Estimation of Actual Evapotranspiration and Its Components at Hourly and Daily Scales Using Dual Crop Coefficient Method for Water-Saving Irrigated Rice Paddy Field
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site and Measurements
2.1.1. Site and Experiment Description
2.1.2. Meteorological Observation and Soil Water Conditions
2.1.3. Measurement of Evapotranspiration and Its Components
2.2. Dual Crop Coefficients, Soil Evaporation Coefficients and Basal Crop Coefficients Based on Field Approach
2.3. FAO Dual Crop Coefficients Method
2.4. Model Calibration and Evaluation
3. Results and Discussion
3.1. Averaged Diurnal Variations in Hourly Evapotranspiration, Transpiration, and Evaporation
3.2. Seasonal Variations in Daily Evapotranspiration, Transpiration, and Evaporation
3.3. Actual Dual Crop Coefficients, Soil Evaporation Coefficients and Basal Crop Coefficients
3.4. Simulation of Dual Crop Coefficients, Basal Crop Coefficients and Soil Evaporation Coefficients
3.5. Estimation of Hourly Evapotranspiration and Its Components
3.6. Estimation of Daily Evapotranspiration and Its Components
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lian, X.; Piao, S.; Huntingford, C.; Li, Y.; Zeng, Z.; Wang, X.; Ciais, P.; Mc Vicar, T.; Peng, S.; Ottle, C.; et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nat. Clim. Change 2018, 8, 640–646. [Google Scholar] [CrossRef]
- Wanniarachchi, S.; Sarukkalige, R. A Review on Evapotranspiration Estimation in Agricultural Water Management: Past, Present, and Future. Hydrology 2022, 9, 123. [Google Scholar] [CrossRef]
- Jasechko, S.; Sharp, Z.; Gibson, J.; Birks, S.; Yi, Y.; Fawcett, P. Terrestrial water fluxes dominated by transpiration. Nature 2013, 496, 347–350. [Google Scholar] [CrossRef]
- Paredes, P.; Rodrigues, G.; Alves, I.; Pereira, L. Partitioning evapotranspiration, yield prediction and economic returns of maize under various irrigation management strategies. Agric. Water Manag. 2014, 135, 84. [Google Scholar] [CrossRef]
- Ouyang, Y. New insights on evapotranspiration and water yield in crop and forest lands under changing climate. J. Hydrol. 2021, 603, 127192. [Google Scholar] [CrossRef]
- Paulus, S.; El-Madany, T.; Orth, R.; Hildebrandt, A.; Wutzler, T.; Carrara, A.; Moreno, G.; Perez-Priego, O.; Kolle, O.; Reichstein, M.; et al. Resolving seasonal and diel dynamics of non-rainfall water inputs in a Mediterranean ecosystem using lysimeters. Hydrol. Earth Syst. Sci. 2023, 26, 6263–6287. [Google Scholar] [CrossRef]
- Ding, R.; Kang, S.; Zhang, Y.; Hao, X.; Tong, L.; Dua, T. Partitioning evapotranspiration into soil evaporation and transpiration using a modified dual crop coefficient model in irrigated maize field with ground-mulching. Agric. Water Manag. 2013, 127, 85–96. [Google Scholar] [CrossRef]
- Allen, R.; Pereira, L.; Howell, T.; Jensen, M. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric. Water Manag. 2011, 98, 899–920. [Google Scholar] [CrossRef]
- Berkelhammer, M.; Noone, D.; Wong, T.; Burns, S.; Knowles, J.; Kaushik, A.; Blanken, P.; Williams, M. Convergent approaches to determine an ecosystem’s transpiration fraction. Glob. Biogeochem. Cycles 2016, 30, 933–951. [Google Scholar] [CrossRef]
