Simulation of Transpiration and Drainage in Soil-Based Tomato Production with Potential Hydroponic Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Model Description
2.1.1. Overview
2.1.2. Calculating Transpiration
2.1.3. Detail of the PG Module
2.1.4. Detail of the TVPD Module
2.1.5. Estimating Drainage from Transpiration Predictions
2.1.6. Modeling Tools
2.1.7. Calibration and Evaluation
3. Results
3.1. Results of Calibration
TVPD Adjusted for Evapotranspiration and VPD Breakpoint
3.2. Evaluation of PGg
3.3. Evaluation of PGc
3.4. Evaluation of TVPD
3.5. Comparisons Among PGg, PGc, and TVPD
3.6. TVPD with No VPD Breakpoint
3.7. Selecting a New Training Dataset
3.8. Consideration of Drainage
4. Discussion
4.1. TVPD Model Comparison with and Without a VPD Breakpoint
4.2. TVPD Model Performance
4.2.1. Differences in Year 3 ETc Values
4.2.2. Differences in Year 3 RN Values
4.2.3. Differences in Year 3 Fertilization
4.2.4. Differences in Year 3 Windspeed
4.3. TVPD Calibrated with Annual and Combined Datasets
4.4. Possible Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
VPD | Vapor pressure deficit |
PM | Penman–Monteith model to predict transpiration |
PT | Priestley–Taylor model to predict transpiration |
SW | Shuttleworth–Wallace |
TVPD | Transpiration model based on VPD and solar radiation |
TVPD1 | TVPD with a VPD breakpoint |
TVPD2 | TVPD without a VPD breakpoint |
PGg | Model from and using parameters from Gallardo et al. [10] |
PGc | Model from Gallardo et al. [10] recalibrated for Shao et al. [11] data |
ETc | Calculated evapotranspiration (ETo * Kc) |
ETo | Evapotranspiration calculated using environmental factors |
Kc | Crop coefficient |
JD | Julian day |
Go | Outside solar radiation |
t | Transmissivity |
GI | Inside daily solar radiation |
References
- Adam, D. How far will global population rise? Researchers can’t agree. Nature 2021, 597, 462–465. [Google Scholar] [CrossRef]
- van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period. Nat. Food 2021, 2, 494–501. [Google Scholar] [CrossRef]
- International Atomic Energy Agency [IAEA]. Greenhouse Gas Reduction. Available online: https://www.iaea.org/topics/greenhouse-gas-reduction (accessed on 23 August 2023).
- Mateo-Sagasta, J.; Zadeh, S.M.; Turral, H.; Burke, J. CGIAR Research Program on Water, Land and Ecosystems (WLE). In Water Pollution from Agriculture: A Global Review—Executive Summary; FAO: Rome, Italy; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2017. [Google Scholar]
- Touil, S.; Richa, A.; Fizir, M.; Argente García, J.E.; Skarmeta Gómez, A.F. A review on smart irrigation management strategies and their effect on water savings and crop yield. Irrig. Drain. 2022, 71, 1396–1416. [Google Scholar] [CrossRef]
- Amiri, Z.; Gheysari, M.; Mosaddeghi, M.R.; Amiri, S.; Tabatabaei, M.S. An attempt to find a suitable place for soil moisture sensor in a drip irrigation system. Inf. Process. Agric. 2022, 9, 254–265. [Google Scholar] [CrossRef]
- Millán, S.; Casadesús, J.; Campillo, C.; Moñino, M.J.; Prieto, M.H. Using Soil moisture sensors for automated irrigation scheduling in a plum crop. Water 2019, 11, 2061. [Google Scholar] [CrossRef]
