Soybean Molecular Breeding Through Genome Editing Tools: Recent Advances and Future Perspectives
Abstract
1. Introduction
2. CRISPR-Based Advances: Precise Molecular Breeding in Soybean
2.1. Seed Contents, Development, and Yield
2.1.1. Seed Contents
2.1.2. Seed Yield and Development
2.2. Environmental Stresses: Abiotic Stress
2.2.1. Drought Tolerance
2.2.2. Salt Tolerance
2.2.3. Heat Tolerance
2.2.4. Multiple Tolerance
2.3. Environmental Stresses: Biotic Stresses and Interactions
2.3.1. Disease Resistance
2.3.2. Herbicide Resistance
2.3.3. Nodulation
2.4. Flowering Time
2.4.1. Early Flowering
2.4.2. Late Flowering
2.5. Plant Architecture
2.5.1. Growth Enhancement
2.5.2. Dwarf Phenotype
2.5.3. Pod Morphology
2.6. Functional Properties
2.6.1. Digestibility Enhancement
2.6.2. Flavor Optimization
2.6.3. Nutritional Improvement
2.6.4. Allergen Elimination
3. Future Perspectives: Expanding the Frontiers of Soybean Genome Editing for Sustainable Agriculture
3.1. Genome-Editable Soybean Cultivars: Limited Genetic Resources
3.2. Major Traits of Soybean Editing for the Commercial Market
3.3. Editing Unexplored Traits for Next-Generation Soybean Resilience
3.3.1. Direct/Indirect Biological Regulation of Photosynthetic Efficiency
3.3.2. Root Exudate Engineering: Targeting Microbiome Composition
3.3.3. Engineering Detoxification Pathways: Herbicide/Metal Tolerance
3.4. Overcoming Recalcitrance: Next-Generation Trait Stacking and Alternative Genome Editors
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CRISPR | Clustered regularly interspaced short palindromic repeats |
Cas9 | CRISPR-associated protein 9 |
GE | Genome editing |
GM | Genetically modified |
PUFA | Polyunsaturated fatty acid |
MUFA | Monounsaturated fatty acid |
SFA | Saturated fatty acid |
FT | FLOWERING LOCUS T |
MDA | Malondialdehyde |
SOD | Superoxide dismutase |
CAT | Catalase |
POD | Peroxidase |
TI | Trypsin inhibitors |
References
- Shea, Z.; Singer, W.M.; Zhang, B. Soybean Production, Versatility, and Improvement. In Legume Crops-Prospects, Production and Uses; IntechOpen: London, UK, 2020; pp. 1–23. [Google Scholar]
- Kim, M.-J.; Kim, H.J.; Pak, J.H.; Cho, H.S.; Choi, H.K.; Jung, H.W.; Lee, D.H.; Chung, Y.-S. Overexpression of AtSZF2 from Arabidopsis showed enhanced tolerance to salt stress in soybean. Plant Breed. Biotechnol. 2017, 5, 1–15. [Google Scholar] [CrossRef]
- Singh, R.J. Botany and Cytogenetics of Soybean. In The Soybean Genome; Nguyen, H.T., Bhattacharyya, M.K., Eds.; Springer: Cham, Switzerland, 2017; pp. 1–40. [Google Scholar]
- Xu, H.; Zhang, L.; Zhang, K.; Ran, Y. Progresses, Challenges, and Prospects of Genome Editing in Soybean (Glycine max). Front. Plant Sci. 2020, 11, 571138. [Google Scholar] [CrossRef] [PubMed]
- Probst, A.H.; Judd, R.W. Origin, US History and Development, and World Distribution. Soybean Improv. Prod. Uses Agron Monogr. 1973, 16, 1–15. [Google Scholar]
- Sedivy, E.J.; Wu, F.; Hanzawa, Y. Soybean Domestication: The Origin, Genetic Architecture and Molecular Bases. New Phytol. 2017, 214, 539–553. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Crops—Soybeans: Production Quantity 2018. Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/faostat/en/ (accessed on 20 May 2020).
- United States Department of Agriculture (USDA). Crop Production 2020 Summary; National Agricultural Statistics Service (NASS): Washington, DC, USA, 2020. Available online: https://www.nass.usda.gov/Publications/Todays_Reports/reports/cropan20.pdf (accessed on 26 June 2025).
- Jaganathan, D.; Ramasamy, K.; Sellamuthu, G.; Jayabalan, S.; Venkataraman, G. CRISPR for Crop Improvement: An Update Review. Front. Plant Sci. 2018, 9, 985. [Google Scholar] [CrossRef]
- Schenke, D.; Cai, D. Applications of CRISPR/Cas to Improve Crop Disease Resistance: Beyond Inactivation of Susceptibility Factors. iScience 2020, 23, 101478. [Google Scholar] [CrossRef]
- Espina, M.J.C.; Lovell, J.T.; Jenkins, J.; Shu, S.; Sreedasyam, A.; Jordan, B.D.; Webber, J.; Boston, L.; Brůna, T.; Talag, J.; et al. Assembly, Comparative Analysis, and Utilization of a Single Haplotype Reference Genome for Soybean. Plant J. Cell Mol. Biol. 2024, 120, 1221–1235. [Google Scholar] [CrossRef]
- Huang, Y.; Koo, D.-H.; Mao, Y.; Herman, E.M.; Zhang, J.; Schmidt, M.A. A Complete Reference Genome for the Soybean Cv. Jack. Plant Commun. 2024, 5, 100765. [Google Scholar] [CrossRef] [PubMed]
- Schmutz, J.; Cannon, S.B.; Schlueter, J.; Ma, J.; Mitros, T.; Nelson, W.; Hyten, D.L.; Song, Q.; Thelen, J.J.; Cheng, J.; et al. Genome Sequence of the Palaeopolyploid Soybean. Nature 2010, 463, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Michoux, F.; Lössl, A.G.; Nixon, P.J. Challenges and Perspectives in Commercializing Plastid Transformation Technology. J. Exp. Bot. 2016, 67, 5945–5960. [Google Scholar] [CrossRef]
- Ahmad, N.; Mukhtar, Z. Genetic Manipulations in Crops: Challenges and Opportunities. Genomics 2017, 109, 494–505. [Google Scholar] [CrossRef]
- Ahmad, N.; Rahman, M.U.; Mukhtar, Z.; Zafar, Y.; Zhang, B. A Critical Look on CRISPR-Based Genome Editing in Plants. J. Cell. Physiol. 2020, 235, 666–682. [Google Scholar] [CrossRef]
- Kanchiswamy, C.N.; Malnoy, M.; Velasco, R.; Kim, J.S.; Viola, R. Non-GMO Genetically Edited Crop Plants. Trends Biotechnol. 2015, 33, 489–491. [Google Scholar] [CrossRef]
- Hua, K.; Tao, X.; Zhu, J.K. Expanding the Base Editing Scope in Rice by Using Cas9 Variants. Plant Biotechnol. J. 2019, 17, 499–504. [Google Scholar] [CrossRef]
