Effect of Dose and Date of Application of Vermicompost and Its Combination with N-Fertilizer on Maize Grain Yield
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Field Management
2.2. Analysis of Soil and Vermicompost
2.3. Analysis to Determine Grain-Quality Parameters
2.4. Statistical Analysis
3. Results and Discussion
3.1. Grain Yield
3.2. Crude Protein and Starch in Grain
3.3. Thousend Kernel Weight
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B.M. Global maize production, consumption and trade: Trends and R&D implications. Food Secur. 2022, 14, 1295–1319. [Google Scholar] [CrossRef]
- García-Lara, S.; Serna-Saldivar, S.O. Corn History and Culture. In Corn (Chemistry and Technology), 3rd ed.; Serna-Saldivar, S.O., Ed.; AACC International Press: Saint Paul, MN, USA, 2019; pp. 1–18. [Google Scholar] [CrossRef]
- Han, X.; Roy, A.; Moghaddasi, P.; Moftakhari, H.; Magliocca, N.; Mekonnen, M.; Moradkhani, H. Assessment of climate change impact on rainfed corn yield with adaptation measures in Deep South, US. Agric. Ecosyst. Environ. 2024, 376, 109230. [Google Scholar] [CrossRef]
- Doan, T.T.; Tureaux, H.T.; Rumpel, C.; Janeau, J.L.; Jouquet, P. Impact of compost, vermicompost and biochar on soil fertility, maize yield and soil erosion in Northern Vietnam: A three year mesocosm experiment. Sci. Total Environ. 2015, 514, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, B.C.; Bera, N.; Das, D.; Swain, D.K. Effect of varying Soil and Vermicompost Mixtures on Growing Media and Yield and Quality of Sweet Corn. In Proceedings of the International Conference on Food and Agricultural Sciences, Melaka, Malaysia, 5–6 October 2013; Volume 55, pp. 38–42. [Google Scholar]
- Liu, Z.; Ao, W.; Wu, S.; Deng, Q.; Ren, H.; Li, Q.; Li, H.; Zhang, P. Effects of replacing nitrogen fertilizer with organic fertilizer on soil physicochemical properties and maize yield in Yunnan’s red soil. Sustainability 2025, 17, 6634. [Google Scholar] [CrossRef]
- Olfs, H.-W. Organic Fertilization in Maize Cropping Systems: Measures to Reduce N Losses. Agronomy 2021, 11, 793. [Google Scholar] [CrossRef]
- Yagi, R.; Ferreira, M.E.; Pessôa da Cruz, M.C.; Barbosa, J.C. Organic matter fractions and soil fertility under the influence of liming, vermicompost and cattle manure. Sci. Agric. 2003, 60, 549–557. [Google Scholar] [CrossRef]
- Rastogi, M.; Verma, S.; Kumar, S.; Bharti, S.; Kumar, G.; Azam, K.; Singh, V. Soil health and sustainability in the age of organic amendments: A review. Int. J. Environ. Clim. Change 2023, 13, 2088–2102. [Google Scholar] [CrossRef]
- Kaur, G.; Rani, N.; Thakur, M. Impact of vermicompost formulations on black carrot yield, quality, and soil fertility. J. Soil Plant Environ. 2024, 3, 15–36. [Google Scholar] [CrossRef]
- Wang, X.; Yan, J.; Zhang, X.; Zhang, S.; Chen, Y. Organic manure input improves soil water and nutrients use for sustainable maize (Zea mays L) productivity on the Loess Plateau. PLoS ONE 2020, 15, e0238042. [Google Scholar] [CrossRef]
- Kováčik, P.; Šimanský, V.; Smoleń, S.; Neupauer, J.; Olšovská, K. The Effect of vermicompost and earthworms (Eisenia fetida) application on phytomass and macroelement concentration and tetanic ratio in carrot. Agronomy 2022, 12, 2770. [Google Scholar] [CrossRef]
