Modeling the Seasonal and Spatial Dynamics of Epigeic Fauna in the Context of Vineyard Landscape Use Using Machine Learning
Abstract
1. Introduction
2. Materials and Methods
- S1—Overgrown, abandoned vineyard, where the vines are overgrown with Prunus spinosa and Rosa rubiginosa species. It is located 282 m above sea level. Geographic coordinates: 48°25′15″ N, 18°26′27″ E.
- S2—Overgrown, abandoned vineyard, where the vines are overgrown with Prunus spinosa and Rosa rubiginosa species. It is located 281 m above sea level at 48°25′17.8″ N, 18°26′32.4″ E.
- S3—Meadow, which was originally a vineyard 50 years ago and is mowed twice a year. It is located at an altitude of 282 m above sea level at 48°25′15.8″ N, 18°26′27.6″ E.
- S4—Meadow, which was originally a vineyard 50 years ago and is mowed twice a year. It is located at an altitude of 284 m above sea level at 48°25′16.9″ N, 18°26′29.5″ E.
- S5—Intensive vineyard, which, once a year, the grass is mowed, the old vines are removed, and a new one is planted. It is located 262 m above sea level at 48°25′31.7″ N, 18°26′46.0″ E.
- S6—Intensive vineyard, which, once a year, the grass is mowed, the old vines are removed, and a new one is planted. It is located 274 m above sea level at 48°25′41.5″ N, 18°26′54.2″ E.
- S7—Semi-intensive vineyard, which, once a year, the grass is cut and the vines are pruned. The old vines are removed, and no new ones are planted. It is located 280 m above sea level at 48°25′35.2″ N, 18°26′48.8″ E.
- S8—Semi-intensive vineyard, which, once a year, the grass is cut and the vines are pruned. The old vines are removed, and no new ones are planted. It is located 278 m above sea level at 48°25′36.1″ N, 18°26′49.7″ E.
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Batáry, P.; Báldi, A.; Kleijn, D.; Tscharntke, T. Landscape-moderated biodiversity effects of agri-environmental management: A meta-analysis. Proc. R. Soc. B 2010, 278, 1894–1902. [Google Scholar] [CrossRef]
- Marja, R.; Albrecht, M.; Herzog, F.; Öckinger, E.; Segre, H.; Kleijn, D.; Batáry, P. Quantifying potential trade-offs and win-wins between arthropod diversity and yield on cropland under agri-environment schemes—A meta-analysis. J. Environ. Manag. 2024, 353, 120277. [Google Scholar] [CrossRef] [PubMed]
- Isaia, M.; Bona, F.; Badino, G. Influence of landscape diversity and agricultural practices on spider assemblage in Italian vineyards. Environ. Entomol. 2006, 35, 297–307. [Google Scholar] [CrossRef]
- Geldenhuys, M.; Gaigher, R.; Pryke, J.; Samways, M. Diverse herbaceous cover crops promote vineyard arthropod diversity. Agric. Ecosyst. Environ. 2020, 314, 107222. [Google Scholar]
- Caprio, E.; Nervo, B.; Isaia, M.; Allegro, G.; Rolando, A. Organic versus conventional systems in viticulture: Comparative effects on spiders and carabids in vineyards and adjacent forests. Agric. Syst. 2015, 136, 61–69. [Google Scholar] [CrossRef]
- Geldenhuys, M.; Gaigher, R.; Pryke, J.S.; Samways, M.J. Interplay between natural vegetation and vineyard practices benefits local arthropod diversity. Biodivers. Conserv. 2022, 31, 1231–1248. [Google Scholar] [CrossRef]
- Yan, Z.; Xiaolin, L.; Zhao, W.; Xiaorong, W.; Xiaoxu, J.; Shao, M. Synchronous sequestration of organic carbon and nitrogen in mineral soils after conversion agricultural land to forest. Agric. Ecosyst. Environ. 2020, 295, 106866. [Google Scholar] [CrossRef]