- Lyzenga, W.J.; Pozniak, C.J.; Kagale, S. Advanced Domestication: Harnessing the Precision of Gene Editing in Crop Breeding. Plant Biotechnol. J. 2021, 19, 660–670. [Google Scholar] [CrossRef]
- Kamburova, V.S.; Nikitina, E.V.; Shermatov, S.E.; Buriev, Z.T.; Kumpatla, S.P.; Emani, C.; Abdurakhmonov, I.Y. Genome Editing in Plants: An Overview of Tools and Applications. Int. J. Agron. 2017, 2017, 7315351. [Google Scholar] [CrossRef]
- Bao, A.; Burritt, D.J.; Chen, H.; Zhou, X.; Cao, D.; Tran, L.S.P. The CRISPR/Cas9 System and Its Applications in Crop Genome Editing. Crit. Rev. Biotechnol. 2019, 39, 321–336. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xie, C.; Si, H.; Yang, J. CRISPR/Cas9-Mediated Genome Editing in Plants. Methods 2017, 121–122, 94–102. [Google Scholar] [CrossRef]
- Voytas, D.F.; Gao, C. Precision Genome Engineering and Agriculture: Opportunities and Regulatory Challenges. PLoS Biol. 2014, 12, e1001877. [Google Scholar] [CrossRef] [PubMed]
- Waltz, E. GABA-Enriched Tomato Is First CRISPR-Edited Food to Enter Market. Nat. Biotechnol. 2022, 40, 9–11. [Google Scholar] [CrossRef]
- Li, J.F.; Norville, J.E.; Aach, J.; McCormack, M.; Zhang, D.; Bush, J.; Church, G.M.; Sheen, J. Multiplex and Homologous Recombination-Mediated Genome Editing in Arabidopsis and Nicotiana benthamiana Using Guide RNA and Cas9. Nat. Biotechnol. 2013, 31, 688–691. [Google Scholar] [CrossRef]
- Nekrasov, V.; Staskawicz, B.; Weigel, D.; Jones, J.D.G.; Kamoun, S. Targeted Mutagenesis in the Model Plant Nicotiana benthamiana Using Cas9 RNA-Guided Endonuclease. Nat. Biotechnol. 2013, 31, 691–693. [Google Scholar] [CrossRef]
- Shan, Q.; Wang, Y.; Li, J.; Zhang, Y.; Chen, K.; Liang, Z.; Zhang, K.; Liu, J.; Xi, J.J.; Qiu, J.L.; et al. Targeted Genome Modification of Crop Plants Using a CRISPR-Cas System. Nat. Biotechnol. 2013, 31, 686–688. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, X.; Shan, Q.; Zhang, Y.; Liu, J.; Gao, C.; Qiu, J.L. Simultaneous Editing of Three Homoeoalleles in Hexaploid Bread Wheat Confers Heritable Resistance to Powdery Mildew. Nat. Biotechnol. 2014, 32, 947–951. [Google Scholar] [CrossRef]
- Kim, H.; Kim, S.-T.; Ryu, J.; Kang, B.-C.; Kim, J.-S.; Kim, S.-G. CRISPR/Cpf1-Mediated DNA-Free Plant Genome Editing. Nat. Commun. 2017, 8, 14406. [Google Scholar] [CrossRef]
- Xu, R.; Qin, R.; Li, H.; Li, D.; Li, L.; Wei, P.; Yang, J. Generation of Targeted Mutant Rice Using a CRISPR-Cpf1 System. Plant Biotechnol. J. 2017, 15, 713–717. [Google Scholar] [CrossRef] [PubMed]
- Do, P.T.; Nguyen, C.X.; Bui, H.T.; Tran, L.T.N.; Stacey, G.; Gillman, J.D.; Zhang, Z.J.; Stacey, M.G. Demonstration of Highly Efficient Dual GRNA CRISPR/Cas9 Editing of the Homeologous GmFAD2-1A and GmFAD2-1B Genes to Yield a High Oleic, Low Linoleic and α-Linolenic Acid Phenotype in Soybean. BMC Plant Biol. 2019, 19, 311. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Lu, Q.; Wang, P.; Zhang, Q.; Zhang, J.; Qu, J.; Wang, N. Construction and Analysis of GmFAD2-1A and GmFAD2-2A Soybean Fatty Acid Desaturase Mutants Based on CRISPR/Cas9 Technology. Int. J. Mol. Sci. 2020, 21, 1104. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.; Chen, L.; Cai, Y.; Su, Q.; Chen, Y.; Hou, W. CRISPR/Cas9-Mediated Mutagenesis of GmFAD2-1A and/or GmFAD2-1B to Create High-Oleic-Acid Soybean. Agronomy 2022, 12, 3218. [Google Scholar] [CrossRef]
- Kim, H.; Choi, J. A Robust and Practical CRISPR/CrRNA Screening System for Soybean Cultivar Editing Using LbCpf1 Ribonucleoproteins. Plant Cell Rep. 2021, 40, 1059–1070. [Google Scholar] [CrossRef]
- Xiao, Z.; Jin, Y.; Zhang, Q.; Lamboro, A.; Dong, B.; Yang, Z.; Wang, P. Construction and Functional Analysis of Crispr/Cas9 Vector of Fad2 Gene Family in Soybean. Phyton-Int. J. Exp. Bot. 2022, 91, 349–361. [Google Scholar] [CrossRef]
- Zhou, J.; Li, Z.; Li, Y.; Zhao, Q.; Luan, X.; Wang, L.; Liu, Y.; Liu, H.; Zhang, J.; Yao, D. Effects of Different Gene Editing Modes of CRISPR/Cas9 on Soybean Fatty Acid Anabolic Metabolism Based on GmFAD2 Family. Int. J. Mol. Sci. 2023, 24, 4769. [Google Scholar] [CrossRef]
- Chen, X.; Zhong, Z.; Tang, X.; Yang, S.; Zhang, Y.; Wang, S.; Liu, Y.; Zhang, Y.; Zheng, X.; Zhang, Y.; et al. Advancing PAM-Less Genome Editing in Soybean Using CRISPR-SpRY. Hortic. Res. 2024, 11, uhae160. [Google Scholar] [CrossRef]
- Zheng, Y.; Guo, T.; Xia, T.; Guo, S.; Chen, M.; Ye, S.; Pan, T.; Xu, X.; Gan, Y.; Zhan, Y.; et al. Utility of Arabidopsis KASII Promoter in Development of an Effective CRISPR/Cas9 System for Soybean Genome Editing and Its Application in Engineering of Soybean Seeds Producing Super-High Oleic and Low Saturated Oils. J. Agric. Food Chem. 2024, 72, 21720–21730. [Google Scholar] [CrossRef]
- Al Amin, N.; Ahmad, N.; Wu, N.; Pu, X.; Ma, T.; Du, Y.; Bo, X.; Wang, N.; Sharif, R.; Wang, P. CRISPR-Cas9 Mediated Targeted Disruption of FAD2-2 Microsomal Omega-6 Desaturase in Soybean (Glycine max.L). BMC Biotechnol. 2019, 19, 9. [Google Scholar] [CrossRef] [PubMed]
- Virdi, K.S.; Spencer, M.; Stec, A.O.; Xiong, Y.; Merry, R.; Muehlbauer, G.J.; Stupar, R.M. Similar Seed Composition Phenotypes Are Observed From CRISPR-Generated In-Frame and Knockout Alleles of a Soybean KASI Ortholog. Front. Plant Sci. 2020, 11, 1005. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhou, R.; Liu, P.; Yang, M.; Xin, D.; Liu, C.; Zhang, Z.; Wu, X.; Chen, Q.; Zhao, Y. Design of High-Monounsaturated Fatty Acid Soybean Seed Oil Using GmPDCTs Knockout via a CRISPR-Cas9 System. Plant Biotechnol. J. 2023, 21, 1317–1319. [Google Scholar] [CrossRef]