- Cherif, H.; Ayari, F.; Ouzari, H.; Marzorati, M.; Brusetti, L.; Jedidi, N.; Hassen, A.; Daffonchio, D. Effects of municipal solid waste compost, farmyard manure and chemical fertilizers on wheat growth, soil composition and soil bacterial characteristics under Tunisian arid climate. Eur. J. Soil Biol. 2009, 45, 138–145. [Google Scholar] [CrossRef]
- Caplan, D.; Dixon, M.; Zheng, Y. Optimal rate of organic fertilizer during the flowering stage for cannabis grown in two coir-based substrates. Hortic. Sci. 2017, 52, 1796–1803. [Google Scholar] [CrossRef]
- Hlisnikovský, L.; Menšík, L.; Kunzová, E. The effect of soil-climate conditions, farmyard manure and mineral fertilizers on potato yield and soil chemical parameters. Plants 2021, 10, 2473. [Google Scholar] [CrossRef] [PubMed]
- Loss, A.; da Rosa Couto, R.; Brunetto, G.; da Veiga, M.; Toselli, M.; Baldi, E. Animal manure as fertilizer: Changes in soil attributes, productivity and food composition. Int. J. Res. Granthaalayah 2019, 7, 307–331. [Google Scholar] [CrossRef]
- Herencia, J.; Maqueda, C. Effects of time and dose of organic fertilizers on soil fertility, nutrient content and yield of vegetables. J. Agric. Sci. 2016, 154, 1343–1361. [Google Scholar] [CrossRef]
- Li, S.; Li, J.; Zhang, B.; Li, D.; Li, G.; Li, Y. Effect of different organic fertilizers application on growth and environmental risk of nitrate under a vegetable field. Sci. Rep. 2017, 7, 17020. [Google Scholar] [CrossRef]
- Van Groenigen, J.W.; Van Groenigen, K.J.; Koopmans, G.F.; Stokkermans, L.; Vos, H.M.J.; Lubbers, I.M. How fertile are earthworm casts? A meta-analysis. Geoderma 2019, 338, 525–535. [Google Scholar] [CrossRef]
- Rivier, P.A.; Jamniczky, D.; Nemes, A.; Makó, A.; Barna, G.; Uzinger, N.; Farkas, C. Short-term effects of compost amendments to soil on soil structure, hydraulic properties, and water regime. J. Hydrol. Hydromech. 2022, 70, 74–88. [Google Scholar] [CrossRef]
- Baskar, P.; Sachan, K.; Singh, B.V.; Saikanth, D.R.K.; Kumar, R.K.M.H.; Gautam, R.; Singh, O. Earthworm castings in ecosystem health through their elemental composition. Int. J. Plant Soil Sci. 2023, 35, 2076–2087. [Google Scholar] [CrossRef]
- Lim, S.L.; Wu, T.Y.; Clarke, C.; Lim, P.N.; Shak, K.P.Y. The use of vermicompost in organic farming: Overview, effects on soil and economics. J. Sci. Food Agric. 2014, 62, 691–698. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Shao, M. Application of earthworm cast improves soil aggregation and aggregate-associated carbon stability in typical soils from Loess Plateau. J. Environ. Manag. 2021, 278, 111504. [Google Scholar] [CrossRef] [PubMed]
- Iordache, M. Chemical composition of earthworm casts as a tool in understanding the earthworm contribution to ecosystem sustainability—A review. Plant Soil Environ. 2023, 69, 247–268. [Google Scholar] [CrossRef]
- Liu, Y.; Lan, X.; Hou, H.; Ji, J.; Liu, X.; Lv, Z. Multifaceted ability of organic fertilizers to improve crop productivity and abiotic stress tolerance: Review and perspectives. Agronomy 2024, 14, 1141. [Google Scholar] [CrossRef]
- Mdlambuzi, T.; Muchaonyerwa, P.; Tsubo, M.; Moshia, M.E. Nitrogen fertiliser value of biogas slurry and cattle manure for maize (Zea mays L.) production. Heliyon 2021, 7, e07077. [Google Scholar] [CrossRef]