- Sánchez, J.; López-Urrea, R.; Valentin, F.; Caselies, V.; Galve, J. Lysimeter assessment of the Simplified Two-Source Energy Balance model and eddy covariance system to estimate vineyard evapotranspiration. Agric. Water Manag. 2019, 274, 172–183. [Google Scholar] [CrossRef]
- Wang, P.; Yamanaka, T.; Li, X.; Wei, Z. Partitioning evapotranspiration in a temperate grassland ecosystem: Numerical modeling with isotopic tracers. Agric. For. Meteorol. 2015, 208, 16–31. [Google Scholar] [CrossRef]
- Zhou, S.; Yu, B.; Zhang, Y.; Huang, Y.; Wang, G. Partitioning evapotranspiration based on the concept of underlying water use efficiency. Water Resour. Res. 2016, 52, 1160–1175. [Google Scholar] [CrossRef]
- Guan, H.; Wilson, J. A hybrid dual-source model for potential evaporation and transpiration partitioning. J. Hydrol. 2009, 377, 405–416. [Google Scholar] [CrossRef]
- Ortega-Farias, S.; Lopez-Olivari, R.; Poblete-Echeverria, C.; Zuniga, M. Evaluation of a two-layer model and sap flow to estimate olive transpiration. Int. Symp. Sap Flow 2011, 951, 147–152. [Google Scholar] [CrossRef]
- Zhao, P.; Li, S.; Li, F.; Du, T.; Tong, L.; Kang, S. Comparison of dual crop coefficient method and Shuttleworth-Wallace model in evapotranspiration partitioning in a vineyard of northwest China. Agric. Water Manag. 2015, 160, 41–56. [Google Scholar] [CrossRef]
- Cui, N.; He, Z.; Jiang, S.; Wang, M.; Yu, X.; Zhao, L.; Qiu, R.; Gong, D.; Wang, Y.; Feng, Y. Inter-comparison of the Penman-Monteith type model in modeling the evapotranspiration and its components in an orchard plantation of Southwest China. Agric. Water Manag. 2023, 289, 108541. [Google Scholar] [CrossRef]
- Gao, X.; Gu, F.; Gong, D.; Hao, W.; Chu, J.; Li, H. Comparison of three evapotranspiration models in a rain-fed spring maize filed in the Loess Plateau, China. J. Agric. Meteorol. 2020, 76, 155–163. [Google Scholar] [CrossRef]
- Gao, X.; Mei, X.; Zhang, J.; Cai, J.; Gu, F.; Hao, W.; Gong, D. Comparison of three modified models in evapotranspiration and its components over a rainfed spring maize cropland on the Loess Plateau, China. Agric. Forest Meteorol. 2023, 330, 109322. [Google Scholar] [CrossRef]
- Allen, R. Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study. J. Hydrol. 2000, 229, 27–41. [Google Scholar] [CrossRef]
- Amazirh, A.; Merlin, O.; Er-Raki, S.; Bouras, E.; Chehbouni, A. Implementing a new texture-based soil evaporation reduction coefficient in the FAO dual crop coefficient method. Agric. Water Manag. 2021, 250, 106827. [Google Scholar] [CrossRef]
- Jiang, S.; Liang, C.; Zhao, L.; Gong, D.; Huang, Y.; Xing, L.; Zhu, S.; Feng, Y.; Guo, L.; Cui, N. Energy and evapotranspiration partitioning over a humid region orchard: Field measurements and partitioning model comparisons. J. Hydrol. 2022, 610, 127890. [Google Scholar] [CrossRef]
- Olivera-Guerra, L.; Laluet, P.; Altes, V.; Ollivier, C.; Pageot, Y.; Paolini, G.; Chavanon, E.; Rivalland, V.; Boulet, G.; Villar, J.; et al. Modeling actual water use under different irrigation regimes at district scale: Application to the FAO-56 dual crop coefficient method. Agric. Water Manag. 2023, 278, 108119. [Google Scholar] [CrossRef]