- Ernst, D.; Kolencik, M.; Šebesta, M.; Ďurišová, Ľ.; Kšiňan, S.; Tomovičová, L.; Kotlárová, N.; Kalúzová, M.; Černý, I.; Kratošová, G.; et al. Significance of Phosphate Nano-Fertilizers Foliar Application: A Brief Real-Field Study of Quantitative, Physiological Parameters, and Agro-Ecological Diversity in Sunflower. Agronomy 2023, 13, 2606. [Google Scholar] [CrossRef]
- Franin, K.; Kuštera, G.; Šišeta, F. Fauna of ground-dwelling arthropods in vineyards of Zadar County (Croatia). Poljoprivreda 2016, 22, 50–56. [Google Scholar] [CrossRef]
- Elise, B.; Christopher, M.; Buddle, N.J.; Bostanian, C.V. Ground-dwelling spider fauna of two vineyards in southern Quebec. Environ. Entomol. 2005, 34, 635–645. [Google Scholar]
- Pornaro, C.; Macolino, S. Selecting species for vineyard inter-row vegetation cover requires context-aware choices. PLoS ONE 2025, 20, e0319848. [Google Scholar] [CrossRef]
- Brygadyrenko, V.V.; Reshetniak, D.Y. Trophic preferences of Harpalus rufipes (Coleoptera, Carabidae) with regard to seeds of agricultural crops in conditions of laboratory experiment. Baltic J. Coleopterol. 2014, 14, 179–190. [Google Scholar]
- Langraf, V.; Petrovičová, K. Seasonal Dynamics of Epigeic Arthropods under the Conditions of Ecological Management of the Triticum aestivum Crop. Agriculture 2024, 14, 482. [Google Scholar] [CrossRef]
- Siewers, J.; Schirmel, J.; Buchholz, S. The efficiency of pitfall traps as a method of sampling epigeal arthropods. Eur. J. Entomol. 2014, 111, 69–74. [Google Scholar] [CrossRef]
- Litavský, J.; Prokop, P. Coverings on Pitfall Traps Influence the Abundance of Ground-Dwelling Arthropods. Diversity 2024, 16, 19. [Google Scholar] [CrossRef]
- Zanettin, G.; Bullo, A.; Pozzebon, A.; Burgio, G.; Duso, C. Influence of Vineyard Inter-Row Groundcover Vegetation Management on Arthropod Assemblages in the Vineyards of North-Eastern Italy. Insects 2021, 12, 349. [Google Scholar] [CrossRef]
- Blaise, C.; Christophe, M.; Armin, B.; Alexandre, M.; Philippe, P.; Olivier, B. Vegetation increases abundances of ground- and canopy arthropods in Mediterranean vineyards. Sci. Rep. 2022, 12, 3680. [Google Scholar] [CrossRef]
- Pérez-Bote, L.J. Epigeic soil arthropod abundance under different agricultural systems. Span. J. Agric. Res. 2012, 10, 794–802. [Google Scholar] [CrossRef]
- Gaigher, R.; Pryke, S.J.; Kratschmer, S.; Zaller, G.J.; Winter, S.; Michael, J.; Samways, B.P.; Geldenhuys, M.; Schalkwyk, V.J. Area and configuration of both semi-natural habitats and vineyards influence arthropods in South African and central European agricultural landscapes. Insect Conserv. Divers. 2024, 17, 702–718. [Google Scholar] [CrossRef]
- Dobrovodská, M.; Kanka, R.; Gajdoš, P.; Krištín, A.; Kollár, J.; Stašiov, S.; Lieskovsky, J. Factors affecting the biodiversity of historical landscape elements: Detailed analyses from three case studies in Slovakia. Environ. Monit. Assess. 2023, 195, 674. [Google Scholar] [CrossRef]
- Schierwater, B.; DeSalle, R. Invertebrate Zoology: A Tree of Life Approach; CRC Press: London, UK, 2021; 644p. [Google Scholar]
- Ter Braak, C.J.F.; Šmilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination, version 5.0; Microcomputer Power: Ithaca, NY, USA, 2012. [Google Scholar]
- Python Software Foundation Legal Statements Privacy Notice, Python version 3.12; Python Software Foundation: Beaverton, OR, USA, 2023.