- Dogan, Y.; Togay, N.; Togay, Y. Determining irrigation scheduling and different manure sources of yield and nutrition content on maize (Zea mays L.) cultivation. Appl. Ecol. Environ. Res. 2019, 17, 1559–1570. [Google Scholar] [CrossRef]
- Campos, A.T.; Veloso, A.V.; Silva, E.B.; Yanagi, T., Jr.; Mattioli, M.C. Nitrogen fertilization by deep bedding swine production and its effects on dry matter production and accumulation of nutrients by maize. Eng. Agrícola 2013, 33, 1257–1267. [Google Scholar] [CrossRef]
- Corrêa, J.C.; Grohskopf, M.A.; Rebellatto, A.; Rigo, A.Z.; Coldebella, A. Fertilization of high-yield corn with poultry litter based on nitrogen doses. Pesqui. Agropecu. Bras. 2018, 53, 342–350. [Google Scholar] [CrossRef]
- Díez, J.A.; Hernaiz, P.; Muňoz, M.J.; de la Torre, A.; Vallejo, A. Impact of pig slurry on soil properties, water salinization, nitrate leaching and crop yield in a four-year experiment in Central Spain. Soil Use Manag. 2004, 20, 444–450. [Google Scholar] [CrossRef]
- Aziandeke, D.K.; Vianna, M.S.; Bouka, E.C.; Mawussi, G.; Coulibaly, A.; Gaiser, T. The influence of rice husk biochar, compost, and their mixture on maize yields and soil organic carbon content in southern Togo. Geoderma Reg. 2025, 42, e00996. [Google Scholar] [CrossRef]
- Stepień, A.; Wojtkowiak, K.; Kolankowska, E. Use of meat industry waste in the form of meat-and-bone meal in Fertilising Maize (Zea mays L.) for Grain. Sustainability 2021, 13, 2857. [Google Scholar] [CrossRef]
- Gil, M.V.; Carballo, M.T.; Calvo, L.F. Fertilization of maize with compost from cattle manure supplemented with additional mineral nutrients. Waste Manag. 2008, 28, 1432–1440. [Google Scholar] [CrossRef]
- Esteves, G.F.; de Souza, K.R.D.; Bressanin, L.A.; Andrade, P.C.C.; Veroneze, V., Jr.; dos Reis, P.E.; da Silva, A.B.; Mantovani, J.R.; Magalhaes, P.C.; Pasqual, M.; et al. Vermicompost improves maize, millet and sorghum growth in iron mine tailings. J. Environ. Manag. 2020, 264, 110468. [Google Scholar] [CrossRef]
- European Commission. Directive of 12th December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources (91/676/EEC). Off. J. Eur. Communities 1991, L375, 1–8. Available online: https://eur-lex.europa.eu/legal-content/LV/TXT/?uri=OJ:L:1991:375:TOC (accessed on 19 April 2021).
- Shrestha, J.; Chaudhary, A.; Pokhrel, D. Application of nitrogen fertilizer in maize in Southern Asia: A review. Peruv. J. Agron. 2018, 2, 22–26. [Google Scholar] [CrossRef]
- Medina-Cuéllar, S.E.; Tirado-González, D.N.; Portillo-Vázquez, M.; Orozco-Cirilo, S.; López-Santiago, M.A.; Vargas-Canales, J.M.; Medina-Flores, C.A.; Salem, A.Z.M. Optimal nitrogen fertilization to reach the maximum grain and stover yields of maize (Zea mays L.): Tendency Modeling. Agronomy 2021, 11, 1354. [Google Scholar] [CrossRef]
- Šimanský, V.; Polláková, N.; Chlpík, J.; Kolenčík, M. Pôdoznalectvo [Soil Science]; SPU: Nitra, Slovakia, 2023; p. 398. (In Slovak) [Google Scholar]
- World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Update 2015; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; Available online: http://www.fao.org/3/i3794en/I3794en.pdf (accessed on 13 June 2021).