- Paredes, P.; Pereira, L.; Rodrigues, G.; Botelho, N.; Torres, M. Using the FAO dual crop coefficient approach to model water use and productivity of processing pea (Pisum sativum L.) as influenced by irrigation strategies. Agric. Water Manag. 2017, 189, 5–18. [Google Scholar] [CrossRef]
- Nyawade, S.; Gitari, H.; Karanja, N.; Gachene, C.; Schulte-Geldermann, E.; Parker, M. Yield and evapotranspiration characteristics of potato-legume intercropping simulated using a dual coefficient approach in a tropical highland. Field Crop Res. 2021, 274, 108327. [Google Scholar] [CrossRef]
- Pereira, L.; Paredes, P.; Hunsaker, D.; López-Urrea, R.; Shad, Z. Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method. Agric. Water Manag. 2021, 243, 106466. [Google Scholar] [CrossRef]
- Jiang, X.; Kang, S.; Tong, L.; Li, S.; Ding, R.; Du, T. Modeling evapotranspiration and its components of maize for seed production in an arid region of northwest China using a dual crop coefficient and multisource models. Agric. Water Manag. 2019, 222, 105–117. [Google Scholar] [CrossRef]
- Singer, M.; Asfaw, D.; Rosolem, R.; Cuthbert, M.; Miralles, D.; MacLeod, D.; Quichimbo, E.; Michaelides, K. Hourly potential evapotranspiration at 0.1° resolution for the global land surface from 1981–present. Sci. Data 2021, 8, 224. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Lv, Y.; Ai, L.; Yang, S.; He, Y.; Dalson, T. Validation of dual-crop coefficient method for calculation of rice evapotranspiration under drying-wetting cycle condition. Paddy Water Environ. 2017, 15, 381–393. [Google Scholar] [CrossRef]
- Guo, H.; Li, S.; Kang, S.; Du, T.; Tong, L.; Hao, X.; Ding, R. Crop coefficient for spring maize under plastic mulch based on 12-year eddy covariance observation in the arid region of Northwest China. J. Hydrol. 2020, 588, 125108. [Google Scholar] [CrossRef]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Requirements. In Irrigation and Drainage Paper No. 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Allen, R.; Pereira, L. Estimating crop coefficients from fraction of ground cover and height. Irrig. Sci. 2009, 28, 17–34. [Google Scholar] [CrossRef]
- Bai, X.; Liu, P.; Cao, Z.; Lu, H.; Xiong, H.; Yang, A.; Cai, Z.; Wang, J.; Yao, J. Rice plant counting, locating, and sizing method based on high-throughput UAV RGB images. Plant Phenomics 2023, 5, 0020. [Google Scholar] [CrossRef]
- Livsey, J.; Kätterer, T.; Vico, G.; Lyon, S.; Lindborg, R.; Scaini, A.; Da, C.; Manzoni, S. Do alternative irrigation strategies for rice cultivation decrease water footprints at the cost of long-term soil health? Environ. Res. Lett. 2019, 14, 074011. [Google Scholar] [CrossRef]
- Nandi, R.; Mudi, D.; Singh, K.; Saha, M.; Bandyopadhyay, P. Partitioning of evapotranspiration and crop coefficients of lentil under conserved soil moisture conditions. J. Soil Sci. Plant Nutr. 2024, 24, 435–4450. [Google Scholar] [CrossRef]
