuwen, C.; McLachlan, A.; Trought, M. Leaf area to fruit mass ratio determines the time of veraison in Sauvignon blanc and Pinot noir grapevines. Aust. J. Grape Wine Res. 2014, 20, 422–431. [Google Scholar] [CrossRef]
- Parker, A.; Hofmann, R.; van Leeuwen, C.; McLachlan, A.; Trought, M. Manipulating the leaf area to fruit mass ratio alters the synchrony of soluble solids accumulation and titratable acidity of grapevines: Implications for modelling fruit development. Aust. J. Grape Wine Res. 2015, 21, 266–276. [Google Scholar] [CrossRef]
- Poni, S.; Gatti, M.; Bernizzoni, F.; Civardi, S.; Bobeica, N.; Magnanini, E.; Palliotti, A. Late leaf removal aimed at delaying ripening in cv. Sangiovese: Physiological assessment and vine performance. Aust. J. Grape Wine Res. 2013, 19, 378–387. [Google Scholar] [CrossRef]
- Palliotti, A.; Panara, F.; Silvestroni, O.; Lanari, V.; Sabbatini, P.; Howell, G.S.; Gatti, M.; Poni, S. Influence of mechanical postveraison leaf removal apical to the cluster zone on delay of fruit ripening in S angiovese (Vitis vinifera L.) grapevines. Aust. J. Grape Wine Res. 2013, 19, 369–377. [Google Scholar]
- De Bei, R.; Wang, X.; Papagiannis, L.; Cocco, M.; O’Brien, P.; Zito, M.; Jingyun Ouyang, J.; Fuentes, S.; Gilliham, M.; Tyerman, S.; et al. Does postveraison leaf removal delay ripening in Semillon and Shiraz in a hot Australian climate? Am. J. Enol. Vitic. in press. [CrossRef]
- Friend, A.; Trought, M. Delayed winter spur-pruning in New Zealand can alter yield components of Merlot grapevines. Aust. J. Grape Wine Res. 2007, 13, 157–164. [Google Scholar] [CrossRef]
- Moran, M.; Petrie, P.; Sadras, V. Effects of late pruning and elevated temperature on phenology, yield components, and berry traits in Shiraz. Am. J. Enol. Vitic. 2019, 70, 9–18. [Google Scholar] [CrossRef]
- Moran, M.A.; Bastian, S.E.; Petrie, P.R.; Sadras, V.O. Late pruning impacts on chemical and sensory attributes of Shiraz wine. Aust. J. Grape Wine Res. 2018, 24, 469–477. [Google Scholar] [CrossRef]
- Martínez-Moreno, A.; Sanz, F.; Yeves, A.; Gil-Muñoz, R.; Martínez, V.; Intrigliolo, D.; Buesa, I. Forcing bud growth by double-pruning as a technique to improve grape composition of Vitis vinifera L. cv. Tempranillo in a semi-arid Mediterranean climate. Sci. Hortic. 2019, 256, 108614. [Google Scholar]
- Petrie, P.R.; Brooke, S.J.; Moran, M.A.; Sadras, V.O. Pruning after budburst to delay and spread grape maturity. Aust. J. Grape Wine Res. 2017, 23, 378–389. [Google Scholar] [CrossRef]
- Koundouras, S.; Marinos, V.; Gkoulioti, A.; Kotseridis, Y.; van Leeuwen, C. Influence of vineyard location and vine water status on fruit maturation of non-irrigated cv Agiorgitiko (Vitis vinifera L.). Effects on wine phenolic and aroma components. J. Agric. Food Chem. 2006, 54, 5077–5086. [Google Scholar] [CrossRef]
- Carbonneau, A. The early selection of grapevine rootstocks for resistanceto drought conditions. Am. J. Enol. Vitic. 1985, 36, 195–198. [Google Scholar]
- Marguerit, E.; Brendel, O.; Lebon, E.; Decroocq, S.; van Leeuwen, C.; Ollat, N. Rootstock control of scion transpiration and its acclimation to water deficit are controlled by different genes. New Phytol. 2012, 194, 416–429. [Google Scholar] [CrossRef] [PubMed]
