Resistance of Multiple Diploid and Tetraploid Perennial Ryegrass (Lolium perenne L.) Varieties to Three Projected Drought Scenarios for the UK in 2080
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Parameter | Value |
---|---|
Cell dimensions (mm) | 38 × 38 |
Cell area (mm2) | 1444 |
Current rainfall 1 (mm) | 7 |
Volume of rainfall per cell (mm3) | 10,108 |
Cell number per tray | 40 |
Total rainfall per tray (mm3) | 404,320 |
Total volume per tray (ml)—current rainfall | 404 |
Total volume per tray (ml)—likely drought | 303 |
Total volume per tray (ml)—severe drought | 202 |
References
- IPCC. IPCC Fifth Assessment Report (AR5)—The Physical Science Basis. IPCC, 2013. Available online: https://www.ipcc.ch/assessment-report/ar5/ (accessed on 1 November 2017).
- Lee, M.A.; Davis, A.P.; Chagunda, M.G.G.; Manning, P. Forage quality declines with rising temperatures, with implications for livestock production and methane emissions. Biogeosciences 2017, 14, 1403–1417. [Google Scholar] [CrossRef]
- Tozer, K.N.; Carswell, K.; Griffiths, W.M.; Crush, J.R.; Cameron, C.A.; Chapman, D.F.; Popay, A.; King, W. Growth responses of diploid and tetraploid perennial ryegrass (Lolium perenne) to soil-moisture deficit, defoliation and a root-feeding invertebrate. Crop Pasture Sci. 2017, 68, 632–642. [Google Scholar] [CrossRef]
- Deru, J.; Schilder, H.; van der Schoot, J.R.; van Eekeren, N. Genetic differences in root mass of Lolium perenne varieties under field conditions. Euphytica 2014, 199, 223–232. [Google Scholar] [CrossRef]
- Ebrahimiyan, M.; Majidi, M.M.; Mirlohi, A. Genotypic variation and selection of traits related to forage yield in tall fescue under irrigated and drought stress environments. Grass Forage Sci. 2013, 68, 59–71. [Google Scholar] [CrossRef]
- Department for Environment, Food and Rural Affairs (DEFRA). Adapting to Climate Change UK Climate Projections; 2009. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/69257/pb13274-uk-climate-projections-090617.pdf (accessed on 1 November 2017).
- Gardiner, L.M.; Bone, R.; Kilgallen, N.M. Orchids and emonocot—Assembling research resources and facilitating collaborative taxonomy online. Lankesteriana 2013, 13, 33–37. [Google Scholar] [CrossRef]
- Met Office Met Office Integrated Data Archive System (MIDAS). Land and Marine Surface Stations Data (1853–current). NCAS Br. Atmos. Data Cent. 2017. Available online: http://catalogue.ceda.ac.uk/uuid/1bb479d3b1e38c339adb9c82c15579d8 (accessed on 1 November 2017).
- Brown, R.N.; Percivalle, C.; Narkiewicz, S.; DeCuollo, S. Relative rooting depths of native grasses and amenity grasses with potential for use on roadsides in New England. HortScience 2010, 45, 393–400. [Google Scholar] [CrossRef]
- Wedderburn, M.E.; Crush, J.R.; Pengelly, W.J.; Walcroft, J.L. Root growth patterns of perennial ryegrasses under well-watered and drought conditions. N. Z. J. Agric. Res. 2010, 53, 377–388. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis HISTORICAL commentary NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- The R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; ISBN 3_900051_00_3. [Google Scholar]
- Sugiyama, S. Differentiation in competitive ability and cold tolerance between diploid and tetraploid cultivars in Lolium perenne. Euphytica 1998, 103, 55–59. [Google Scholar] [CrossRef]