- Bruggisser, O.T.; Schmidt-Entling, M.H.; Bacher, S. Effects of vineyard management on biodiversity at three trophic levels. Biol. Conserv. 2010, 143, 1521–1528. [Google Scholar] [CrossRef]
- Rocher, L.; Melloul, E.; Blight, O.; Bischoff, A. Effect of spontaneous vegetation on beneficial arthropods in Mediterranean vineyards. Agric. Ecosyst. Environ. 2024, 359, 108740. [Google Scholar] [CrossRef]
- Bale, J.; van Lenteren, J.C.; Bigler, F. Biological control and sustainable food production. Philos. Trans. R. Soc. B Biol. Sci. 2007, 363, 761–776. [Google Scholar] [CrossRef]
- Kromp, B. Carabid beetles in sustainable agriculture: A review on pest control efficacy, cultivation impacts and enhancement. Agric. Ecosyst. Environ. 1999, 74, 187–228. [Google Scholar] [CrossRef]
- Gaigher, R.; Samways, M.J. Landscape mosaic attributes for maintaining ground-living spider diversity in a biodiversity hotspot. Insect Conserv. Divers. 2014, 7, 470–479. [Google Scholar] [CrossRef]
- Chong, C.S.; D’Alberto, C.F.; Thomson, L.J.; Hoffmann, A.A. Influence of native ants on arthropod communities in a vineyard. Agric. For. Entomol. 2010, 12, 223–232. [Google Scholar] [CrossRef]
- Beaumelle, L.; Auriol, A.; Grasset, M.; Pavy, A.; Thi´ery, D.; Rusch, A. Benefits of increased cover crop diversity for predators and biological pest control depend on the landscape context. Ecol. Solut. Evid. 2021, 2, e12086. [Google Scholar] [CrossRef]
- Roschewitz, I.; Gabriel, D.; Tscharntke, T.; Thies, C. The effects of landscape complexity on arable weed species diversity in organic and conventional farming. J. Appl. Ecol. 2005, 42, 873–882. [Google Scholar] [CrossRef]
- Lu, Z.X.; Zhu, P.Y.; Gurr, G.M.; Zheng, X.S.; Read, D.M.Y.; Heong, K.-L.; Yang, Y.-J.; Xu, H.X. Mechanisms for flowering plants to benefit arthropod natural enemies of insect pests: Prospects for enhanced use in agriculture. Insect Sci. 2014, 21, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Buchholz, J.; Querner, P.; Paredes, D.; Bauer, T.; Strauss, P.; Guernion, M.; Scimia, J.; Cluzeau, D.; Burel, F.; Kratschmer, S.; et al. Soil biota in vineyards are more influenced by plants and soil quality than by tillage intensity or the surrounding landscape. Sci. Rep. 2017, 7, 17445. [Google Scholar] [CrossRef]
- Seniczak, A.; Seniczak, S.; García-Parra, I.; Ferragut, F.; Xamaní, P.; Graczyk, R.; Messeguer, E.; Laborda, R.; Rodrigo, E. Oribat mites of conventional and organic vineyards in the Valencian Community. Spain Acarol. 2018, 58, 119–133. [Google Scholar] [CrossRef]
- Sharley, D.J.; Hoffman, A.A.; Thomson, L.J. The effect of soil tillage on beneficial invertebrates within the vineyard. Agric. For. Entomol. 2008, 10, 233–243. [Google Scholar] [CrossRef]
- Yu, X.D.; Luo, T.H.; Zhou, H.-Z. Habitat associations and seasonal activity of carabid beetles (Coleoptera: Carabidae) in Dongling Mountain, North China. Entomol. Fenn. 2006, 17, 174–183. [Google Scholar] [CrossRef]
- Bengtsson, J.; Ahnström, J.; Weibull, A.C. The effects of organic agriculture on biodiversity and abundance: A meta-analysis. J. Appl. Ecol. 2005, 42, 261–269. [Google Scholar] [CrossRef]