- Kováčik, P.; Ryant, P. Agrochemistry (Principles and Practice), 3rd ed.; Slovak University of Agriculture in Nitra: Nitra, Slovakia, 2025; 385p. [Google Scholar]
- Kováčik, P. Analysis of Soils, Plants, Fertilizers and Calculation of Nutrient Doses to Field and Garden Crops, 1st ed.; Slovak University of Agriculture in Nitra: Nitra, Slovakia, 1997; 104p. [Google Scholar]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Dziadowiec, H.; Gonet, S.S. A Guide to The Methods for Determination of Soil Organic Matter; Prace Komisie Naukowej, PTG: Warsaw, Poland, 1999; 65p. [Google Scholar]
- Bremner, J.M. Determination of nitrogen in soil by the Kjeldahl method. J. Agric. Sci. 1960, 55, 11–33. [Google Scholar] [CrossRef]
- ISO 10520; Native starch—Determination of Starch Content—Ewers Polarimetric Method, 1st ed. ISO: Geneva, Switzerland, 1997; 8p. Available online: https://standards.iteh.ai/catalog/standards/sist/2a73a79e-8119-47ad-b9d8-c89aae16e1b5/iso- (accessed on 13 March 2015).
- Wu, W.; Zhou, L.; Chen, J.; Qiu, Z.; He, Y. Gain TKW: A Measurement System of Thousand Kernel Weight Based on the Android Platform. Agronomy 2018, 8, 178. [Google Scholar] [CrossRef]
- Schulten, H.R.; Schnitzer, M. The chemistry of soil organic nitrogen: A review. Biol. Fertil. Soils 1997, 26, 1–15. [Google Scholar] [CrossRef]
- Cooke, G.W. Fertilizing for Maximum Yield, 3rd ed.; ELBS: Granada, Spain, 1982; 465p. [Google Scholar]
- Kmeťová, M.; Kováčik, P.; Renčo, M. The effect of different doses application of dry granulated vermicompost on yield parameters of maize and potatoes. Acta Fytotech. Zootech. 2013, 16, 8–14. [Google Scholar]
- Aluoch, S.O.; Raseduzzaman, M.; Li, X.; Li, Z.; Bizimana, F.; Yawen, Z.; Mosongo, P.S.; Mburu, D.M.; Waweru, G.; Dong, W.; et al. Combined mineral and organic fertilizer application enhances soil organic carbon and maize yield in semi-arid Kenya: A DNDC Model-based prediction. Agronomy 2025, 15, 346. [Google Scholar] [CrossRef]
- Głąb, T.; Gondek, K. The influence of soil compaction and N fertilization on physico-chemical properties of Mollic Fluvisol soil under red clover/grass mixture. Geoderma 2014, 226–227, 204–212. [Google Scholar] [CrossRef]
- Aminifard, M.H.; Aroiee, H.; Fatemi, H.; Ameri, A.; Karimpour, S. Responses of eggplant (Solanum melongena L.) to different rates of nitrogen under field conditions. J. Cent. Eur. Agric. 2010, 11, 453–458. [Google Scholar] [CrossRef]
- Akanbi, W.B.; Togun, A.O. The influence of maize-stover compost and nitrogen fertilizer on growth, yield and nutrient uptake of amaranth. Sci. Hortic. 2002, 93, 1–8. [Google Scholar] [CrossRef]
- Essilfie, M.S.; Darkwa, K.; Asamoah, V. Growth and yield response of maize to integrated nutrient management of chicken manure and inorganic fertilizer in different agroecological zones. Heliyon 2024, 10, e34830. [Google Scholar] [CrossRef]