- Nolz, R.; Kammerer, G. Evaluating a sensor setup with respect to near-surface soil water monitoring and determination of in-situ water retention functions. J. Hydrol. 2017, 549, 301–312. [Google Scholar] [CrossRef]
- Park, S.T.; Jung, G.H.; Yoo, H.J.; Choi, E.-Y.; Choi, K.-Y.; Lee, Y.-B. Measuring water content characteristics by using frequency domain reflectometry sensor in coconut coir substrate. J. Bio-Environ. Control 2014, 23, 158–166. [Google Scholar] [CrossRef]
- Gallardo, M.; Thompson, R.B.; Rodríguez, J.S.; Rodríguez, F.; Fernández, M.D.; Sánchez, J.A.; Magán, J.J. Simulation of transpiration, drainage, N uptake, nitrate leaching, and N uptake concentration in tomato grown in open substrate. Agric. Water Manag. 2009, 96, 1773–1784. [Google Scholar] [CrossRef]
- Shao, M.; Liu, H.; Yang, L. Estimating tomato transpiration cultivated in a sunken solar greenhouse with the Penman-Monteith, Shuttleworth-Wallace and Priestley-Taylor models in the North China Plain. Agronomy 2022, 12, 2382. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; Food and Agriculture Organization of the United Nations: Rome, Italy, 2000; ISBN 978-92-5-104219-9. [Google Scholar]
- Allen, R.G.; Pereira, L.; Raes, D.; Smith, M. FAO Penman-Monteith Equation. Available online: https://www.fao.org/3/X0490E/x0490e06.htm (accessed on 30 October 2023).
- Baille, M.; Baille, A.; Laury, J.C. A simplified model for predicting evapotranspiration rate of nine ornamental species vs. climate factors and leaf area. Sci. Hortic. 1994, 59, 217–232. [Google Scholar] [CrossRef]
- Bourbia, I.; Brodribb, T.J. Stomatal response to VPD is not triggered by changes in soil–leaf hydraulic conductance in arabidopsis or callitris. New Phytol. 2024, 242, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Patanè, C. Leaf area index, leaf transpiration and stomatal conductance as affected by soil water deficit and vpd in processing tomato in semi arid Mediterranean climate. J. Agron. Crop Sci. 2011, 197, 165–176. [Google Scholar] [CrossRef]
- Jalakas, P.; Takahashi, Y.; Waadt, R.; Schroeder, J.I.; Merilo, E. Molecular mechanisms of stomatal closure in response to rising vapour pressure deficit. New Phytol. 2021, 232, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Guan, K.; Peng, B.; Pan, M.; Zhou, W.; Jiang, C.; Kimm, H.; Franz, T.E.; Grant, R.F.; Yang, Y.; et al. Sustainable irrigation based on co-regulation of soil water supply and atmospheric evaporative demand. Nat. Commun. 2021, 12, 5549. [Google Scholar] [CrossRef]
- Grossiord, C.; Buckley, T.N.; Cernusak, L.A.; Novick, K.A.; Poulter, B.; Siegwolf, R.T.W.; Sperry, J.S.; McDowell, N.G. Plant responses to rising vapor pressure deficit. New Phytol. 2020, 226, 1550–1566. [Google Scholar] [CrossRef]
- Amitrano, C.; Rouphael, Y.; Pannico, A.; De Pascale, S.; De Micco, V. Reducing the evaporative demand improves photosynthesis and water use efficiency of indoor cultivated lettuce. Agronomy 2021, 11, 1396. [Google Scholar] [CrossRef]