- Gonçalves, F.; Carlos, C.; Aranha, J.; Torres, L. Does habitat heterogeneity affect the diversity of epigaeic arthropods in vineyards? Agric. For. Entomol. 2018, 20, 366–379. [Google Scholar] [CrossRef]
- Bianchi, F.J.J.A.; Booij, C.J.H.; Tscharntke, T. Sustainable pest regulation in agricultural landscapes: A review on landscape composition, biodiversity and natural pest control. Proc. R. Soc. B Biol. Sci. 2006, 273, 1715–1727. [Google Scholar] [CrossRef] [PubMed]
- Burel, F.; Baudry, J. Landscape Ecology: Concepts, Methods, and Applications; Science Publishers, CRC Press: Boca Raton, FL, USA, 2003; p. 394. [Google Scholar]
- Duelli, P.; Obrist, M.K. Regional biodiversity in an agricultural landscape: The contribution of seminatural habitat islands. Basic. Appl. Ecol. 2003, 4, 129–138. [Google Scholar] [CrossRef]
- Hänggi, A.; Stöckli, E.; Nentwig, W. Habitats of Central European spiders—Characterisation of the habitats of the most abundant spider species of Central Europe and associated species. CNCF Neuchâtel 1995, 4, 460. [Google Scholar]
- Moreira, F.; Louvres, C.; Pinto, M.J. Influence of temporal and spatial variation of management on ground beetle diversity in annual crops. Agric. Ecosyst. Environ. 2008, 124, 225–231. [Google Scholar]
- Fiera, C.; Ulrich, W.; Popescu, D.; Bunea, C.I.; Manu, M.; Nae, I.; Stan, M.; Markó, B.; Urák, I.; Giurginca, A.; et al. Effects of vineyard inter-row management on the diversity and abundance of plants and surface-dwelling invertebrates in Central Romania. J. Insect Conserv. 2020, 24, 175–185. [Google Scholar] [CrossRef] [PubMed]
Month | Average Temperature (°C) | Average Rainfall (mm) | ||||
---|---|---|---|---|---|---|
2021 | 2022 | 2023 | 2021 | 2022 | 2023 | |
1 | 0 | 2 | 2 | 60 | 60 | 60 |
2 | 1 | 4 | 2 | 55 | 55 | 55 |
3 | 4 | 5 | 5 | 50 | 50 | 50 |
4 | 8 | 9 | 8 | 47 | 45 | 47 |
5 | 13 | 17 | 15 | 50 | 50 | 50 |
6 | 21 | 21 | 19 | 50 | 50 | 50 |
7 | 23 | 22 | 22 | 47 | 45 | 47 |
8 | 19 | 23 | 21 | 43 | 40 | 43 |
9 | 15 | 15 | 19 | 43 | 40 | 43 |
10 | 10 | 12 | 10 | 40 | 40 | 43 |
11 | 5 | 6 | 6 | 60 | 55 | 55 |
12 | 1 | 2 | 2 | 60 | 55 | 55 |
Biotops/Arthropods | Year | ∑ Individuals | ||
---|---|---|---|---|
2021 | 2022 | 2023 | ||
Intensive vineyard | ||||
Araneae | 411 | 224 | 1170 | 1805 |
Auchenorrhyncha | 13 | 0 | 1 | 14 |
Coleoptera | 925 | 558 | 1372 | 2855 |
Collembola | 170 | 0 | 1 | 171 |
Dermaptera | 46 | 40 | 126 | 212 |
Diptera | 210 | 127 | 79 | 416 |
Geophilomorpha | 0 | 0 | 40 | 40 |
Glomerida | 6 | 401 | 255 | 662 |
Hemiptera | 293 | 0 | 223 | 516 |
Hymenoptera | 1659 | 491 | 2772 | 4922 |
Oniscidea | 630 | 306 | 74 | 1010 |
Julida | 111 | 443 | 196 | 750 |
Lithobiomorpha | 40 | 1 | 39 | 80 |
Lumbricidae | 15 | 44 | 25 | 84 |
Opilionida | 70 | 18 | 196 | 284 |
Orthoptera | 256 | 269 | 90 | 615 |
Polydesmida | 0 | 0 | 7 | 7 |
Scorpionida | 1 | 0 | 0 | 1 |
Zygentoma | 0 | 0 | 3 | 3 |
meadow | ||||
Acarina | 8 | 0 | 0 | 8 |