- Kováčik, P.; Neupauer, J.; Jabbarov, Z. Response of young maize plants to rational and above-limit doses of vermicompost. Acta Fytotech. Zootech. 2025, 28, 241–248. [Google Scholar] [CrossRef]
- Da Silva, P.R.F.; Strieder, M.L.; Da Silva Coser, R.P.; Rambo, L.; Sangoi, L.; Argenta, G.; Forsthofer, E.L.; Da Silva, A.A. Grain yield and kernel crude protein content increases of maize hybrids with late nitrogen side-dressing. Sci. Agric. 2005, 62, 487–492. [Google Scholar] [CrossRef]
- Sebetha, E.T.; Modi, A.T.; Owoeye, L.G. Maize seed quality to different managment practices and sites. J. Agric. Sci. 2015, 7, 215–223. [Google Scholar] [CrossRef]
- Radulov, I.; Sala, F.; Alexa, E.; Berbecea, A.; Crista, F. Foliar fertilization influence on maize grain protein content and amino acid composition. Res. J. Agric. Sci. 2010, 42, 275–279. [Google Scholar]
- Hera, C.; Popescu, S.; Idriceanu, A.; Cremenscu, G.; Ionescu, F. Studies on the influence of fertilizers on the protein content and yields of wheat and maize. Analele Institutului de Cercet. Pentru Cereale si Plante Teh.—Fundulea 1988, 56, 189–220. [Google Scholar]
- Cai, H.; Chu, Q.; Yuan, L.; Liu, J.; Chen, X.; Chen, F.; Zhang, F. Identification of quantitative trait loci for leaf area and chlorophyll content in maize (Zea mays) under low nitrogen and low phosphorus supply. Mol. Breed. 2012, 30, 251–266. [Google Scholar] [CrossRef]
- Liang, M.Y.; Wang, G.Y.; Liang, W.L.; Shi, P.F.; Dang, J.; Sui, P.; Hu, C.S. Yield and quality of maize stover: Variation among cultivars and effects of N fertilization. J. Integr. Agric. 2015, 14, 1581–1587. [Google Scholar] [CrossRef]
- Hammad, H.M.; Chawla, M.S.; Jawad, R.; Alhuqail, A.; Bakhat, H.F.; Farhad, W.; Khan, F.; Mubeen, M.; Shah, A.N.; Liu, K.; et al. Evaluating the Impact of Nitrogen Application on Growth and Productivity of Maize Under Control Conditions. Front. Plant Sci. 2022, 13, 885479. [Google Scholar] [CrossRef] [PubMed]
- Seebauer, J.R.; Singletary, G.W.; Krumpelman, P.M.; Ruffo, M.L.; Below, F.E. Relationship of source and sink in determining kernel composition of maize. J. Exp. Bot. 2010, 61, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.X.; Wang, J.S.; Li, X.Z.; Liu, W.C. Effect of different NPK fertilizers cooperating application on yield and quality of high starch maize. Appl. Mech. Mater. 2012, 214, 423–429. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Elsevier Academic Press: San Diego, CA, USA; London, UK, 2005; 889p. [Google Scholar]
- Rehman, A.; Farrukh Saleem, M.; Safdar, M.E.; Hussain, S.; Akhtar, N. Grain quality, nutrient use efficiency, and bioeconomics of maize under different sowing methods and NPK levels. Chil. J. Agric. Res. 2011, 71, 586–593. [Google Scholar] [CrossRef]
- Alexander, W.L.; Smith, E.L.; Dhanasobhan, C. A comparison of yield and yield component selection in winter wheat. Euphytica 1984, 33, 953–961. [Google Scholar] [CrossRef]
- Ghaffari, A.; Ali, A.; Tahir, M.; Waseem, M.; Ayub, M.; Iqbal, A.; Mohsin, A.U. Influence of Integrated Nutrients on Growth, Yield and Quality of Maize (Zea mays L.). Am. J. Plant Sci. 2011, 2, 63–69. [Google Scholar] [CrossRef]
