Exogenous Proline Application Mitigates Salt Stress in Physalis ixocarpa Brot.: Morphophysiological, Spectroscopic, and Metabolomic Evidence
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Reagents
2.2. Germination Experiments and Salinity Dose Determination
2.2.1. Salinity Tolerance Assessment
2.2.2. Proline Pretreatment Under Salt Stress
2.3. In Vitro Culture Experiments
2.4. Morphophysiological Analyses
2.5. ATR-FTIR Spectroscopy of Plant Tissues
2.6. Extract Preparation and GC-MS Analysis
2.7. Statistical Analysis
3. Results
3.1. Determination of Optimal Salt Stress Level
3.2. Proline Pretreatment Effects on Salt-Stressed Seeds
3.3. Morphophysiological Responses in In Vitro Culture
3.3.1. Vegetative Development and Biomass Distribution
3.3.2. Chlorophyll Content
3.4. ATR-FTIR Analysis of Plant Tissues
3.5. GC-MS Metabolomic Analysis
4. Discussion
4.1. Optimal Salt Stress Level and Proline Dosage
4.2. Resource Reallocation Strategy
4.3. Proline’s Multifaceted Protective Mechanisms
4.4. GC-MS Metabolomic Analysis
4.5. Implications for Agricultural Practice
4.6. Methodological Considerations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABA | Abscisic acid |
ANOVA | Analysis of variance |
APX | Ascorbate peroxidase |
AsA-GSH | Ascorbate–glutathione |
ATR-FTIR | Attenuated total reflection–Fourier transform infrared spectroscopy |
ATP | Adenosine triphosphate |
CAS | Chemical Abstracts Service |
CAT | Catalase |
FAO | Food and Agriculture Organization |
GC-MS | Gas chromatography–mass spectrometry |
HPLC | High-performance liquid chromatography |
HSD | Honestly significant difference |
MDA | Malondialdehyde |
MS | Murashige and Skoog (medium) |
NADPH | Nicotinamide adenine dinucleotide phosphate |
ND | Not detected |
NIR | Near-infrared |
P5C | Δ1-pyrroline-5-carboxylate |
P5CS | Δ1-pyrroline-5-carboxylate synthetase |
P5CR | pyrroline-5-carboxylate reductase |
ROS | Reactive oxygen species |
RT | Retention time |
SD | Standard deviation |
SOD | Superoxide dismutase |
UV-Vis | Ultraviolet-visible |
References
- Food and Agriculture Organization of the United Nations. World Map of Salt-Affected Soils Launched at Virtual Conference. Available online: https://www.fao.org/newsroom/detail/salt-affected-soils-map-symposium/en (accessed on 14 August 2025).
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed]
- Serrano, R.; Mulet, J.M.; Rios, G.; Marquez, J.A.; Larrinoa, I.i.F.d.; Leube, M.P.; Mendizabal, I.; Pascual-Ahuir, A.; Proft, M.; Ros, R.; et al. A glimpse of the mechanisms of ion homeostasis during salt stress. J. Exp. Bot. 1999, 50, 1023–1036. [Google Scholar] [CrossRef]
- Allakhverdiev, S.I.; Sakamoto, A.; Nishiyama, Y.; Inaba, M.; Murata, N. Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol. 2000, 123, 1047–1056. [Google Scholar] [CrossRef]
- Silva, D.F.d.; Villa, F.; Barp, F.K.; Rotili, M.C.C.; Stumm, D.R. Conservação pós-colheita de fisális e desempenho produtivo em condições edafoclimáticas de Minas Gerais. Revista Ceres 2013, 60, 826–832. [Google Scholar] [CrossRef]