- Chaves, M.; Santos, T.; Souza, C.; Ortuño, M.; Rodrigues, M.; Lopes, C.; Maroco, J.; Pereira, J. Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. Ann. Appl. Biol. 2007, 150, 237–252. [Google Scholar] [CrossRef]
- Schultz, H.R. Differences in hydraulic architecture account for near-isohydric and anisohydric behaviour of two field grown Vitis vinifera L. cultivars during drought. Plant Cell Environ. 2003, 26, 1393–1405. [Google Scholar] [CrossRef]
- Charrier, G.; Delzon, S.; Domec, J.-C.; Zhang, L.; Delmas, C.; Merlin, I.; Corso, D.; Ojeda, H.; Ollat, N.; Prieto, J.; et al. Drought will not leave you glass empty: Low risk of hydraulic failure revealed by long term drought observations in world’s top wine regions. Sci. Adv. 2018, 4, 1. [Google Scholar] [CrossRef]
- Tomás, M.; Medrano, H.; Pou, A.; Escalona, J.M.; Martorell, S.; Ribas-Carbó, M.; Flexas, J. Water-use efficiency in grapevine cultivars grown under controlled conditions: Effects of water stress at the leaf and whole-plant level. Aust. J. Grape Wine Res. 2012, 18, 164–172. [Google Scholar] [CrossRef]
- Tortosa, I.; Escalona, J.; Bota, J.; Tomas, M.; Hernandez, E.; Escudero, E.; Medrano, H. Exploring the genetic variability in water use efficiency: Evaluation of inter and intra cultivar genetic diversity in grapevines. Plant Sci. 2016, 251, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Bchir, A.; Escalona, J.M.; Gallé, A.; Hernández-Montes, E.; Tortosa, I.; Braham, M.; Medrano, H. Carbon isotope discrimination (δ13C) as an indicator of vine water status and water use efficiency (WUE): Looking for the most representative sample and sampling time. Agric. Water Manag. 2016, 167, 11–20. [Google Scholar] [CrossRef]
- Gowdy, M.; Destrac, A.; Marguerit, E.; Gambetta, G.; van Leeuwen, C. Carbon isotope discrimination berry juice sugars: Changes in response to soil water deficits across a range of Vitis vinifera cultivars. In Proceedings of the 21th International Giesco Meeting, Tessaloniki, Greece, 24–28 June 2019; Koudouras, S., Ed.; pp. 813–814. [Google Scholar]
- Deloire, A. A few thoughts on grapevine training systems. Wineland Mag. 2012, 274, 82–86. [Google Scholar]
- Santesteban, L.G.; Miranda, C.; Urrestarazu, J.; Loidi, M.; Royo, J.B. Severe trimming and enhanced competition of laterals as a tool to delay ripeining in Tempranillo vineyards under semiarid conditions. OENO One 2017, 51, 191–203. [Google Scholar] [CrossRef]
- Champagnol, F. Eléments de Physiologie de la Vigne et de Viticulture Génrale; Dehan, Ed.; Saint-Gely-du-Fesc: Montpellier, France, 1984. [Google Scholar]
- Van Leeuwen, C.; Pieri, P.; Gowdy, M.; Ollat, N.; Roby, C. Reduced density is an environmental friendly and cost effective solution to increase resilience to drought in vineyards in a context of climate change. OENO One 2019, 53, 129–146. [Google Scholar] [CrossRef]
- Lebon, E.; Dumas, V.; Pieri, P.; Schultz, H. Modelling the seasonal dynamics of the soil water balance of vineyards. Funct. Plant Biol. 2003, 30, 699–710. [Google Scholar] [CrossRef]
- Van Zyl, J.; Hoffman, E. Root development and the performance of grapevines in response to natural as well as man-made soil impediments. In Proceedings of the 21th International Giesco Meeting, Tessaloniki, Greece, 24–28 June 2019; Koudouras, S., Ed.; pp. 122–144. [Google Scholar]