- Liao, W.; Guo, R.; Qian, K.; Shi, W.; Whelan, J.; Shou, H. The Acyl–Acyl Carrier Protein Thioesterases GmFATA1 and GmFATA2 Are Essential for Fatty Acid Accumulation and Growth in Soybean. Plant J. 2024, 118, 823–838. [Google Scholar] [CrossRef]
- Liao, W.; Guo, R.; Li, J.; Liu, N.; Jiang, L.; Whelan, J.; Shou, H. CRISPR/Cas9-Mediated Mutagenesis of SEED FATTY ACID REDUCER Genes Significantly Increased Seed Oil Content in Soybean. Plant Cell Physiol. 2025, 66, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Schmidt, M.A.; Collet, K.H.; Liu, Z.B.; Coy, M.; Abbitt, S.; Molloy, L.; Frank, M.; Everard, J.D.; Booth, R.; et al. RNAi and CRISPR–Cas Silencing E3-RING Ubiquitin Ligase AIP2 Enhances Soybean Seed Protein Content. J. Exp. Bot. 2022, 73, 7285–7297. [Google Scholar] [CrossRef]
- Yang, R.; Ma, Y.; Yang, Z.; Pu, Y.; Liu, M.; Du, J.; Xu, Z.; Xu, Z.; Zhang, S.; Zhang, H.; et al. Knockdown of β-Conglycinin α′ and α Subunits Alters Seed Protein Composition and Improves Salt Tolerance in Soybean. Plant J. 2024, 120, 1488–1507. [Google Scholar] [CrossRef]
- Wang, L.; O’Conner, S.; Tanvir, R.; Zheng, W.; Cothron, S.; Towery, K.; Bi, H.; Ellison, E.E.; Yang, B.; Voytas, D.F.; et al. CRISPR/Cas9-Based Editing of NF-YC4 Promoters Yields High-Protein Rice and Soybean. New Phytol. 2024, 245, 2103–2116. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, L.; Wang, S.; Wang, X.; Li, S.; Gong, P.; Bai, M.; Paul, A.; Tvedt, N.; Ren, H.; et al. AlphaFold-Guided Bespoke Gene Editing Enhances Field-Grown Soybean Oil Contents. Adv. Sci. 2025, 12, e2500290. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Wang, H.; Lin, R.; Zhou, N.; Bai, W. Identification and Characterization of TCP Transcription Factor GmTCP670 Associated with Soybean Development. Sci. Rep. 2025, 15, 19707. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, T.; Liu, C.; Liu, C.; Jiang, Z.; Zhang, Z.; Ali, S.; Li, Z.; Wang, J.; Sun, S.; et al. A DNA Demethylase Reduces Seed Size by Decreasing the DNA Methylation of AT-Rich Transposable Elements in Soybean. Commun. Biol. 2024, 7, 613. [Google Scholar] [CrossRef]
- Cai, Y.; Wang, L.; Chen, L.; Wu, T.; Liu, L.; Sun, S.; Wu, C.; Yao, W.; Jiang, B.; Yuan, S.; et al. Mutagenesis of GmFT2a and GmFT5a Mediated by CRISPR/Cas9 Contributes for Expanding the Regional Adaptability of Soybean. Plant Biotechnol. J. 2020, 18, 298–309. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Xian, P.; Cheng, Y.; Ma, Q.; Lian, T.; Nian, H.; Ge, L. CRISPR/Cas9-Mediated Gene Editing of GmJAGGED1 Increased Yield in the Low-Latitude Soybean Variety Huachun 6. Plant Biotechnol. J. 2021, 19, 1898–1900. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, Y.; Yang, J.; He, H.; Zhang, X.; Liu, J.; Yang, X. Multiplex CRISPR-Cas9 Knockout of EIL3, EIL4, and EIN2L Advances Soybean Flowering Time and Pod Set. BMC Plant Biol. 2023, 23, 519. [Google Scholar] [CrossRef]
- Xie, H.; Su, F.; Niu, Q.; Geng, L.; Cao, X.; Song, M.; Dong, J.; Zheng, Z.; Guo, R.; Zhang, Y.; et al. Knockout of miR396 Genes Increases Seed Size and Yield in Soybean. J. Integr. Plant Biol. 2024, 66, 1148–1157. [Google Scholar] [CrossRef]
- Zhang, W.; Li, S.; Xu, W.; Wang, Q.; Zhang, H.; Liu, X.; Chen, X.; Xu, D.; Chen, H. Knocking out Artificially Selected Gene GmAOC4H8 Improves Germination in Soybean. Theor. Appl. Genet. 2025, 138, 54. [Google Scholar] [CrossRef]
- Jia, J.; Ji, R.; Li, Z.; Yu, Y.; Nakano, M.; Long, Y.; Feng, L.; Qin, C.; Lu, D.; Zhan, J.; et al. Soybean DICER-LIKE2 Regulates Seed Coat Color via Production of Primary 22-Nucleotide Small Interfering RNAs from Long Inverted Repeats. Plant Cell 2020, 32, 3662–3673. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, W.; Li, X.; Sun, D.; Xu, K.; Feng, C.; Kue Foka, I.C.; Ketehouli, T.; Gao, H.; Wang, N.; et al. Integration of sRNA, Degradome, Transcriptome Analysis and Functional Investigation Reveals gma-MiR398c Negatively Regulates Drought Tolerance via GmCSDs and GmCCS in Transgenic Arabidopsis and Soybean. BMC Plant Biol. 2020, 20, 190. [Google Scholar] [CrossRef]
- Xiao, Y.; Karikari, B.; Wang, L.; Chang, F.; Zhao, T. Structure Characterization and Potential Role of Soybean Phospholipases A Multigene Family in Response to Multiple Abiotic Stress Uncovered by CRISPR/Cas9 Technology. Environ. Exp. Bot. 2021, 188, 104521. [Google Scholar] [CrossRef]
- Zhong, X.; Hong, W.; Shu, Y.; Li, J.; Liu, L.; Chen, X.; Islam, F.; Zhou, W.; Tang, G. CRISPR/Cas9 Mediated Gene-Editing of GmHdz4 Transcription Factor Enhances Drought Tolerance in Soybean (Glycine Max [L.] Merr.). Front. Plant Sci. 2022, 13, 988505. [Google Scholar] [CrossRef]
- Yuan, L.; Xie, G.Z.; Zhang, S.; Li, B.; Wang, X.; Li, Y.; Liu, T.; Xu, X. GmLCLs Negatively Regulate ABA Perception and Signalling Genes in Soybean Leaf Dehydration Response. Plant Cell Environ. 2021, 44, 412–424. [Google Scholar] [CrossRef]
- Yang, C.; Huang, Y.; Lv, W.; Zhang, Y.; Bhat, J.A.; Kong, J.; Xing, H.; Zhao, J.; Zhao, T. GmNAC8 Acts as a Positive Regulator in Soybean Drought Stress. Plant Sci. 2020, 293, 110442. [Google Scholar] [CrossRef]