- Medina, S.; Vicente, R.; Nieto-Taladriz, M.T.; Aparicio, N.; Chairi, F.; Vergara-Diaz, O.; Araus, J.L. The plant-transpiration response to vapor pressure deficit (vpd) in durum wheat is associated with differential yield performance and specific expression of genes involved in primary metabolism and water transport. Front. Plant Sci. 2019, 9, 1994. [Google Scholar] [CrossRef]
- Martin, E.V. Effect of solar radiation on transpiration of helianthus annuus. Plant Physiol. 1935, 10, 341. [Google Scholar] [CrossRef]
- Bonachela, S.; González, A.M.; Fernández, M.D. Irrigation scheduling of plastic greenhouse vegetable crops based on historical weather data. Irrig. Sci. 2006, 25, 53–62. [Google Scholar] [CrossRef]
- Linares Ojeda, R.d.M. Anejo 8. Necesidades Hídricas del Cultivo. In Proyecto de una Explotación Agrícola en el T.M. de Berja (Almería). Bachelor’s Thesis, Universidad de Almería, Repositorio de la Universidad de Almería, Almería, Spain, 2012. [Google Scholar]
- Ghimire, C.P.; van Meerveld, H.I.; Zwartendijk, B.W.; Bruijnzeel, L.A.; Ravelona, M.; Lahitiana, J.; Lubczynski, M.W. Vapour pressure deficit and solar radiation are the major drivers of transpiration in montane tropical secondary forests in eastern Madagascar. Agric. For. Meteorol. 2022, 326, 109159. [Google Scholar] [CrossRef]
- Orgaz, F.; Fernández, M.; Bonachela, S.; Gallardo, M.; Fereres, E. Evapotranspiration of horticultural crops in an unheated plastic greenhouse. Agric. Water Manag. 2005, 72, 81–96. [Google Scholar] [CrossRef]
- Kalozoumis, P.; Vourdas, C.; Ntatsi, G.; Savvas, D. Can biostimulants increase resilience of hydroponically-grown tomato to combined water and nutrient stress? Horticulturae 2021, 7, 297. [Google Scholar] [CrossRef]
- Li, X.; Zhai, J.; Sun, M.; Liu, K.; Zhao, Y.; Cao, Y.; Wang, Y. Characteristics of changes in sap flow-based transpiration of poplars, locust trees, and willows and their response to environmental impact factors. Forests 2024, 15, 90. [Google Scholar] [CrossRef]
- Navarro, A.; Scotto di Covella, F.; Cacini, S.; Sodini, M.; Traversari, S.; Venezia, A.; Massa, D. Testing sap-flow sensors to predict irrigation of soilless tomato fertigated with saline water. In Proceedings of the XXXI International Horticultural Congress (IHC2022): International Symposium on Innovative Technologies and Production 1377, Angers, France, 14–20 August 2022; pp. 639–646. [Google Scholar]
- Fernández, M.D.; Bonachela, S.; Orgaz, F.; Thompson, R.; López, J.C.; Granados, M.R.; Gallardo, M.; Fereres, E. Measurement and estimation of plastic greenhouse reference evapotranspiration in a Mediterranean climate. Irrig. Sci. 2010, 28, 497–509. [Google Scholar] [CrossRef]
- Muharomah, R.; Setiawan, B.I.; Purwanto, M.Y.J.; Liyantono, L. Temporal crop coefficients and water productivity of lettuce (lactuca sativa L.) hydroponics in planthouse. Agric. Eng. Int. CIGR J. 2020, 22, 22–29. [Google Scholar]
- Rho, H.; Su, J.; Sim, H.S.; Moon, Y.H.; Woo, U.J.; Kim, S.K. Development of a cucumber transpiration model based on a simplified Penman-Monteith model in a semi-closed greenhouse. HortScience 2023, 58, 1208–1216. [Google Scholar] [CrossRef]