- Santiaguillo Hernández, J.F.; Blas Yáñez, S. Aprovechamiento tradicional de las especies de Physalis en México. Rev. Geogr. Agrícola 2009, 43, 81–86. [Google Scholar]
- Bock, M.A.; Sanchez-Pilcher, J.; McKee, L.J.; Ortiz, M. Selected nutritional and quality analyses of tomatillos (Physalis ixocarpa). Plant Foods Hum. Nutr. 1995, 48, 127–133. [Google Scholar] [CrossRef]
- Khan, W.; Bakht, J.; Shafi, M. Antimicrobial potentials of different solvent extracted samples from Physalis ixocarpa. Pak. J. Pharm. Sci. 2016, 29, 467–475. [Google Scholar]
- González-Pérez, J.E.; Guerrero-Beltrán, J.Á. Tomatillo or husk tomato (Physalis philadelphica and Physalis ixocarpa): A review. Sci. Hortic. 2021, 288, 110306. [Google Scholar] [CrossRef]
- Dkhil, M.A.; Al-Quraishy, S.; Diab, M.M.S.; Othman, M.S.; Aref, A.M.; Abdel Moneim, A.E. The potential protective role of Physalis peruviana L. fruit in cadmium-induced hepatotoxicity and nephrotoxicity. Food Chem. Toxicol. 2014, 74, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Fischer, G.; Almanza-Merchán, P.J.; Miranda, D. Importancia y cultivo de la uchuva (Physalis peruviana L.). Rev. Bras. Frutic. 2014, 36, 1–15. [Google Scholar] [CrossRef]
- Ramos-López, B.I.; Ortiz-Hernández, Y.D.; Morales, I. Yield analysis of Physalis ixocarpa Brot. ex Hornem varieties under greenhouse and field conditions. Ciência Rural 2018, 48, e20180044. [Google Scholar] [CrossRef]
- Balbuena-Mascada, S.; Peña-Lomelí, A.; Magaña-Lira, N.; Sahagún-Castellanos, J.; Martínez-Solís, J. Drying temperatures of tomatillo (Physalis ixocarpa Brot. ex Horm.) seeds. Rev. Chapingo Ser. Hortic. 2022, 28, 79–92. [Google Scholar] [CrossRef]
- Hogewoning, J. Tomatillo Climbs the Export Ladder. Available online: https://mexicobusiness.news/agribusiness/news/tomatillo-climbs-export-ladder (accessed on 28 August 2025).
- Nankishore, A.; Farrell, A.D. The response of contrasting tomato genotypes to combined heat and drought stress. J. Plant Physiol. 2016, 202, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Sree, S.S.; Al-zharani, M.; Nasr, F.A.; Alneghery, L.M.; Kumar, T.T.A.; Sureshkumar, B.T.; Mohamed, J.M.M.; Ravichandran, M.; Dineshkumar, R. Innovative bio-amelioration strategies for sustainable reclamation of salt-affected agroecosystems: A review. Plant Soil 2025, 1–48. [Google Scholar] [CrossRef]
- Fang, Y.; Xiong, L. General mechanisms of drought response and their application in drought resistance improvement in plants. Cell. Mol. Life Sci. 2014, 72, 673–689. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 2009, 29, 185–212. [Google Scholar] [CrossRef]
- Ahmad, R.; Kim, M.D.; Back, K.-H.; Kim, H.-S.; Lee, H.-S.; Kwon, S.-Y.; Murata, N.; Chung, W.-I.; Kwak, S.-S. Stress-induced expression of choline oxidase in potato plant chloroplasts confers enhanced tolerance to oxidative, salt, and drought stresses. Plant Cell Rep. 2007, 27, 687–698. [Google Scholar] [CrossRef]
- Szabados, L.; Savouré, A. Proline: A multifunctional amino acid. Trends Plant Sci. 2010, 15, 89–97. [Google Scholar] [CrossRef]