- Guo, J.X.; Hu, X.Y.; Gao, L.M.; Xie, K.L.; Ling, N.; Shen, Q.R.; Hu, S.J.; Guo, S.W. The rice production practices of high yield and high nitrogen use efficiency in Jiangsu, China. Science 2017, 7, 2101. [Google Scholar]
- Li, J.P.; Vatsa, P.; Ma, W.L. Can mechanized pesticide application help reduce pesticide use and increase crop yield? Evidence from rice farmers in Jiangsu province, China. Int. J. Agric. Sustain. 2023, 21, 2227809. [Google Scholar] [CrossRef]
- Lv, Y.P.; Gu, L.H.; Xu, J.Z.; Liu, X.Y. A coupled hourly water-carbon flux model at plot and field scales for water-saving irrigated rice paddy. Agric. Water Manag. 2024, 293, 108706. [Google Scholar] [CrossRef]
- Liu, X.; Xu, J.; Yang, S.; Zhang, J. Rice evapotranspiration at the field and plot scales under water-saving irrigation. Meteorol. Atmos. Phys. 2018, 130, 227–240. [Google Scholar] [CrossRef]
- Allen, R.; Pruitt, W.; Wright, J.; Howell, T.; Ventura, F.; Snyder, R.; Itenfisu, D.; Steduto, P.; Berengena, J.; Yrisarry, J.; et al. A recommendation on standardized surface resistance for hourly calculation of reference ETO by the FAO56 Penman-Monteith method. Agric. Water Manag. 2006, 81, 1–22. [Google Scholar] [CrossRef]
- Pereira, L.; Allen, R.; Smith, M.; Raes, D. Crop evapotranspiration estimation with FAO56: Past and future. Agric. Water Manag. 2015, 147, 4–20. [Google Scholar] [CrossRef]
- Arif, C.; Setiawan, B.; Sofiyuddin, H.; Martief, L.; Mizoguchi, M.; Doi, R. Estimating crop coefficient in intermittent irrigation paddy fields using Excel Solver. Rice Sci. 2012, 19, 143–152. [Google Scholar] [CrossRef]
- Liu, X.; Xu, J.; Liu, B.; Wang, W.; Li, Y. A novel model of water-heat coupling for water-saving irrigated rice fields based on water and energy balance: Model formulation and verification. Agric. Water Manag. 2019, 223, 105705. [Google Scholar] [CrossRef]
- Hanson, B.R.; May, D.M. Crop coefficients for drip-irrigated processing tomato. Agric. Water Manag. 2006, 81, 381–399. [Google Scholar] [CrossRef]
- Kaler, A.S.; Ray, J.D.; Schapaugh, W.T.; Davies, M.K.; King, C.A.; Purcell, L.C. Association mapping identifies loci for canopy coverage in diverse soybean genotypes. Mol. Breed. 2018, 38, 50. [Google Scholar] [CrossRef]
- Xiao, X.; Heitman, J.L.; Sauer, T.J.; Ren, T.; Horton, R. Sensible Heat Balance Measurements of Soil Water Evaporation beneath a Maize Canopy. Soil Sci. Soc. Am. J. 2014, 78, 361–368. [Google Scholar] [CrossRef]
- Bidabadi, M.; Babazadeh, H.; Shiri, J.; Saremi, A. Estimation reference crop evapotranspiration (ET0) using artificial intelligence model in an arid climate with external data. Appl. Water Sci. 2024, 14, 3. [Google Scholar] [CrossRef]
- Alberto, M.; Wassmann, R.; Hirano, T.; Miyata, A.; Hatano, R.; Kumar, A.; Padre, A.; Amante, M. Comparisons of energy balance and evapotranspiration between flooded and aerobic rice fields in the Philippines. Agric. Water Manag. 2011, 98, 1417–1430. [Google Scholar] [CrossRef]
- Maruyama, A.; Kuwagata, T. Coupling land surface and crop growth models to estimate the effects of changes in the growing season on energy balance and water use of rice paddies. Agric. Forest Meteorol. 2010, 150, 919–930. [Google Scholar] [CrossRef]