- Yang, C.; Huang, Y.; Lv, P.; Antwi-Boasiako, A.; Begum, N.; Zhao, T.; Zhao, J. NAC Transcription Factor GmNAC12 Improved Drought Stress Tolerance in Soybean. Int. J. Mol. Sci. 2022, 23, 12029. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Xun, H.; Wang, W.; Ding, X.; Tian, H.; Hussain, S.; Dong, Q.; Li, Y.; Cheng, Y.; Wang, C.; et al. Mutation of GmAITR Genes by CRISPR/Cas9 Genome Editing Results in Enhanced Salinity Stress Tolerance in Soybean. Front. Plant Sci. 2021, 12, 779598. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Yu, L.; Chen, Y.; Zeng, Y.; Pi, B.; Liu, X.; Yu, B. Physiological Functions of the Transcription Factor GmZAT10-1 Gene Involved in the Salt Stress Adaptation in Soybean. Plant Sci. 2025, 355, 112485. [Google Scholar] [CrossRef] [PubMed]
- Niu, F.; Jiang, Q.; Cheng, R.; Sun, X.; Hu, Z.; Wang, L.; Zhang, H. CRISPR/Cas9-Mediated Targeted Mutagenesis of Wild Soybean (Glycine soja) Hairy Roots Altered the Transcription Profile of the Mutant. J. Agric. Sci. 2020, 12, 14–33. [Google Scholar] [CrossRef]
- Feng, C.; Hussain, M.A.; Zhao, Y.; Wang, Y.; Song, Y.; Li, Y.; Gao, H.; Jing, Y.; Xu, K.; Zhang, W.; et al. GmAKT1-Mediated K+ Absorption Positively Modulates Soybean Salt Tolerance by GmCBL9-GmCIPK6 Complex. Plant Biotechnol. J. 2025, 23, 2276–2289. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Guo, J.; Lv, M.; Wang, H.; Sheng, Y.; Liu, Y.; Gai, J.; Yang, S. The MiR156b–GmSPL2b Module Mediates Male Fertility Regulation of Cytoplasmic Male Sterility-Based Restorer Line under High-Temperature Stress in Soybean. Plant Biotechnol. J. 2023, 21, 1542–1559. [Google Scholar] [CrossRef]
- Hou, Z.-H.; Gao, Y.; Zheng, J.-C.; Zhao, M.-J.; Liu, Y.; Cui, X.-Y.; Li, Z.-Y.; Wei, J.-T.; Yu, T.-F.; Zheng, L.; et al. GmBSK1-GmGSK1-GmBES1.5 Regulatory Module Controls Heat Tolerance in Soybean. J. Adv. Res. 2025, 73, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Ma, C.; Fan, Y.; Qiu, Z.; Li, M.; Tian, Y.; Shang, Y.; Liu, C.; Cao, Q.; Peng, Y.; et al. CRISPR-Cas9-Mediated Editing of GmARM Improves Resistance to Multiple Stresses in Soybean. Plant Sci. 2024, 346, 112147. [Google Scholar] [CrossRef]
- Zhang, P.; Du, H.; Wang, J.; Pu, Y.; Yang, C.; Yan, R.; Yang, H.; Cheng, H.; Yu, D. Multiplex CRISPR/Cas9-Mediated Metabolic Engineering Increases Soya Bean Isoflavone Content and Resistance to Soya Bean Mosaic Virus. Plant Biotechnol. J. 2020, 18, 1384–1395. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, W.; Chen, L.; Shen, X.; Yang, H.; Fang, Y.; Ouyang, W.; Mai, S.; Chen, H.; Chen, S.; et al. CRISPR/Cas9-Mediated Targeted Mutagenesis of GmUGT Enhanced Soybean Resistance Against Leaf-Chewing Insects Through Flavonoids Biosynthesis. Front. Plant Sci. 2022, 13, 802716. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Ji, J.; Cheng, Y.; Zhang, S.; Wang, Z.; Duan, K.; Wang, Y. CRISPR/Cas9-Mediated Editing of GmTAP1 Confers Enhanced Resistance to Phytophthora sojae in Soybean. J. Integr. Plant Biol. 2023, 65, 1609–1612. [Google Scholar] [CrossRef]
- Bui, T.P.; Le, H.; Ta, D.T.; Nguyen, C.X.; Le, N.T.; Tran, T.T.; Van Nguyen, P.; Stacey, G.; Stacey, M.G.; Pham, N.B.; et al. Enhancing Powdery Mildew Resistance in Soybean by Targeted Mutation of MLO Genes Using the CRISPR/Cas9 System. BMC Plant Biol. 2023, 23, 533. [Google Scholar] [CrossRef]
- Usovsky, M.; Gamage, V.A.; Meinhardt, C.G.; Dietz, N.; Triller, M.; Basnet, P.; Gillman, J.D.; Bilyeu, K.D.; Song, Q.; Dhital, B.; et al. Loss-of-Function of an α-SNAP Gene Confers Resistance to Soybean Cyst Nematode. Nat. Commun. 2023, 14, 7629. [Google Scholar] [CrossRef]
- Fan, S.; Zhang, Z.; Song, Y.; Zhang, J.; Wang, P. CRISPR/Cas9-Mediated Targeted Mutagenesis of GmTCP19L Increasing Susceptibility to Phytophthora sojae in Soybean. PLoS ONE 2022, 17, e0267502. [Google Scholar] [CrossRef]
- Wei, T.; Jiang, L.; You, X.; Ma, P.; Xi, Z.; Wang, N.N. Generation of Herbicide-Resistant Soybean by Base Editing. Biology 2023, 12, 741. [Google Scholar] [CrossRef]
- Niu, Q.; Xie, H.; Cao, X.; Song, M.; Wang, X.; Li, S.; Pang, K.; Zhang, Y.; Zhu, J.K.; Zhu, J. Engineering Soybean with High Levels of Herbicide Resistance with a Cas12-SF01-Based Cytosine Base Editor. Plant Biotechnol. J. 2024, 22, 2435–2437. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Liu, J.; Lyu, S.; Wang, Q.; Yang, S.; Zhu, H. The Soybean Rfg1 Gene Restricts Nodulation by Sinorhizobium fredii USDA193. Front. Plant Sci. 2017, 8, 1548. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Wang, X.; Li, H.; Liu, S.; Jin, L.; Lyu, Y.; Shi, M.; Liu, S.; Yang, X.; Lyu, S. Anthocyanin, a Novel and User-Friendly Reporter for Convenient, Non-Destructive, Low Cost, Directly Visual Selection of Transgenic Hairy Roots in the Study of Rhizobia-Legume Symbiosis. Plant Methods 2020, 16, 94. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Yuan, J.; Kuang, H.; Gong, P.; Li, S.; Zhang, Z.; Liu, B.; Sun, J.; Yang, M.; Yang, L.; et al. Generation of a Multiplex Mutagenesis Population via Pooled CRISPR-Cas9 in Soya Bean. Plant Biotechnol. J. 2020, 18, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, Z.; Hou, W.; Chen, L.; Jiang, B.; Ma, W.; Bai, L.; Song, W.; Xu, C.; Han, T.; et al. GmNMHC5 May Promote Nodulation via Interaction with GmGAI in Soybean. Crop J. 2022, 10, 273–279. [Google Scholar] [CrossRef]
- Fu, M.; Yao, X.; Li, X.; Liu, J.; Bai, M.; Fang, Z.; Gong, J.; Guan, Y.; Xie, F. GmNLP1 and GmNLP4 Activate Nitrate-Induced CLE Peptides NIC1a/b to Mediate Nitrate-Regulated Root Nodulation. Plant J. 2024, 119, 783–795. [Google Scholar] [CrossRef]
- Meng, Y.; Wang, N.; Wang, X.; Qiu, Z.; Kuang, H.; Guan, Y. GmbZIP4a/b Positively Regulate Nodule Number by Affecting Cytokinin Biosynthesis in Glycine max. Int. J. Mol. Sci. 2024, 25, 13311. [Google Scholar] [CrossRef]