- Verdoliva, S.G.; Gwyn-Jones, D.; Detheridge, A.; Robson, P. Controlled comparisons between soil and hydroponic systems reveal increased water use efficiency and higher lycopene and β-carotene contents in hydroponically grown tomatoes. Sci. Hortic. 2021, 279, 109896. [Google Scholar] [CrossRef]
- Wang, L.; Ning, S.; Zheng, W.; Guo, J.; Li, Y.; Li, Y.; Chen, X.; Ben-Gal, A.; Wei, X. Performance analysis of two typical greenhouse lettuce production systems: Commercial hydroponic production and traditional soil cultivation. Front. Plant Sci. 2023, 14, 1165856. [Google Scholar] [CrossRef]
- Muggeo, V. Interval Estimation for the Breakpoint in Segmented Regression: A smoothed score-based approach. Aust. N. Z. J. Stat. 2017, 59, 311–322. [Google Scholar] [CrossRef]
- Davies, R.B. Hypothesis testing when a nuisance parameter is present only under the alternative. Biometrika 1987, 74, 33–43. [Google Scholar]
- Wald, A.; Wolfowitz, J. An exact test for randomness in the non-parametric case based on serial correlation. Ann. Math. Stat. 1943, 14, 378–388. [Google Scholar] [CrossRef]
- Aydin, O.; Yassikaya, M.Y. Validity and reliability analysis of the PlotDigitizer software program for data extraction from single-case graphs. Perspect. Behav. Sci. 2021, 45, 239–257. [Google Scholar] [CrossRef] [PubMed]
- Broughton, K.J.; Conaty, W.C. Understanding and exploiting transpiration response to vapor pressure deficit for water limited environments. Front. Plant Sci. 2022, 13, 893994. [Google Scholar] [CrossRef]
- Devi, M.J.; Reddy, V.R. Transpiration response of cotton to vapor pressure deficit and its relationship with stomatal traits. Front. Plant Sci. 2018, 9, 1572. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Devi, J.; Shekoofa, A.; Choudhary, S.; Sadok, W.; Vadez, V.; Riar, M.; Rufty, T. Limited-transpiration response to high vapor pressure deficit in crop species. Plant Sci. 2017, 260, 109–118. [Google Scholar] [CrossRef]
- Muggeo, V. Estimating regression models with unknown break-points. Stat. Med. 2003, 22, 3055–3071. [Google Scholar] [CrossRef]
- Abu-Awwad, A.M. Effect of mulch and irrigation water amounts on soil evaporation and transpiration. J. Agron. Crop Sci. 1998, 181, 55–59. [Google Scholar] [CrossRef]
- Jiao, X.-C.; Song, X.-M.; Zhang, D.-L.; Du, Q.-J.; Li, J.-M. Coordination between vapor pressure deficit and CO2 on the regulation of photosynthesis and productivity in greenhouse tomato production. Sci. Rep. 2019, 9, 8700. [Google Scholar] [CrossRef]
- Leonardi, C.; Guichard, S.; Bertin, N. High vapour pressure deficit influences growth, transpiration and quality of tomato fruits. Sci. Hortic. 2000, 84, 285–296. [Google Scholar] [CrossRef]
- Yu, X.; Niu, L.; Zhang, Y.; Xu, Z.; Zhang, J.; Zhang, S.; Li, J. Vapour pressure deficit affects crop water productivity, yield, and quality in tomatoes. Agric. Water Manag. 2024, 299, 108879. [Google Scholar] [CrossRef]
- Choi, Y.B.; Shin, J.H. Development of a transpiration model for precise irrigation control in tomato cultivation. Sci. Hortic. 2020, 267, 109358. [Google Scholar] [CrossRef]