- Arteaga, S.; Yabor, L.; Díez, M.J.; Prohens, J.; Boscaiu, M.; Vicente, O. The use of proline in screening for tolerance to drought and salinity in common bean (Phaseolus vulgaris L.) genotypes. Agronomy 2020, 10, 817. [Google Scholar] [CrossRef]
- Hosseinifard, M.; Stefaniak, S.; Ghorbani Javid, M.; Soltani, E.; Wojtyla, Ł.; Garnczarska, M. Contribution of exogenous proline to abiotic stresses tolerance in plants: A review. Int. J. Mol. Sci. 2022, 23, 5186. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4.3.1–F4.3.8. [Google Scholar] [CrossRef]
- Cobaleda-Velasco, M.; Almaraz-Abarca, N.; Alanis-Bañuelos, R.E.; Uribe-Soto, J.N.; González-Valdez, L.S.; Muñoz-Hernández, G.; Zaca-Morán, O.; Rojas-López, M. Rapid determination of phenolics, flavonoids, and antioxidant properties of Physalis ixocarpa Brot. ex Hornem. and Physalis angulata L. by infrared spectroscopy and partial least squares. Anal. Lett. 2017, 51, 523–536. [Google Scholar] [CrossRef]
- Parker, F.S. Applications of Infrared, Raman, and Resonance Raman Spectroscopy in Biochemistry; Plenum Press: New York, NY, USA, 1983; p. 550. [Google Scholar]
- Roeges, N.P.G. A Guide to the Complete Interpretation of Infrared Spectral of Organic Structures; Wiley: Hoboken, NJ, USA, 1994. [Google Scholar]
- Smith, B.C. Infrared Spectral Interpretation: A Systematic Approach; CRC Press: Boca Raton, FL, USA, 1999; p. 265. [Google Scholar]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed.; Wiley: Chichester, NY, USA, 2001; p. 347. [Google Scholar]
- Flowers, T.J.; Yeo, A.R. Breeding for salinity resistance in crop plants: Where next? Funct. Plant Biol. 1995, 22, 875. [Google Scholar] [CrossRef]
- Stefanello, R.; Goergen, P.C.H.; Neves, L.A.S.d. Resposta fisiológica de sementes de alcachofra ao estresse salino. Cult. Agronômica: Rev. Ciências Agronômicas 2018, 27, 463–470. [Google Scholar] [CrossRef]
- Cuartero, J.; Fernández-Muñoz, R. Tomato and salinity. Sci. Hortic. 1998, 78, 83–125. [Google Scholar] [CrossRef]
- Heuer, B. Influence of exogenous application of proline and glycinebetaine on growth of salt-stressed tomato plants. Plant Sci. 2003, 165, 693–699. [Google Scholar] [CrossRef]
- Kong, C.K.Y.; Lee, R.S.; Hasan, K.; Wong, C.K.F.; Teh, C.Y. Proline priming enhances seed vigour and biochemical attributes of rice (Oryza sativa L.) during germination. Trop. Life Sci. Res. 2024, 35, 149–163. [Google Scholar] [CrossRef]
- Alfosea-Simón, M.; Simón-Grao, S.; Zavala-Gonzalez, E.A.; Cámara-Zapata, J.M.; Simón, I.; Martínez-Nicolás, J.J.; Lidón, V.; García-Sánchez, F. Physiological, nutritional and metabolomic responses of tomato plants after the foliar application of amino acids aspartic acid, glutamic acid and alanine. Front. Plant Sci. 2021, 11, 581234. [Google Scholar] [CrossRef]
- Rajasheker, G.; Jawahar, G.; Jalaja, N.; Kumar, S.A.; Kumari, P.H.; Punita, D.L.; Karumanchi, A.R.; Reddy, P.S.; Rathnagiri, P.; Sreenivasulu, N.; et al. Role and regulation of osmolytes and ABA interaction in salt and drought stress tolerance. In Plant Signaling Molecules; Khan, M.I.R., Reddy, P.S., Ferrante, A., Khan, N.A., Eds.; Woodhead Publishing: Sawston, UK, 2019; pp. 417–436. [Google Scholar] [CrossRef]