- Cattivelli, L.; Rizza, F.; Badeck, F.W.; Mazzucotelli, E.; Mastrangelo, A.M.; Francia, E.; Marè, C.; Tondelli, A.; Stanca, A.M. Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Res. 2008, 105, 1–14. [Google Scholar] [CrossRef]
- Fry, E.L.; Evans, A.L.; Sturrock, C.J.; Bullock, J.M.; Bardgett, R.D. Root architecture governs plasticity in response to drought. Plant Soil 2018, 433, 189–200. [Google Scholar] [CrossRef]
- Lee, M.A. A global comparison of the nutritive values of forage plants grown in contrasting environments. J. Plant Res. 2018, 131, 641–654. [Google Scholar] [CrossRef] [PubMed]
- Godfree, R.C.; Marshall, D.J.; Young, A.G.; Miller, C.H.; Mathews, S. Empirical evidence of fixed and homeostatic patterns of polyploid advantage in a keystone grass exposed to drought and heat stress. R. Soc. Open Sci. 2017, 4, 170934. [Google Scholar] [CrossRef] [PubMed]
Live Biomass (g) | Dry Biomass (g) | DM (%) | ||||||
---|---|---|---|---|---|---|---|---|
df | F | p | F | p | F | p | ||
Harvest 1 | Ploidy | 1 | 0.40 | 0.54 | 0.01 | 0.90 | 0.001 | 0.97 |
Rainfall | 2 | 38.80 | <0.001 | 4.40 | <0.05 | 30.20 | <0.001 | |
Timing | 1 | 3.20 | 0.07 | 6.60 | <0.05 | 0.05 | 0.82 | |
Harvest 2 | Ploidy | 1 | 0.40 | 0.50 | 0.30 | 0.60 | 2.40 | 0.10 |
Rainfall | 2 | 34.50 | <0.001 | 5.10 | <0.01 | 7.00 | <0.01 | |
Timing | 1 | 2.50 | 0.10 | 0.60 | 0.50 | 0.30 | 0.60 | |
Harvest 3 | Ploidy | 1 | 6.40 | <0.05 | 4.80 | <0.05 | 2.50 | 0.10 |
Rainfall | 2 | 62.00 | <0.001 | 63.10 | <0.001 | 7.40 | <0.001 | |
Timing | 1 | 0.40 | 0.50 | 0.001 | 0.90 | 1.90 | 0.20 |
Stomatal Length (µm) | Stomatal Conductance (mmol m−2 s−1) | |||
---|---|---|---|---|
Mean | SE | Mean | SE | |
Vr1 | 26.52 | 0.29 | 46.62 | 11.61 |
Vr2 | 29.59 | 0.26 | 41.63 | 4.85 |
Vr3 | 33.29 | 0.85 | 36.13 | 5.04 |
Vr4 | 29.86 | 0.43 | 36.25 | 3.02 |
Vr5 | 35.67 | 0.39 | 48.79 | 8.81 |
Vr6 | 40.77 | 0.54 | 41.30 | 7.52 |
Vr7 | 34.20 | 0.43 | 38.78 | 4.74 |
Vr8 | 37.60 | 0.26 | 46.73 | 9.29 |
Diploid | 30.67 | 0.40 | 40.15 | 3.30 |
Tetraploid | 38.84 | 0.45 | 44.03 | 3.63 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.A.; Howard-Andrews, V.; Chester, M. Resistance of Multiple Diploid and Tetraploid Perennial Ryegrass (Lolium perenne L.) Varieties to Three Projected Drought Scenarios for the UK in 2080. Agronomy 2019, 9, 159. https://doi.org/10.3390/agronomy9030159
Lee MA, Howard-Andrews V, Chester M. Resistance of Multiple Diploid and Tetraploid Perennial Ryegrass (Lolium perenne L.) Varieties to Three Projected Drought Scenarios for the UK in 2080. Agronomy. 2019; 9(3):159. https://doi.org/10.3390/agronomy9030159
Chicago/Turabian StyleLee, Mark A., Victoria Howard-Andrews, and Michael Chester. 2019. "Resistance of Multiple Diploid and Tetraploid Perennial Ryegrass (Lolium perenne L.) Varieties to Three Projected Drought Scenarios for the UK in 2080" Agronomy 9, no. 3: 159. https://doi.org/10.3390/agronomy9030159
APA StyleLee, M. A., Howard-Andrews, V., & Chester, M. (2019). Resistance of Multiple Diploid and Tetraploid Perennial Ryegrass (Lolium perenne L.) Varieties to Three Projected Drought Scenarios for the UK in 2080. Agronomy, 9(3), 159. https://doi.org/10.3390/agronomy9030159