- Zhao, X.; Mai, C.; Xia, L.; Jia, G.; Li, X.; Lu, Y.; Li, Z.; Yang, H.; Wang, L. Molecular Insights into the Positive Role of Soybean Nodulation by GmWRKY17. Int. J. Mol. Sci. 2025, 26, 2965. [Google Scholar] [CrossRef]
- Han, J.; Guo, B.; Guo, Y.; Zhang, B.; Wang, X.; Qiu, L.J. Creation of Early Flowering Germplasm of Soybean by CRISPR/Cas9 Technology. Front. Plant Sci. 2019, 10, 1446. [Google Scholar] [CrossRef]
- Wan, Z.; Liu, Y.; Guo, D.; Fan, R.; Liu, Y.; Xu, K.; Zhu, J.; Quan, L.; Lu, W.; Bai, X.; et al. CRISPR/Cas9-Mediated Targeted Mutation of the E1 Decreases Photoperiod Sensitivity, Alters Stem Growth Habits, and Decreases Branch Number in Soybean. Front. Plant Sci. 2022, 13, 1066820. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhang, Y.; Ma, C.; Chen, Y.; Liu, C.; Wang, Y.; Wang, S.; Chen, X. Editing the Nuclear Localization Signals of E1 and E1Lb Enables the Production of Tropical Soybean in Temperate Growing Regions. Plant Biotechnol. J. 2024, 22, 2145–2156. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Chen, L.; Liu, X.; Yao, W.; Hou, W. GmNF-YC4 Delays Soybean Flowering and Maturation by Directly Repressing GmFT2a and GmFT5a Expression. J. Integr. Plant Biol. 2024, 66, 1370–1384. [Google Scholar] [CrossRef]
- Cai, Y.; Chen, L.; Liu, X.; Guo, C.; Sun, S.; Wu, C.; Jiang, B.; Han, T.; Hou, W. CRISPR/Cas9-Mediated Targeted Mutagenesis of GmFT2a Delays Flowering Time in Soya Bean. Plant Biotechnol. J. 2018, 16, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Chen, L.; Sun, S.; Wu, C.; Yao, W.; Jiang, B.; Han, T.; Hou, W. CRISPR/Cas9-Mediated Deletion of Large Genomic Fragments in Soybean. Int. J. Mol. Sci. 2018, 19, 3835. [Google Scholar] [CrossRef]
- Cai, Y.; Chen, L.; Zhang, Y.; Yuan, S.; Su, Q.; Sun, S.; Wu, C.; Yao, W.; Han, T.; Hou, W. Target Base Editing in Soybean Using a Modified CRISPR/Cas9 System. Plant Biotechnol. J. 2020, 18, 1996–1998. [Google Scholar] [CrossRef]
- Xiong, S.S.; Wang, X.R.; Han, K.K.; Tang, J.Q.; Lu, W.T.; Kong, X.Y.; Fan, R.; Sun, X.L.; Ji, Y.L.; Wu, K.; et al. Creation of Dual-Purpose Soybean Germplasm for Grain and Forage by CRISPR/Cas9-Mediated Targeting Mutation of GmFT2a and GmFT5a. Int. J. Biol. Macromol. 2025, 307, 142234. [Google Scholar] [CrossRef]
- Su, Q.; Chen, L.; Cai, Y.; Wang, L.; Chen, Y.; Zhang, J.; Liu, L.; Zhang, Y.; Yuan, S.; Gao, Y.; et al. The FLOWERING LOCUS T 5b Positively Regulates Photoperiodic Flowering and Improves the Geographical Adaptation of Soybean. Plant Cell Environ. 2024, 47, 246–258. [Google Scholar] [CrossRef]
- Bao, A.; Chen, H.; Chen, L.; Chen, S.; Hao, Q.; Guo, W.; Qiu, D.; Shan, Z.; Yang, Z.; Yuan, S.; et al. CRISPR/Cas9-Mediated Targeted Mutagenesis of GmSPL9 Genes Alters Plant Architecture in Soybean. BMC Plant Biol. 2019, 19, 131. [Google Scholar] [CrossRef]
- Cheng, Q.; Dong, L.; Su, T.; Li, T.; Gan, Z.; Nan, H.; Lu, S.; Fang, C.; Kong, L.; Li, H.; et al. CRISPR/Cas9-Mediated Targeted Mutagenesis of GmLHY Genes Alters Plant Height and Internode Length in Soybean. BMC Plant Biol. 2019, 19, 562. [Google Scholar] [CrossRef]
- Xiang, X.; Yang, H.; Yuan, X.; Dong, X.; Mai, S.; Zhang, Q.; Chen, L.; Cao, D.; Chen, H.; Guo, W.; et al. CRISPR/Cas9-Mediated Editing of GmDWF1 Brassinosteroid Biosynthetic Gene Induces Dwarfism in Soybean. Plant Cell Rep. 2024, 43, 116. [Google Scholar] [CrossRef]
- Wang, Y.; Xun, H.; Lv, J.; Ju, W.; Jiang, Y.; Wang, M.; Guo, R.; Zhang, M.; Ding, X.; Liu, B.; et al. A Modulatory Role of CG Methylation on Gene Expression in Soybean Implicates Its Potential Utility in Breeding. Plant Biotechnol. J. 2025, 23, 1585–1600. [Google Scholar] [CrossRef] [PubMed]
- Xun, H.; Lian, L.; Yuan, J.; Hong, J.; Hao, S.; Zhao, H.; Liu, S.; Feng, W.; Yin, H.; Liu, B.; et al. Domains Rearranged Methyltransferases (DRMs)-Mediated DNA Methylation Plays Key Roles in Modulating Gene Expression and Maintaining Transposable Element Silencing in Soybean. J. Integr. Plant Biol. 2025, 67, 1501–1514. [Google Scholar] [CrossRef] [PubMed]
- Sim, J.; Kanazashi, Y.; Yamada, T. Site-Directed Mutagenesis of Soybean PEAPOD Genes Using the CRISPR/Cas9 System Alters Tissue Developmental Transition. Plant Biotechnol. 2023, 40, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Le, H.; Nguyen, N.H.; Ta, D.T.; Le, T.N.T.; Bui, T.P.; Le, N.T.; Nguyen, C.X.; Rolletschek, H.; Stacey, G.; Stacey, M.G.; et al. CRISPR/Cas9-Mediated Knockout of Galactinol Synthase-Encoding Genes Reduces Raffinose Family Oligosaccharide Levels in Soybean Seeds. Front Plant. Sci. 2020, 11, 612942. [Google Scholar] [CrossRef]
- Cao, L.; Wang, Z.; Ma, H.; Liu, T.; Ji, J.; Duan, K. Multiplex CRISPR/Cas9-Mediated Raffinose Synthase Gene Editing Reduces Raffinose Family Oligosaccharides in Soybean. Front. Plant Sci. 2022, 13, 1048967. [Google Scholar] [CrossRef]
- Wang, Z.; Shea, Z.; Rosso, L.; Shang, C.; Li, J.; Bewick, P.; Li, Q.; Zhao, B.; Zhang, B. Development of New Mutant Alleles and Markers for KTI1 and KTI3 via CRISPR/Cas9-Mediated Mutagenesis to Reduce Trypsin Inhibitor Content and Activity in Soybean Seeds. Front Plant. Sci. 2023, 14, 1111680. [Google Scholar] [CrossRef]
- Liu, J.; Kumar, R.; Gunapati, S.; Mulkey, S.; Qiu, Y.; Xiong, Y.; Ramasubramanian, V.; Michno, J.M.; Awasthi, P.; Gallaher, D.D.; et al. Genomic and Biochemical Comparison of Allelic Triple-Mutant Lines Derived from Conventional Breeding and Multiplex Gene Editing. Plant Genome 2025, 18, e70056. [Google Scholar] [CrossRef]