- Alberto, M.; Quilty, J.; Buresh, R.; Wassmann, R.; Haidarc, S.; Correa, T.; Sandro, J. Actual evapotranspiration and dual crop coefficients for dry-seeded rice and hybrid maize grown with overhead sprinkler irrigation. Agric. Water Manag. 2014, 136, 1–12. [Google Scholar] [CrossRef]
- Oue, H.; Laban, S. Water use of rice and mung bean cultivations in a downstream area of an irrigation system in South Sulawesi in the 2nd dry season. Paddy Water Environ. 2020, 18, 87–98. [Google Scholar] [CrossRef]
- Research Group on Evapotranspiration. Evapotranspiration from paddy field. J. Agric. Meteorol. Tokyo 1967, 4, 149–158. [Google Scholar]
- Tomar, V.; O’Toole, J. Water use in lowland rice cultivation in Asia: A review of evapotranspiration. Agric. Water Manag. 1980, 3, 83–106. [Google Scholar] [CrossRef]
- Lv, Y.; Xu, J.; Yang, S.; Liu, X.; Zhang, J.; Wang, Y. Inter-seasonal and cross-treatment variability in single-crop coefficients for rice evapotranspiration estimation and their validation under drying-wetting cycle conditions. Agric. Water Manag. 2018, 196, 154–161. [Google Scholar] [CrossRef]
- Mohan, S.; Arumugam, N. Irrigation crop coefficients for lowland rice. Irrig. Drain. Syst. 1994, 8, 159–176. [Google Scholar] [CrossRef]
- Yang, S.H.; Xu, J.Z.; Liu, X.Y.; Zhang, J.G.; Wang, Y.J. Variations of carbon dioxide exchange in paddy field ecosystem under water-saving irrigation in Southeast China. Agric. Water Manag. 2016, 166, 42–52. [Google Scholar] [CrossRef]
Stages | Re-Greening | Tillering | Jointing-Booting | Heading-Flowering | Milk Maturity | Yellow Maturity | |||
---|---|---|---|---|---|---|---|---|---|
Early | Middle | Later | Early | Later | |||||
Upper thresholds * | 25 mm | θs1 | θs1 | θs1 | θs2 | θs2 | θs3 | θs3 | Drying |
Lower thresholds | 5 mm | 0.7θs1 | 0.65θs1 | 0.6θs1 | 0.7θs2 | 0.75θs2 | 0.8θs3 | 0.7θs3 | |
Monitored root zone depth (cm) | - | 0–20 | 0–20 | 0–20 | 0–30 | 0–30 | 0–40 | 0–40 | - |
Rice Season | Crop Coefficients | ETc/Es/Tc | Statistic | Initial | Development | Midseason | Late-Season | Entire Rice Season |
---|---|---|---|---|---|---|---|---|
2015 | FAO56 adjusted coefficients | ETc Adjd | RMSE | 1.841 | 1.481 | 1.260 | 0.633 | 1.355 |
k | 0.641 | 0.773 | 0.729 | 0.815 | 0.739 | |||
R2 | 0.187 | 0.840 | 0.877 | 0.717 | 0.791 | |||
Es Adjd | RMSE | 1.450 | 1.026 | 0.820 | 0.224 | 0.944 | ||
k | 0.671 | 0.676 | 0.197 | 0.893 | 0.616 | |||
R2 | 0.119 | 0.578 | 0.727 | 0.100 | 0.690 | |||
Tc Adjd | RMSE | 0.492 | 0.943 | 0.655 | 0.502 | 0.698 | ||
k | 0.471 | 0.829 | 0.879 | 0.794 | 0.851 | |||
R2 | 0.418 | 0.728 | 0.807 | 0.876 | 0.841 | |||
FAO56 calibrated coefficients | ETc Cald | RMSE | 1.477 | 0.808 | 0.598 | 0.458 | 0.826 | |
k | 0.880 | 0.996 | 0.949 | 1.063 | 0.964 | |||
R2 | 0.206 | 0.869 | 0.881 | 0.754 | 0.806 | |||
Es Cald | RMSE | 1.252 | 0.782 | 0.307 | 0.305 | 0.663 | ||
k | 0.865 | 0.979 | 0.851 | 1.342 | 0.915 | |||
R2 | 0.128 | 0.583 | 0.564 | 0.363 | 0.708 | |||
Tc Cald | RMSE | 0.326 | 0.755 | 0.577 | 0.290 | 0.567 | ||
k | 0.866 | 0.964 | 0.961 | 0.977 | 0.962 | |||
R2 | 0.418 | 0.774 | 0.807 | 0.794 | 0.853 | |||