- Maeda, K.; Johkan, M.; Tsukagoshi, S.; Maruo, T. Effect of salinity on photosynthesis and distribution of photosynthates in the Japanese tomato ‘CF Momotaro York’and the Dutch tomato ‘Endeavour’ with low node-order pinching and a high-density planting system. Hortic. J. 2020, 89, 454–459. [Google Scholar] [CrossRef]
- Katsoulas, N.; Stanghellini, C. Modelling crop transpiration in greenhouses: Different models for different applications. Agronomy 2019, 9, 392. [Google Scholar] [CrossRef]
Model | Equation | Calibration | Differences | Assumptions |
---|---|---|---|---|
PGg | by Gallardo et al. [10] | JD multiplicative | CE, inside RN calibration | |
PGc | using Shao et al. [11] | JD multiplicative | CE, inside RN calibration | |
TVPD | using Shao et al. [11] | VPD, PW additive | CE, inside RN calibration |
Equation | 1st Coefficient | 2nd Coefficient |
---|---|---|
Equation (4) (PGg) JD ≤ 220 | a1 = 0.288 | a2 = 0.0019 |
Equation (4) (PGg) JD > 220 | b1 = 1.339 | b2 = −0.00288 |
Equation (4) (PGc) JD ≤ 220 | a1 = 0.854438209 | a2 = −0.115171543 |
Equation (4) (PGc) JD > 220 | b1 = 2.019612119 | b2 = −0.003905465 |
Equation (7) (TVPD) VPD < 0.5 kPa | c1 = 0.025818379 | c2 = 0.003933682 |
Equation (7) (TVPD) VPD ≥ 0.5 kPa | d1 = −0.008504053 | d2 = 1.131731448 |
Model | Year | RMSE (mm) | Bias (mm) | r2 | Regression Line |
---|---|---|---|---|---|
PGg | 1 | 0.5594 | −0.4155 | 0.78 | |
PGc | 1 | 0.6875 | −0.1148 | 0.27 | |
TVPD1 | 1 | 0.1570 | −0.0789 | 0.95 | |
TVPD2 | 1 | 0.1973 | −0.0675 | 0.97 | |
PGg | 2 | 0.7455 | −0.5419 | 0.76 | |
PGc | 2 | 0.3781 | 0.0671 | 0.80 | |
TVPD1 | 2 | 0.1937 | 0.0078 | 0.93 | |
TVPD2 | 2 | 0.2661 | 0.0165 | 0.86 | |
PGg | 3 | 0.1873 | −0.1297 | 0.95 | |
PGc | 3 | 0.2065 | 0.1837 | 0.95 | |
TVPD1 | 3 | 0.5430 | 0.4428 | 0.44 | |
TVPD2 | 3 | 0.5412 | 0.4770 | 0.90 |
Randomization | RMSE (mm) | Bias (mm) | r2 | Regression Line |
---|---|---|---|---|
1 | 0.2387 | 0.0375 | 0.88 | |
2 | 0.2403 | 0.0530 | 0.87 | |
3 | 0.2419 | 0.0174 | 0.91 |
Model | Cal. Dataset | RMSE (mm) | Bias (mm) | r2 | Regression Line |
---|---|---|---|---|---|
PGg | Year 2 | 0.5594 | 0.4155 | 0.78 | |
PGc | Year 2 | 0.6875 | 0.1148 | 0.27 | |
TVPD1 | Year 2 | 0.1570 | 0.0789 | 0.95 | |
TVPD1 | Randomization 1 | 0.2387 | −0.0375 | 0.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dunn, R.J.; Kinmonth-Schultz, H. Simulation of Transpiration and Drainage in Soil-Based Tomato Production with Potential Hydroponic Application. Agronomy 2025, 15, 2134. https://doi.org/10.3390/agronomy15092134
Dunn RJ, Kinmonth-Schultz H. Simulation of Transpiration and Drainage in Soil-Based Tomato Production with Potential Hydroponic Application. Agronomy. 2025; 15(9):2134. https://doi.org/10.3390/agronomy15092134
Chicago/Turabian StyleDunn, Ronnie J., and Hannah Kinmonth-Schultz. 2025. "Simulation of Transpiration and Drainage in Soil-Based Tomato Production with Potential Hydroponic Application" Agronomy 15, no. 9: 2134. https://doi.org/10.3390/agronomy15092134
APA StyleDunn, R. J., & Kinmonth-Schultz, H. (2025). Simulation of Transpiration and Drainage in Soil-Based Tomato Production with Potential Hydroponic Application. Agronomy, 15(9), 2134. https://doi.org/10.3390/agronomy15092134