- Patel, E.; Das, P.; Hazra, S.; Sharma, M.; Chhabra, G.; Gill, B.S.; Sharma, S.; Kaur, A.; Singla, D.; Sandhu, J.S. Mutation in Soybean Lox-2 PLAT/LH2 Domain through CRISPR/Cas9 Reduces Seed Lipoxygenase Activity: Responsible for Undesirable Flavour. Transgenic Res. 2025, 34, 29. [Google Scholar] [CrossRef]
- Qian, L.; Jin, H.; Yang, Q.; Zhu, L.; Yu, X.; Fu, X.; Zhao, M.; Yuan, F. A Sequence Variation in GmBADH2 Enhances Soybean Aroma and Is a Functional Marker for Improving Soybean Flavor. Int. J. Mol. Sci. 2022, 23, 4116. [Google Scholar] [CrossRef]
- Xie, H.; Song, M.; Cao, X.; Niu, Q.; Zhu, J.; Li, S.; Wang, X.; Niu, X.; Zhu, J.K. Breeding Exceptionally Fragrant Soybeans for Soy Milk with Strong Aroma. J. Integr. Plant Biol. 2024, 66, 642–644. [Google Scholar] [CrossRef]
- Asa, H.; Kuwabara, C.; Matsumoto, K.; Shigeta, R.; Yamamoto, T.; Masuda, Y.; Yamada, T. Simultaneous Site-Directed Mutagenesis for Soybean ß-Amyrin Synthase Genes via DNA-Free CRISPR/Cas9 System Using a Single gRNA. Plant Cell Rep. 2025, 44, 40. [Google Scholar] [CrossRef]
- Lin, W.; Bai, M.; Peng, C.; Kuang, H.; Kong, F.; Guan, Y. Genome Editing toward Biofortified Soybean with Minimal Trade-off between Low Phytic Acid and Yield. aBIOTECH 2024, 5, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Song, J.H.; Shin, G.; Kim, H.J.; Lee, S.B.; Moon, J.Y.; Jeong, J.C.; Choi, H.K.; Kim, I.A.; Song, H.J.; Kim, C.Y.; et al. Mutation of GmIPK1 Gene Using CRISPR/Cas9 Reduced Phytic Acid Content in Soybean Seeds. Int. J. Mol. Sci. 2022, 23, 10583. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, C.; Wang, J.; Jiang, P.; Qi, J.; Hou, W.; Cheng, H.; Feng, X.; Yu, D. Cytochrome GmGLY1 Is Involved in the Biosynthesis of Glycitein in Soybean. J. Agric. Food Chem. 2024, 72, 10944–10957. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Kuang, H.; Zhang, Z.; Yang, Y.; Yan, L.; Zhang, M.; Song, S.; Guan, Y. Generation of Seed Lipoxygenase-Free Soybean Using CRISPR-Cas9. Crop J. 2020, 8, 432–439. [Google Scholar] [CrossRef]
- Sugano, S.; Hirose, A.; Kanazashi, Y.; Adachi, K.; Hibara, M.; Itoh, T.; Mikami, M.; Endo, M.; Hirose, S.; Maruyama, N.; et al. Simultaneous Induction of Mutant Alleles of Two Allergenic Genes in Soybean by Using Site-Directed Mutagenesis. BMC Plant Biol. 2020, 20, 513. [Google Scholar] [CrossRef]
- Adachi, K.; Hirose, A.; Kanazashi, Y.; Hibara, M.; Hirata, T.; Mikami, M.; Endo, M.; Hirose, S.; Maruyama, N.; Ishimoto, M.; et al. Site-Directed Mutagenesis by Biolistic Transformation Efficiently Generates Inheritable Mutations in a Targeted Locus in Soybean Somatic Embryos and Transgene-Free Descendants in the T1 Generation. Transgenic Res. 2021, 30, 77–89. [Google Scholar] [CrossRef]
- Kuwabara, C.; Miki, R.; Maruyama, N.; Yasui, M.; Hamada, H.; Nagira, Y.; Hirayama, Y.; Ackley, W.; Li, F.; Imai, R.; et al. A DNA-Free and Genotype-Independent CRISPR/Cas9 System in Soybean. Plant Physiol. 2024, 196, 2320–2329. [Google Scholar] [CrossRef]
- Song, B.; Luo, T.; Fan, Y.; Li, M.; Qiu, Z.; Tian, Y.; Shang, Y.; Ma, C.; Liu, C.; Cao, Q.; et al. Generation of New β-Conglycinin-Deficient Soybean Lines by Editing the LincRNA lincCG1 Using the CRISPR/Cas9 System. J. Agric. Food Chem. 2024, 72, 15013–15026. [Google Scholar] [CrossRef] [PubMed]
- Warner, K.; Gupta, M. Potato Chip Quality and Frying Oil Stability of High Oleic Acid Soybean Oil. J. Food Sci. 2005, 70, s395–s400. [Google Scholar] [CrossRef]
- Dong, C.J.; Cao, N.; Zhang, Z.G.; Shang, Q.M. Characterization of the Fatty Acid Desaturase Genes in Cucumber: Structure, Phylogeny, and Expression Patterns. PLoS ONE 2016, 11, e0149917. [Google Scholar] [CrossRef]
- Salas, J.J.; Ohlrogge, J.B. Characterization of Substrate Specificity of Plant FatA and FatB Acyl-ACP Thioesterases. Arch. Biochem. Biophys. 2002, 403, 25–34. [Google Scholar] [CrossRef]
- Flores, T.; Karpova, O.; Su, X.; Zeng, P.; Bilyeu, K.; Sleper, D.A.; Nguyen, H.T.; Zhang, Z.J. Silencing of GmFAD3 Gene by siRNA Leads to Low α-Linolenic Acids (18:3) of fad3-Mutant Phenotype in Soybean [Glycine max (Merr.)]. Transgenic Res. 2008, 17, 839–850. [Google Scholar] [CrossRef]
- Hu, Z.; Ren, Z.; Lu, C. The Phosphatidylcholine Diacylglycerol Cholinephosphotransferase Is Required for Efficient Hydroxy Fatty Acid Accumulation in Transgenic Arabidopsis. Plant Physiol. 2012, 158, 1944–1954. [Google Scholar] [CrossRef] [PubMed]
- Walton, R.T.; Christie, K.A.; Whittaker, M.N.; Kleinstiver, B.P. Unconstrained Genome Targeting with Near-PAMless Engineered CRISPR-Cas9 Variants. Science 2020, 368, 290–296. [Google Scholar] [CrossRef]
- Chen, M.; Du, X.; Zhu, Y.; Wang, Z.; Hua, S.; Li, Z.; Guo, W.; Zhang, G.; Peng, J.; Jiang, L. Seed Fatty Acid Reducer Acts Downstream of Gibberellin Signalling Pathway to Lower Seed Fatty Acid Storage in Arabidopsis. Plant Cell Environ. 2012, 35, 2155–2169. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.M.; Lai, C.P.; Chen, L.F.O.; Chan, M.T.; Shaw, J.F. Arabidopsis SFAR4 Is a Novel GDSL-Type Esterase Involved in Fatty Acid Degradation and Glucose Tolerance. Bot. Stud. 2015, 56, 33. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Wu, D.; Kong, F.; Lin, K.; Zhang, H.; Li, G. The Arabidopsis thaliana Nuclear Factor Y Transcription Factors. Front. Plant Sci. 2017, 7, 2045. [Google Scholar] [CrossRef]
- Shin, H.Y.; Nam, K.H. RAV1 Negatively Regulates Seed Development by Directly Repressing MINI3 and IKU2 in Arabidopsis. Mol. Cells 2018, 41, 1072–1080. [Google Scholar]
- Rushton, P.J.; Somssich, I.E.; Ringler, P.; Shen, Q.J. WRKY Transcription Factors. Trends Plant Sci. 2010, 15, 247–258. [Google Scholar] [CrossRef]