- Cambouris, A.N.; Ziadi, N.; Perron, I.; Alotaibi, K.D.; St. Luce, M.; Tremblay, N. Corn yield components response to nitrogen fertilizer as a function of soil texture. Can. J. Soil Sci. 2016, 96, 386–399. [Google Scholar] [CrossRef]
- Blandino, M.; Battisti, M.; Vanara, F.; Reyneri, A. The synergistic effect of nitrogen and phosphorus starter fertilization sub-surface banded at sowing on the early vigor, grain yield and quality of maize. Eur. J. Agron. 2022, 137, 126509. [Google Scholar] [CrossRef]
- Bouacha, O.D.; Nouaiguib, S.; Rezguia, S. Effects of N and K fertilizers on durum wheat quality in different environments. J. Cereal Sci. 2014, 59, 9–14. [Google Scholar] [CrossRef]
- Ruiz, A.; Archontoulis, S.V.; Borrás, L. Kernel weight relevance in maize grain yield response to nitrogen fertilization. Field Crops Res. 2022, 286, 10863. [Google Scholar] [CrossRef]
- Babulicová, M.; Malovcová, Ľ. Vplyv osevného postupu, hnojenia a klimatických podmienok na produkčnú schopnosť jačmeňa siateho ozimného. Agrochémia 2013, 53, 7–12. [Google Scholar]
| Treatment | Dose of N | Dose of Vc (dm/fm) ∗ | Dose of AND | Term of Application | |||||
|---|---|---|---|---|---|---|---|---|---|
| in Vc | in AND | as Nt | as Nin | ||||||
| n. | Designation | kg ha–1 | t ha–1 | kg ha–1 | Vc | AND | |||
| 1 | So (control) | 0 | 0 | 0 | 0 | 0 | 0 | - | - |
| 2 | So + Vcaut340 | 340 | 0 | 340 | 5.51 | 16/19.4 | 0 | aut | - |
| 3 | So + Vcaut170 + Vcspr170 | 340 | 0 | 340 | 5.51 | 16/19.4 | 0 | aut+spr | - |
| 4 | So + Vcaut170 + Vcspr170 + Nspr60 | 340 | 60 | 400 | 65.51 | 16/19.4 | 222 | aut+spr | spr |
| 5 | So + Vcaut170 | 170 | 0 | 170 | 2.75 | 8/9,7 | 0 | aut | - |
| 6 | So + Vcaut170 + Nspr60 | 170 | 60 | 230 | 62.75 | 8/9.7 | 222 | aut | spr |
| 7 | So + Vcspr170 | 170 | 0 | 170 | 2.75 | 8/9.7 | 0 | spr | - |
| 8 | So + Vcspr170 + Nspr60 | 170 | 60 | 230 | 62.75 | 8/9.7 | 222 | spr | spr |
| Com. | Nin | NH4+-N | NO3−-N | P | K | Ca | Mg | S | Nt | Cox | C:N | EC | pHKCl |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| mg kg–1 | % | mS cm–1 | |||||||||||
| soil | 18.7 | 5.8 | 12.9 | 20.3 | 277 | 3612 | 754 | 4.1 | 0.26 | 2.08 | 8.00 | 0.24 | 6.04 |
| Vc | 344 | 28.5 | 315.5 | 3773 | 11,543 | 8014 | 3580 | 534 | 2.12 | 18.47 | 8.71 | 3.45 | 7.17 |
| Treatment | Grain | Crude Protein | |||||||
|---|---|---|---|---|---|---|---|---|---|
| n. | Designation | g pot–1 | rel. % | % | rel. % | ||||
| 1 | So (control) | 30.38 ± 3.22 a | 100.00 | 6.43 ± 0.05 a | 100.00 | ||||
| 2 | So + Vcaut340 | 53.04 ± 3.11 b | 174.59 | 100.00 | 7.10 ± 0.03 bc | 110.42 | 100.00 | ||
| 3 | So + Vcaut170 + Vcspr170 | 57.66 ± 3.04 b | 189.80 | 108.71 | 7.00 ± 0.04 b | 108.86 | 98.59 | ||
| 4 | So + Vcaut170 + Vcspr170 + Nspr60 | 83.52± 2.92 c | 274.91 | 157.47 | 7.84 ± 0.05 d | 121.93 | 110.42 | ||
| 5 | So + Vcaut170 | 50.32 ± 3.77 b | 165.63 | 94.87 | 100.00 | 6.93 ± 0.43 b | 107.78 | 97.61 | 100.00 |