- Escalante Magaña, C.A. Efecto del Estrés Salino (NaCI) Sobre el Metabolismo de la Prolina (Pro) y el Papel de Este aa Suplementado de Manera Exógena en Plantas de Chile Habanero (Capsicum chinense Jacq.). Ph.D. Thesis, Centro de Investigación Científica de Yucatán, Mérida, Mexico, 2020. [Google Scholar]
- Kahlaoui, B.; Hachicha, M.; Rejeb, S.; Rejeb, M.N.; Hanchi, B.; Misle, E. Response of two tomato cultivars to field-applied proline under irrigation with saline water: Growth, chlorophyll fluorescence and nutritional aspects. Photosynthetica 2014, 52, 421–429. [Google Scholar] [CrossRef]
- Lin, C.C.; Kao, C.H. Cell wall peroxidase against ferulic acid, lignin, and NaCl-reduced root growth of rice seedlings. J. Plant Physiol. 2001, 158, 667–671. [Google Scholar] [CrossRef]
- Kerepesi, I.; Galiba, G. Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Sci. 2000, 40, 482–487. [Google Scholar] [CrossRef]
- Nounjan, N.; Nghia, P.T.; Theerakulpisut, P. Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. J. Plant Physiol. 2012, 169, 596–604. [Google Scholar] [CrossRef]
- El Moukhtari, A.; Cabassa-Hourton, C.; Farissi, M.; Savouré, A. How does proline treatment promote salt stress tolerance during crop plant development? Front. Plant Sci. 2020, 11, 1127. [Google Scholar] [CrossRef]
- Islam, M.M.; Hoque, M.A.; Okuma, E.; Jannat, R.; Banu, M.N.; Jahan, M.S.; Nakamura, Y.; Murata, Y. Proline and glycinebetaine confer cadmium tolerance on tobacco bright yellow-2 cells by increasing ascorbate-glutathione cycle enzyme activities. Biosci. Biotechnol. Biochem. 2009, 73, 2320–2323. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Anee, T.I.; Parvin, K.; Nahar, K.; Mahmud, J.A.; Fujita, M. Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 2019, 8, 384. [Google Scholar] [CrossRef] [PubMed]
- Verbruggen, N.; Hermans, C. Proline accumulation in plants: A review. Amino Acids 2008, 35, 753–759. [Google Scholar] [CrossRef]
- Sharma, S.S.; Dietz, K.-J. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J. Exp. Bot. 2006, 57, 711–726. [Google Scholar] [CrossRef]
- Hoque, M.A.; Banu, M.N.A.; Nakamura, Y.; Shimoishi, Y.; Murata, Y. Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells. J. Plant Physiol. 2008, 165, 813–824. [Google Scholar] [CrossRef] [PubMed]
- Naliwajski, M.; Skłodowska, M. The relationship between the antioxidant system and proline metabolism in the leaves of cucumber plants acclimated to salt stress. Cells 2021, 10, 609. [Google Scholar] [CrossRef] [PubMed]
- Fichman, Y.; Gerdes, S.Y.; Kovács, H.; Szabados, L.; Zilberstein, A.; Csonka, L.N. Evolution of proline biosynthesis: Enzymology, bioinformatics, genetics, and transcriptional regulation. Biol. Rev. 2014, 90, 1065–1099. [Google Scholar] [CrossRef]