- Park, J.S.; Frost, J.M.; Park, K.; Ohr, H.; Park, G.T.; Kim, S.; Eom, H.; Lee, I.; Brooks, J.S.; Fischer, R.L.; et al. Control of DEMETER DNA Demethylase Gene Transcription in Male and Female Gamete Companion Cells in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2017, 114, 2078–2083. [Google Scholar] [CrossRef]
- Choi, Y.; Gehring, M.; Johnson, L.; Hannon, M.; Harada, J.J.; Goldberg, R.B.; Jacobsen, S.E.; Fischer, R.L. DEMETER, a DNA Glycosylase Domain Protein, Is Required for Endosperm Gene Imprinting and Seed Viability in Arabidopsis. Cell 2002, 110, 33–42. [Google Scholar] [CrossRef]
- Wickland, D.P.; Hanzawa, Y. The FLOWERING LOCUS T/TERMINAL FLOWER 1 Gene Family: Functional Evolution and Molecular Mechanisms. Mol. Plant 2015, 8, 983–997. [Google Scholar] [CrossRef]
- Jeong, N.; Suh, S.J.; Kim, M.H.; Lee, S.; Moon, J.K.; Kim, H.S.; Jeong, S.C. Ln Is a Key Regulator of Leaflet Shape and Number of Seeds per Pod in Soybean. Plant Cell 2013, 24, 4807–4818. [Google Scholar] [CrossRef] [PubMed]
- Sayama, T.; Tanabata, T.; Saruta, M.; Yamada, T.; Anai, T.; Kaga, A.; Ishimoto, M. Confirmation of the Pleiotropic Control of Leaflet Shape and Number of Seeds per Pod by the Ln Gene in Induced Soybean Mutants. Breed Sci. 2017, 67, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Choi, D.; Kende, H. The AtGRF Family of Putative Transcription Factors Is Involved in Leaf and Cotyledon Growth in Arabidopsis. Plant J. 2003, 36, 94–104. [Google Scholar] [CrossRef]
- Van Daele, I.; Gonzalez, N.; Vercauteren, I.; de Smet, L.; Inzé, D.; Roldán-Ruiz, I.; Vuylsteke, M. A Comparative Study of Seed Yield Parameters in Arabidopsis thaliana Mutants and Transgenics. Plant Biotechnol. J. 2012, 10, 488–500. [Google Scholar] [CrossRef] [PubMed]
- Noon, J.B.; Hewezi, T.; Baum, T.J. Homeostasis in the Soybean miRNA396-GRF Network Is Essential for Productive Soybean Cyst Nematode Infections. J. Exp. Bot. 2019, 70, 1653–1668. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, W.; Li, S.; Zhang, H.; Liu, X.; Cui, X.; Song, L.; Zhu, Y.; Chen, X.; Chen, H. GmAOC4 Modulates Seed Germination by Regulating JA Biosynthesis in Soybean. Theor. Appl. Genet. 2022, 135, 439–447. [Google Scholar] [CrossRef]
- Xie, M.; Sun, J.; Gong, D.; Kong, Y. The Roles of Arabidopsis C1-2i Subclass of C2H2-Type Zinc-Finger Transcription Factors. Genes 2019, 10, 653. [Google Scholar] [CrossRef] [PubMed]
- Dolan, L. How and Where to Build a Root Hair. Curr. Opin. Plant Biol. 2001, 4, 550–554. [Google Scholar] [CrossRef] [PubMed]
- Pyo, Y.J.; Gierth, M.; Schroeder, J.I.; Cho, M.H. High-Affinity K+ Transport in Arabidopsis: AtHAK5 and AKT1 Are Vital for Seedling Establishment and Postgermination Growth under Low-Potassium Conditions. Plant Physiol. 2010, 153, 863–875. [Google Scholar] [CrossRef]
- Ding, X.; Guo, J.; Zhang, Q.; Yu, L.; Zhao, T.; Yang, S. Heat-Responsive miRNAs Participate in the Regulation of Male Fertility Stability in Soybean CMS-Based F1 under High Temperature Stress. Int. J. Mol. Sci. 2021, 22, 2446. [Google Scholar] [CrossRef]
- Stacey, G.; McAlvin, C.B.; Kim, S.Y.; Olivares, J.; Soto, M.J. Effects of Endogenous Salicylic Acid on Nodulation in the Model Legumes Lotus japonicus and Medicago truncatula. Plant Physiol. 2006, 141, 1473–1481. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, J.Z. Flowering and Flower Development in Plants. Agronomy 2024, 14, 256. [Google Scholar] [CrossRef]
- Nan, H.; Cao, D.; Zhang, D.; Li, Y.; Lu, S.; Tang, L.; Yuan, X.; Liu, B.; Kong, F. GmFT2a and GmFT5a Redundantly and Differentially Regulate Flowering through Interaction with and Upregulation of the BZIP Transcription Factor GmFDL19 in Soybean. PLoS ONE 2014, 9, e97669. [Google Scholar] [CrossRef]
- Reinhardt, D.; Kuhlemeier, C. Plant Architecture. EMBO Rep. 2002, 3, 846–851. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, Y.; Li, P.; Hancock, J.T.; Hu, X. Research Progress and Application of Plant Branching. Phyton-Int. J. Exp. Bot. 2023, 92, 679–689. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Z.; Liu, D.; Zhang, K.; Li, A.; Mao, L. SQUAMOSA Promoter-Binding Protein-like Transcription Factors: Star Players for Plant Growth and Development. J. Integr. Plant Biol. 2010, 52, 946–951. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Su, C.; Yun, J.; Jiang, Q.; Wang, L.; Wang, Y.; Cao, D.; Zhao, F.; Zhao, Q.; Zhang, M.; et al. Genetic Improvement of the Shoot Architecture and Yield in Soya Bean Plants via the Manipulation of GmmiR156b. Plant Biotechnol. J. 2019, 17, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Park, M.J.; Kwon, Y.J.; Gil, K.E.; Park, C.M. LATE ELONGATED HYPOCOTYL Regulates Photoperiodic Flowering via the Circadian Clock in Arabidopsis. BMC Plant Biol. 2016, 16, 114. [Google Scholar] [CrossRef] [PubMed]
- Schaffer, R.; Ramsay, N.; Samach, A.; Corden, S.; Putterill, J.; Carré, I.A.; Coupland, G. The late elongated hypocotyl Mutation of Arabidopsis Disrupts Circadian Rhythms and the Photoperiodic Control of Flowering. Cell 1998, 93, 1219–1229. [Google Scholar] [CrossRef]
- White, D.W. PEAPOD Regulates Lamina Size and Curvature in Arabidopsis. Proc. Natl. Acad. Sci. USA 2006, 103, 13238–13243. [Google Scholar] [CrossRef] [PubMed]
- Elango, D.; Rajendran, K.; Van der Laan, L.; Sebastiar, S.; Raigne, J.; Thaiparambil, N.A.; El Haddad, N.; Raja, B.; Wang, W.; Ferela, A.; et al. Raffinose Family Oligosaccharides: Friend or Foe for Human and Plant Health? Front. Plant Sci. 2022, 13, 829118. [Google Scholar] [CrossRef]