Rootstocks | Usual Name | Phylloxera Resistance | Water Stress Adaptation |
---|---|---|---|
Riparia Gloire de Montpellier | Riparia Gloire | High to very High | Low |
Grézot 1 | G1 | Low to Medium | Low |
Foëx 34 École de Montpellier | 34 EM | High | Low to Medium |
Millardet et de Grasset 420 A | 420 A | High | Very Low to Medium |
Kober-Téléki 5 BB | 5 BB | High | Low to Medium |
Téléki 5 C | 5 C | High | Low to Medium |
Couderc 1616 | 1616 C | High | Low to Medium |
Rupestris du Lot (St. George) | Rupestris | Medium to High | Low to Medium |
Millardet et de Grasset 101-14 | 101-14 MGt | High | Very Low to Medium |
Couderc 3309 | 3309 C | High | Very Low to High; mostly Low to Medium |
Téléki-Fuhr Selection Oppenheim n°4 | SO4 | High | Very Low to High; mostly Low to Medium |
Téléki 8 B | 8 B | High | Low to Medium |
Dog Ridge | Dog Ridge | High | Very Low to High |
Schwarzmann | Schwarzmann | High to very High | Very Low to Medium |
Couderc 1613 | 1613 C | Low to Medium | Low to Medium |
Couderc 161-49 | 161-49 C | High | Low to Medium |
Kober-Téléki 125 AA | 125 AA | High | Medium |
Millardet et de Grasset 41B | 41 B | Medium to High | Very Low to High, mainly Medium |
Castel 216-3 | 216-3 Cl | High | Medium |
Fercal INRA Bordeaux | Fercal | Medium to High | Medium |
Gravesac INRA Bordeaux | Gravesac | High to very High | Medium |
Freedom | Freedom | Medium to High | Medium |
Harmony | Harmony | Low to Medium | Medium to High |
Foëx 333 École de Montpellier | 333 EM | Medium to High | Low to High, mainly Medium to High |
Richter 99 | 99 R | High | Medium to Very high |
Börner | Börner | Very high | High |
Castel 196-17 | 196-17 Cl | Low to Medium | Medium to High |
Georgikon 28 | Georgikon 28 | High | High |
Malègue 44-53 | 44-53 M | High | Medium to very High |
Ramsey | Ramsey | High | Medium to very High |
Paulsen 1103 | 1103 P | High | High to very High |
Paulsen 1447 | 1447 P | High | High to very High |
Richter 110 | 110 R | High | High to very High |
Ruggeri 140 | 140 Ru | High | High to very High |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Leeuwen, C.; Destrac-Irvine, A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; de Rességuier, L.; Ollat, N. An Update on the Impact of Climate Change in Viticulture and Potential Adaptations. Agronomy 2019, 9, 514. https://doi.org/10.3390/agronomy9090514
van Leeuwen C, Destrac-Irvine A, Dubernet M, Duchêne E, Gowdy M, Marguerit E, Pieri P, Parker A, de Rességuier L, Ollat N. An Update on the Impact of Climate Change in Viticulture and Potential Adaptations. Agronomy. 2019; 9(9):514. https://doi.org/10.3390/agronomy9090514
Chicago/Turabian Stylevan Leeuwen, Cornelis, Agnès Destrac-Irvine, Matthieu Dubernet, Eric Duchêne, Mark Gowdy, Elisa Marguerit, Philippe Pieri, Amber Parker, Laure de Rességuier, and Nathalie Ollat. 2019. "An Update on the Impact of Climate Change in Viticulture and Potential Adaptations" Agronomy 9, no. 9: 514. https://doi.org/10.3390/agronomy9090514
APA Stylevan Leeuwen, C., Destrac-Irvine, A., Dubernet, M., Duchêne, E., Gowdy, M., Marguerit, E., Pieri, P., Parker, A., de Rességuier, L., & Ollat, N. (2019). An Update on the Impact of Climate Change in Viticulture and Potential Adaptations. Agronomy, 9(9), 514. https://doi.org/10.3390/agronomy9090514