| 6 | So + Vcaut170 + Nspr60 | 78.09 ± 2.81 c | 257.04 | 147.23 | 155.9 | 7.48 ± 0.31 cd | 116.33 | 105.35 | 107.94 |
| 7 | So + Vcspr170 | 50.08 ± 3.03 b | 164.85 | 94.42 | 99.52 | 6.91 ± 0.10 b | 107.47 | 97.32 | 99.71 |
| 8 | So + Vcspr170 + Nspr60 | 80.68 ± 2.38 c | 265.57 | 152.11 | 160.33 | 7.21 ± 0.23 bc | 112,13 | 101.55 | 104.04 |
| 2–8 | 64.77 | 213.20 | - | - | 7.21 | 112.13 | - | - | |
| 2, 3, 5, 7 | 52.78 | 173.73 | 100.00 | - | 6.99 | 108.71 | 100.00 | - | |
| 4, 6, 8 | 80.76 | 265.83 | 153.01 | - | 7.51 | 116.80 | 107.44 | - | |
| HSD0.05 | 7.696 | 0.469 | |||||||
| Treatment | Starch Content | Thousand Kernel Weight | |||||||
|---|---|---|---|---|---|---|---|---|---|
| n. | Designation | % | rel. % | g | rel. % | ||||
| 1 | So (control) | 60.80 ± 0.84 b | 100.00 | 311.94 ± 10.64 a | 100,00 | ||||
| 2 | So + Vcaut340 | 59.58 ± 0.57 b | 97.99 | 100.00 | 322.99 ± 5.97 ab | 103.54 | 100,00 | ||
| 3 | So + Vcaut170 + Vcspr170 | 59.33 ± 0.67 b | 97.58 | 99.58 | 327.37 ± 4.57 abc | 104.95 | 101.36 | ||
| 4 | So + Vcaut170 + Vcspr170 + Nspr60 | 56.97 ± 0.38 a | 93.70 | 95.62 | 345.45 ± 7.61 c | 110.74 | 106.95 | ||
| 5 | So + Vcaut170 | 60.18 ± 0.86 b | 98.98 | 101.01 | 100.00 | 319.41 ± 7.57 ab | 102.39 | 98.89 | 100.00 |
| 6 | So + Vcaut170 + Nspr60 | 60.05 ± 0.88 b | 98.77 | 100.79 | 99.78 | 333.94 ± 7.86 bc | 107.05 | 103.39 | 104.55 |
| 7 | So + Vcspr170 | 59.58 ± 0.42 b | 97.99 | 100.00 | 99.00 | 325.68 ± 8.74 abc | 104.40 | 100.83 | 101.96 |
| 8 | So + Vcspr170 + Nspr60 | 59.16 ± 0.84 b | 97.14 | 99.13 | 98.14 | 337.87 ± 9.22 bc | 108.31 | 104.70 | 105.78 |
| 2–8 | 59.26 | 97.47 | 330.39 | 105.91 | |||||
| 2, 3, 5, 7 | 59.67 | 98.14 | 100.00 | 323.86 | 103.82 | 100.00 | |||
| 4, 6, 8 | 58.73 | 96.60 | 98.42 | 339.09 | 108.70 | 104.70 | |||
| HSD0.05 | 1.714 | 20.360 | |||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kováčik, P.; Šimanský, V.; Kmeťová, M.; Týr, Š.; Ledwożyw-Smoleń, I. Effect of Dose and Date of Application of Vermicompost and Its Combination with N-Fertilizer on Maize Grain Yield. Agronomy 2026, 16, 118. https://doi.org/10.3390/agronomy16010118
Kováčik P, Šimanský V, Kmeťová M, Týr Š, Ledwożyw-Smoleń I. Effect of Dose and Date of Application of Vermicompost and Its Combination with N-Fertilizer on Maize Grain Yield. Agronomy. 2026; 16(1):118. https://doi.org/10.3390/agronomy16010118
Chicago/Turabian StyleKováčik, Peter, Vladimír Šimanský, Mária Kmeťová, Štefan Týr, and Iwona Ledwożyw-Smoleń. 2026. "Effect of Dose and Date of Application of Vermicompost and Its Combination with N-Fertilizer on Maize Grain Yield" Agronomy 16, no. 1: 118. https://doi.org/10.3390/agronomy16010118
APA StyleKováčik, P., Šimanský, V., Kmeťová, M., Týr, Š., & Ledwożyw-Smoleń, I. (2026). Effect of Dose and Date of Application of Vermicompost and Its Combination with N-Fertilizer on Maize Grain Yield. Agronomy, 16(1), 118. https://doi.org/10.3390/agronomy16010118