Araneae | 538 | 232 | 875 | 1645 |
Auchenorrhyncha | 2 | 0 | 0 | 2 |
Blattodea | 4 | 0 | 0 | 4 |
Coleoptera | 760 | 394 | 2726 | 3880 |
Collembola | 666 | 0 | 0 | 666 |
Dermaptera | 21 | 35 | 36 | 92 |
Diptera | 110 | 92 | 82 | 284 |
Geophilomorpha | 1 | 0 | 1 | 2 |
Glomerida | 58 | 435 | 736 | 1229 |
Hemiptera | 207 | 0 | 272 | 479 |
Hymenoptera | 2462 | 358 | 3020 | 5840 |
Oniscidea | 610 | 379 | 79 | 1068 |
Julida | 36 | 336 | 628 | 1000 |
Lithobiomorpha | 41 | 1 | 89 | 131 |
Lumbricidae | 38 | 25 | 28 | 91 |
Mantodea | 0 | 0 | 1 | 1 |
Opilionida | 210 | 20 | 54 | 284 |
Orthoptera | 8 | 68 | 1017 | 1093 |
Polydesmida | 2 | 0 | 0 | 2 |
Scorpionida | 2 | 0 | 0 | 2 |
Zygentoma | 2 | 0 | 1 | 3 |
Semi-intensive vineyard | ||||
Acarina | 4 | 0 | 0 | 4 |
Araneae | 257 | 258 | 783 | 1298 |
Coleoptera | 329 | 347 | 1182 | 1858 |
Collembola | 53 | 0 | 0 | 53 |
Dermaptera | 19 | 47 | 51 | 117 |
Diptera | 27 | 144 | 67 | 238 |
Geophilomorpha | 0 | 0 | 7 | 7 |
Glomerida | 5 | 310 | 168 | 483 |
Hemiptera | 58 | 0 | 212 | 270 |
Hymenoptera | 733 | 689 | 5996 | 7418 |
Chordeumatida | 1 | 0 | 0 | 1 |
Oniscidea | 157 | 287 | 64 | 508 |
Julida | 21 | 348 | 68 | 437 |
Lithobiomorpha | 5 | 3 | 37 | 45 |
Lumbricidae | 10 | 33 | 33 | 76 |
Opilionida | 7 | 33 | 172 | 212 |
Orthoptera | 101 | 125 | 77 | 303 |
Zygentoma | 0 | 0 | 1 | 1 |
Overgrown | ||||
Acarina | 0 | 0 | 1 | 1 |
Araneae | 587 | 309 | 929 | 1825 |
Blattodea | 2 | 0 | 0 | 2 |
Coleoptera | 489 | 395 | 1055 | 1939 |
Collembola | 381 | 0 | 0 | 381 |
Dermaptera | 16 | 27 | 32 | 75 |
Diptera | 54 | 175 | 71 | 300 |
Ensifera | 0 | 0 | 3 | 3 |
Geophilomorpha | 2 | 0 | 1 | 3 |
Glomerida | 93 | 459 | 240 | 792 |
Hemiptera | 243 | 0 | 112 | 355 |
Hymenoptera | 879 | 465 | 3372 | 4716 |
Chordeumatida | 1 | 0 | 0 | 1 |
Oniscidea | 426 | 338 | 138 | 902 |
Julida | 77 | 354 | 86 | 517 |
Lithobiomorpha | 25 | 2 | 49 | 76 |
Lumbricidae | 16 | 25 | 31 | 72 |
Opilionida | 56 | 27 | 158 | 241 |
Orthoptera | 47 | 115 | 18 | 180 |
Zygentoma | 0 | 0 | 1 | 1 |
∑ individuals | 15,823 | 10,612 | 31,529 | 57,964 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langraf, V.; Petrovičová, K. Modeling the Seasonal and Spatial Dynamics of Epigeic Fauna in the Context of Vineyard Landscape Use Using Machine Learning. Agronomy 2025, 15, 2117. https://doi.org/10.3390/agronomy15092117
Langraf V, Petrovičová K. Modeling the Seasonal and Spatial Dynamics of Epigeic Fauna in the Context of Vineyard Landscape Use Using Machine Learning. Agronomy. 2025; 15(9):2117. https://doi.org/10.3390/agronomy15092117
Chicago/Turabian StyleLangraf, Vladimír, and Kornélia Petrovičová. 2025. "Modeling the Seasonal and Spatial Dynamics of Epigeic Fauna in the Context of Vineyard Landscape Use Using Machine Learning" Agronomy 15, no. 9: 2117. https://doi.org/10.3390/agronomy15092117
APA StyleLangraf, V., & Petrovičová, K. (2025). Modeling the Seasonal and Spatial Dynamics of Epigeic Fauna in the Context of Vineyard Landscape Use Using Machine Learning. Agronomy, 15(9), 2117. https://doi.org/10.3390/agronomy15092117