leaf area index-based coefficients | ETc LAId | RMSE | 1.544 | 0.778 | 0.689 | 0.427 | 0.867 | |
k | 0.943 | 1.051 | 0.910 | 1.038 | 0.976 | |||
R2 | 0.244 | 0.906 | 0.864 | 0.764 | 0.799 | |||
Es LAId | RMSE | 1.251 | 0.645 | 0.423 | 0.473 | 0.671 | ||
k | 0.824 | 0.913 | 1.150 | 1.575 | 0.911 | |||
R2 | 0.136 | 0.650 | 0.450 | 0.196 | 0.675 | |||
Tc LAId | RMSE | 0.612 | 0.727 | 0.765 | 0.375 | 0.691 | ||
k | 1.379 | 1.078 | 0.818 | 0.876 | 0.912 | |||
R2 | 0.476 | 0.846 | 0.827 | 0.810 | 0.786 | |||
2016 | FAO56 adjusted coefficients | ETc Adjd | RMSE | 0.845 | 1.665 | 1.240 | 0.355 | 1.228 |
k | 0.885 | 0.776 | 0.753 | 0.782 | 0.776 | |||
R2 | 0.835 | 0.749 | 0.911 | 0.941 | 0.918 | |||
Es Adjd | RMSE | 1.015 | 1.125 | 1.073 | 0.146 | 1.007 | ||
k | 0.805 | 0.794 | 0.184 | 0.765 | 0.692 | |||
R2 | 0.807 | 0.642 | 0.792 | 0.772 | 0.788 | |||
Tc Adjd | RMSE | 0.383 | 1.101 | 0.710 | 0.292 | 0.743 | ||
k | 1.191 | 0.797 | 0.947 | 0.791 | 0.895 | |||
R2 | 0.013 | 0.567 | 0.804 | 0.836 | 0.826 | |||
FAO56 calibrated coefficients | ETc Cald | RMSE | 1.221 | 0.790 | 0.633 | 0.204 | 0.735 | |
k | 1.212 | 1.006 | 0.976 | 1.047 | 1.013 | |||
R2 | 0.873 | 0.748 | 0.916 | 0.939 | 0.914 | |||
Es Cald | RMSE | 0.736 | 1.042 | 0.512 | 0.093 | 0.661 | ||
k | 1.039 | 1.102 | 0.706 | 1.164 | 1.008 | |||
R2 | 0.846 | 0.648 | 0.637 | 0.912 | 0.852 | |||
Tc Cald | RMSE | 0.811 | 0.739 | 0.760 | 0.159 | 0.714 | ||
k | 2.186 | 0.937 | 1.035 | 1.009 | 1.004 | |||
R2 | 0.013 | 0.634 | 0.804 | 0.912 | 0.836 | |||
leaf area index-based coefficients | ETc LAId | RMSE | 1.482 | 0.832 | 0.674 | 0.207 | 0.821 | |
k | 1.315 | 1.049 | 0.937 | 1.052 | 1.023 | |||
R2 | 0.945 | 0.794 | 0.913 | 0.939 | 0.899 | |||
Es LAId | RMSE | 0.591 | 0.765 | 0.529 | 0.219 | 0.568 | ||
k | 1.001 | 1.057 | 0.936 | 1.558 | 1.015 | |||
R2 | 0.885 | 0.652 | 0.525 | 0.887 | 0.870 | |||
Tc LAId | RMSE | 1.433 | 0.634 | 0.753 | 0.188 | 0.809 | ||
k | 3.442 | 0.995 | 0.884 | 0.887 | 0.925 | |||
R2 | 0.018 | 0.666 | 0.804 | 0.932 | 0.777 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Man, R.; Pan, Y.; Lv, Y. Estimation of Actual Evapotranspiration and Its Components at Hourly and Daily Scales Using Dual Crop Coefficient Method for Water-Saving Irrigated Rice Paddy Field. Agronomy 2025, 15, 2133. https://doi.org/10.3390/agronomy15092133
Man R, Pan Y, Lv Y. Estimation of Actual Evapotranspiration and Its Components at Hourly and Daily Scales Using Dual Crop Coefficient Method for Water-Saving Irrigated Rice Paddy Field. Agronomy. 2025; 15(9):2133. https://doi.org/10.3390/agronomy15092133
Chicago/Turabian StyleMan, Runze, Yue Pan, and Yuping Lv. 2025. "Estimation of Actual Evapotranspiration and Its Components at Hourly and Daily Scales Using Dual Crop Coefficient Method for Water-Saving Irrigated Rice Paddy Field" Agronomy 15, no. 9: 2133. https://doi.org/10.3390/agronomy15092133
APA StyleMan, R., Pan, Y., & Lv, Y. (2025). Estimation of Actual Evapotranspiration and Its Components at Hourly and Daily Scales Using Dual Crop Coefficient Method for Water-Saving Irrigated Rice Paddy Field. Agronomy, 15(9), 2133. https://doi.org/10.3390/agronomy15092133