- Neilson, E.H.; Goodger, J.Q.D.; Woodrow, I.E.; Møller, B.L. Plant chemical defense: At what cost? Trends Plant Sci. 2013, 18, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Erb, M.; Kliebenstein, D.J. Plant secondary metabolites as defenses, regulators, and primary metabolites: The blurred functional trichotomy. Plant Physiol. 2020, 184, 39–52. [Google Scholar] [CrossRef] [PubMed]
NaCl (mM) | Germination Rate (%) | Reduction from Control (%) |
---|---|---|
0 | 98.7 ± 1.2 a | - |
25 | 73.0 ± 2.9 b | 26.0 |
50 | 66.7 ± 1.2 c | 32.4 |
75 | 60.3 ± 0.5 d | 38.9 |
100 | 57.3 ± 1.2 d | 42.0 |
125 | 47.0 ± 1.4 e | 52.4 |
150 | 39.3 ± 0.5 f | 60.2 |
175 | 34.3 ± 1.7 f | 65.2 |
200 | 23.0 ± 1.6 g | 76.7 |
Treatment | Germination Rate (%) | Fresh Weight (g) |
---|---|---|
Control (no salt) | 98.0 ± 1.4 a | 1.354 ± 0.026 a |
75 mM NaCl | 62.0 ± 0.8 d | 0.642 ± 0.022 c |
NaCl + 4 mM proline | 70.7 ± 2.5 c | 0.758 ± 0.015 b |
NaCl + 6 mM proline | 76.7 ± 0.9 b | 0.799 ± 0.019 b |
NaCl + 8 mM proline | 78.0 ± 0.8 b | 1.322 ± 0.022 a |
NaCl + 10 mM proline | 70.7 ± 2.1 c | 0.664 ± 0.008 c |
Treatment | Green Leaves (Count) | Root Length (cm) | Root Dry Weight (g) | Stem Dry Weight (g) | Chlorophyll a (Abs at 664 nm) | Chlorophyll b (Abs at 649 nm) |
---|---|---|---|---|---|---|
Control | 0.951 ± 0.961 ab | 9.721 ± 2.459 c | 0.072 ± 0.025 c | 0.061 ± 0.020 ab | 0.149 ± 0.037 bc | 0.088 ± 0.017 ab |
75 mM NaCl | 0.404 ± 0.612 a | 8.540 ± 1.253 bc | 0.053 ± 0.020 bc | 0.073 ± 0.021 b | 0.051 ± 0.031 a | 0.066 ± 0.020 a |
NaCl + 4 mM Pro | 1.176 ± 0.747 ab | 5.809 ± 0.985 a | 0.030 ± 0.014 ab | 0.048 ± 0.017 ab | 0.061 ± 0.019 ab | 0.066 ± 0.017 a |
NaCl + 6 mM Pro | 1.394 ± 0.878 ab | 6.562 ± 1.287 ab | 0.023 ± 0.003 a | 0.047 ± 0.011 ab | 0.235 ± 0.022 c | 0.127 ± 0.016 b |
NaCl + 8 mM Pro | 1.621 ± 0.449 ab | 5.079 ± 1.458 a | 0.019 ± 0.006 a | 0.044 ± 0.013 a | 0.363 ± 0.031 d | 0.190 ± 0.017 c |
NaCl + 10 mM Pro | 2.186 ± 1.108 b | 6.239 ± 1.109 ab | 0.027 ± 0.010 a | 0.051 ± 0.018 ab | 0.234 ± 0.057 c | 0.133 ± 0.027 b |
Pr > F (model) | 0.007 | <0.0001 | <0.0001 | 0.022 | <0.0001 | <0.0001 |
Family | Assignment | Control | 75 mM NaCl | 75 mM NaCl + 8 mM Proline | Salt Effect | Proline Effect |
---|---|---|---|---|---|---|
Leaf tissue | ||||||
Carboxylates/ Carbonyls | C=O stretching; characteristic of the acetyl ester bond | ND | 1739 | 1737 | Appears | Unchanged vs. salt |
Lignin/Aromatics | C-O-C vibrations in aromatic ether structures (as in lignins) | 1145 | ND | 1147 | Disappears | Similar to control |
Other | symmetric stretching vibration of methyl groups (CH3) | ND | 2877 | ND | Appears | Similar to control |
Other | stretching of C-O and C-N bonds, as well as N-H bending vibrations | ND | 1233 | 1233 | Appears | Unchanged vs. salt |
Polysaccharides | O-H with different degrees of hydrogen bonding (cellulose, hemicelluloses, pectin...) | ND | 3311 | ND | Appears | Similar to control |
Polysaccharides | O-H with different degrees of hydrogen bonding (cellulose, hemicelluloses, pectin...) | 3274 | 3281 | 3274 | Shift +7.0 | Similar to control |
Polysaccharides | asymmetric C-O-C stretching in polysaccharides | 1101 | 1096 | 1102 | Shift −5.0 | Similar to control |
Stem tissue | ||||||
Carboxylates/ Carbonyls | C=O stretching; characteristic of the acetyl ester bond | 1737 | ND | 1738 | Disappears | Similar to control |
Carboxylates/ Carbonyls | C=O stretching in esters, anhydrides, or lactones | 1762 | ND | 1762 | Disappears | Similar to control |
Carboxylates/ Carbonyls | “Fermi band” of aldehydes | 2733 | ND | 2731 | Disappears | Similar to control |
Lignin/Aromatics | C-O-C vibrations in aromatic ether structures (as in lignins) | ND | 1176 | 1161 | Appears | Shift vs. salt |
Lignin/Aromatics | out-of-plane bending of aromatic C-H bonds | ND | 740 | ND | Appears | Similar to control |
Lignin/Aromatics | typical of lignin | ND | 1515 | ND | Appears | Similar to control |
Lignin/Aromatics | O-H deformation in carboxylic acids; syringyl units in lignins | 1203 | ND | 1203 | Disappears | Similar to control |
Lignin/Aromatics | asymmetric stretching of carboxylates (COO−) and C=C stretching in aromatic rings | 1586 | ND | 1586 | Disappears | Similar to control |
Lignin/Aromatics | C=O stretching in aldehydes, carboxylic acids, and phenols (kaempferol) | 1683 | ND | 1683 | Disappears | Similar to control |
Lignin/Aromatics | guaiacyl structures in lignin | 848 | 856 | 848 | Shift +8.0 | Similar to control |
Lignin/Aromatics | C=C stretching in aromatic rings | 1485 | 1474 | 1483 | Shift −11.0 | Similar to control |
Other | asymmetric deformation of -CH2- groups and asymmetric deformation of -CH3 groups | ND | 1450 | 1449 | Appears | Shift vs. salt |
Other | out-of-plane C-H deformation in structures with trans double bonds (=C-H) | ND | 966 | ND | Appears | Similar to control |
Other | symmetric C-H bonds in methylene groups (-CH2-), typical of waxes | 2851 | ND | 2850 | Disappears | Similar to control |
Other | O-H stretching, typical of carbohydrates | 3403 | ND | 3402 | Disappears | Similar to control |
Polysaccharides | ring deformations in pyranose structures (sugar rings) | ND | 1150 | 1131 | Appears | Shift vs. salt |
Polysaccharides | C-H and O-H bending; typical of cellulose; symmetric COO− stretching of proline | ND | 1409 | 1408 | Appears | Shift vs. salt |
Polysaccharides | C-H bending (hemicelluloses) | ND | 715 | ND | Appears | Similar to control |
Polysaccharides | symmetric C-O-C stretching in polysaccharides | ND | 869 | ND | Appears | Similar to control |
Polysaccharides | C-O stretching in cellulose and other polysaccharides | ND | 989 | ND | Appears | Similar to control |
Polysaccharides | C-H stretching in C-H groups of carbohydrates or cellulose | ND | 2899 | ND | Appears | Similar to control |
Polysaccharides | O-H with different degrees of hydrogen bonding (cellulose, hemicelluloses, pectin...) | 3212 | ND | 3210 | Disappears | Similar to control |
Polysaccharides | C-O stretching in polysaccharides (cellulose, hemicellulose, pectins); typical of glycosides | 1051 | 1065 | 1051 | Shift +14.0 | Similar to control |
Polysaccharides | asymmetric C-O-C stretching in polysaccharides | 1101 | 1116 | 1102 | Shift +15.0 | Similar to control |
Polysaccharides | C-H bending, characteristics of the pyranose ring in cellulose and hemicellulose | 926 | 931 | 926 | Shift +5.0 | Similar to control |
Polysaccharides | β-glycosidic bond between monosaccharides | 897 | 887 | 897 | Shift −10.0 | Similar to control |
Polysaccharides | symmetric deformation of CH2 groups in cellulose and hemicellulose; aromatic ring in phenols | 1377 | 1371 | 1378 | Shift −6.0 | Similar to control |
Root tissue | ||||||
Lignin/Aromatics | out-of-plane deformation of aromatic C-H bonds (flavonoids and lignin) | ND | 828 | 827 | Appears | Shift vs. salt |
Lignin/Aromatics | typical of lignin | ND | 1513 | 1516 | Appears | Shift vs. salt |
Polysaccharides | O-H with different degrees of hydrogen bonding (cellulose, hemicelluloses, pectin...) | ND | 3266 | 3281 | Appears | Shift vs. salt |
Compound | Control | 75 mM NaCl | 75 mM NaCl + 8 mM Proline |
---|---|---|---|
Ethyl α-D-glucopyranoside | 21.93 | ND | 21.40 |
Ethyl β-D-riboside | ND | 13.03 | ND |
Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester | 6.96 | ND | 7.73 |
Octadecanoic acid, 2,3-dihydroxypropyl ester | 4.86 | 6.55 | 5.42 |
n-Hexadecanoic acid | 3.67 | 3.14 | 4.61 |
2-Pyrrolidinone | 2.00 | 2.03 | 1.83 |
Catechol | 1.92 | ND | ND |
L-Proline, 5-oxo-, methyl ester | 1.30 | 1.76 | ND |
DL-Proline, 5-oxo- | ND | ND | 1.09 |
N,N-dimethyl-1-Dodecanamine | ND | 4.89 | ND |
2-Dodecyl-5-methylpyrrolidine | ND | 4.07 | ND |
Pyrrolidine | ND | ND | 2.83 |
1-Pyrrolidinylacetonitrile | ND | ND | 2.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Do-Nascimento-Neto, F.G.; Sánchez-Hernández, E.; Lima-Brito, A.; Neves-do-Nascimento, M.; Ruíz-Potosme, N.M.; Martín-Gil, J.; Martín-Ramos, P. Exogenous Proline Application Mitigates Salt Stress in Physalis ixocarpa Brot.: Morphophysiological, Spectroscopic, and Metabolomic Evidence. Agronomy 2025, 15, 2119. https://doi.org/10.3390/agronomy15092119
Do-Nascimento-Neto FG, Sánchez-Hernández E, Lima-Brito A, Neves-do-Nascimento M, Ruíz-Potosme NM, Martín-Gil J, Martín-Ramos P. Exogenous Proline Application Mitigates Salt Stress in Physalis ixocarpa Brot.: Morphophysiological, Spectroscopic, and Metabolomic Evidence. Agronomy. 2025; 15(9):2119. https://doi.org/10.3390/agronomy15092119
Chicago/Turabian StyleDo-Nascimento-Neto, Francisco Gregório, Eva Sánchez-Hernández, Alone Lima-Brito, Marilza Neves-do-Nascimento, Norlan Miguel Ruíz-Potosme, Jesús Martín-Gil, and Pablo Martín-Ramos. 2025. "Exogenous Proline Application Mitigates Salt Stress in Physalis ixocarpa Brot.: Morphophysiological, Spectroscopic, and Metabolomic Evidence" Agronomy 15, no. 9: 2119. https://doi.org/10.3390/agronomy15092119
APA StyleDo-Nascimento-Neto, F. G., Sánchez-Hernández, E., Lima-Brito, A., Neves-do-Nascimento, M., Ruíz-Potosme, N. M., Martín-Gil, J., & Martín-Ramos, P. (2025). Exogenous Proline Application Mitigates Salt Stress in Physalis ixocarpa Brot.: Morphophysiological, Spectroscopic, and Metabolomic Evidence. Agronomy, 15(9), 2119. https://doi.org/10.3390/agronomy15092119