- Avilés-Gaxiola, S.; Chuck-Hernández, C.; Serna Saldívar, S.O. Inactivation Methods of Trypsin Inhibitor in Legumes: A Review. J. Food Sci. 2018, 83, 17–29. [Google Scholar] [CrossRef]
- Mathure, S.V.; Wakte, K.V.; Jawali, N.; Nadaf, A.B. Quantification of 2-Acetyl-1-Pyrroline and Other Rice Aroma Volatiles Among Indian Scented Rice Cultivars by HS-SPME/GC-FID. Food Anal. Methods 2011, 4, 326–333. [Google Scholar] [CrossRef]
- Alshehri, M.M.; Sharifi-Rad, J.; Herrera-Bravo, J.; Jara, E.L.; Salazar, L.A.; Kregiel, D.; Uprety, Y.; Akram, M.; Iqbal, M.; Martorell, M.; et al. Therapeutic Potential of Isoflavones with an Emphasis on Daidzein. Oxidative Med. Cell. Longev. 2021, 2021, 6331630. [Google Scholar] [CrossRef]
- Samoto, M.; Fukuda, Y.; Takahashi, K.; Tabuchi, K.; Hiemori, M.; Tsuji, H.; Ogawa, T.; Kawamura, Y. Substantially Complete Removal of Three Major Allergenic Soybean Proteins (Gly m Bd 30k, Gly m Bd 28k, and the α-Subunit of Conglycinin) from Soy Protein by Using a Mutant Soybean, Tohoku 124. Biosci. Biotechnol. Biochem. 1997, 61, 2148–2150. [Google Scholar] [CrossRef]
- Ransohoff, J.D.; Wei, Y.; Khavari, P.A. The Functions and Unique Features of Long Intergenic Non-Coding RNA. Nat. Rev. Mol. Cell Biol. 2018, 19, 143–157. [Google Scholar] [CrossRef]
- Lee, C.; Choi, M.-S.; Kim, H.-T.; Yun, H.-T.; Lee, B.; Chung, Y.-S.; Kim, R.W.; Choi, H.-K. Soybean [Glycine Max (L.) Merrill]: Importance as A Crop and Pedigree Reconstruction of Korean Varieties. Plant Breed Biotechnol. 2015, 3, 179–196. [Google Scholar] [CrossRef]
- Dorneles, J.B.; Carvalho, I.R.; da Silva Martins, T.; Moura, N.B.; da Silva, J.A.G.; Lautenchleger, F. Two Decades of National Registry of Soybean Cultivars: Updates and Perspectives. Commun. Plant Sci. 2020, 10, 85–96. [Google Scholar] [CrossRef]
- Köhler, I.H.; Ruiz-Vera, U.M.; VanLoocke, A.; Thomey, M.L.; Clemente, T.; Long, S.P.; Ort, D.R.; Bernacchi, C.J. Expression of Cyanobacterial FBP/SBPase in Soybean Prevents Yield Depression under Future Climate Conditions. J. Exp. Bot. 2017, 68, 715–726. [Google Scholar] [CrossRef] [PubMed]
- Croce, R.; Carmo-Silva, E.; Cho, Y.B.; Ermakova, M.; Harbinson, J.; Lawson, T.; McCormick, A.J.; Niyogi, K.K.; Ort, D.R.; Patel-Tupper, D.; et al. Perspectives on Improving Photosynthesis to Increase Crop Yield. Plant Cell 2024, 36, 3944–3973. [Google Scholar] [CrossRef]
- Zhong, X.; Wang, J.; Shi, X.; Bai, M.; Yuan, C.; Cai, C.; Wang, N.; Zhu, X.; Kuang, H.; Wang, X.; et al. Genetically Optimizing Soybean Nodulation Improves Yield and Protein Content. Nat. Plants 2024, 10, 736–742. [Google Scholar] [CrossRef] [PubMed]
- Tsuno, Y.; Fujimatsu, T.; Endo, K.; Sugiyama, A.; Yazaki, K. Soyasaponins: A New Class of Root Exudates in Soybean (Glycine max). Plant Cell Physiol. 2018, 59, 366–375. [Google Scholar] [CrossRef]
- Wang, L.; Jia, J.; Su, Q.; Cao, H.; Jia, S.; Si, H.; Cao, Z.; Ma, S.; Xing, J.; Zhang, K.; et al. Root-Associated Microbial Diversity and Metabolomics in Maize Resistance to Stalk Rot. Front. Microbiol. 2024, 15, 1468627. [Google Scholar] [CrossRef]
- Murphy, B.P.; Tranel, P.J. Target-Site Mutations Conferring Herbicide Resistance. Plants 2019, 8, 382. [Google Scholar] [CrossRef]
- Zheng, T.; Yu, X.; Sun, Y.; Zhang, Q.; Zhang, X.; Tang, M.; Lin, C.; Shen, Z. Expression of a Cytochrome P450 Gene from Bermuda Grass Cynodon dactylon in Soybean Confers Tolerance to Multiple Herbicides. Plants 2022, 11, 949. [Google Scholar] [CrossRef]
- Dimaano, N.G.; Iwakami, S. Cytochrome P450-Mediated Herbicide Metabolism in Plants: Current Understanding and Prospects. Pest Manag. Sci. 2021, 77, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Trivedi, P.K. Glutathione S-Transferases: Role in Combating Abiotic Stresses Including Arsenic Detoxification in Plants. Front. Plant Sci. 2018, 9, 751. [Google Scholar] [CrossRef] [PubMed]
- Della Gala, V.; Welner, D.H. Identification and Functional Characterization of Novel Plant UDP-Glycosyltransferase (LbUGT72B10) for the Bioremediation of 3,4-Dichloroaniline. RSC Sustain. 2023, 1, 2024–2032. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, K.; Zhang, C.; Lin, F.; Hu, W.; Jiang, Y.; Tao, X.; Han, Y.; Han, L.; Liu, C. Comparative Root Transcriptome Analysis of Two Soybean Cultivars with Different Cadmium Sensitivities Reveals the Underlying Tolerance Mechanisms. Genome 2022, 65, 27–42. [Google Scholar] [CrossRef]
- Anik, T.R.; Chu, H.D.; Ahmed, M.S.; Van Ha, C.; Gangurde, S.S.; Khan, M.A.R.; Le, T.D.; Le, D.T.; Abdelrahman, M.; Tran, L.S.P. Genome-Wide Characterization of the Glutathione S-Transferase Gene Family in Phaseolus vulgaris Reveals Insight into the Roles of Their Members in Responses to Multiple Abiotic Stresses. Plant Stress 2024, 12, 100489. [Google Scholar] [CrossRef]
- Wang, Z.; Li, H.; Wei, Z.; Sun, H.; He, Y.; Gao, J.; Yang, Z.; You, J. Overexpression of UDP-Glycosyltransferase Genes Enhanced Aluminum Tolerance through Disrupting Cell Wall Polysaccharide Components in Soybean. Plant Soil 2021, 469, 135–147. [Google Scholar] [CrossRef]
- Xu, H.; Guo, Y.; Qiu, L.; Ran, Y. Progress in Soybean Genetic Transformation Over the Last Decade. Front. Plant Sci. 2022, 13, 900318. [Google Scholar] [CrossRef]
- Ye, X.; Beyer, P. Engineering the Provitamin A (β-Carotene) Biosynthetic Pathway into (Carotenoid-Free) Rice Endosperm. Science 2000, 287, 303–305. [Google Scholar] [CrossRef] [PubMed]
- Subburaj, S.; Zanatta, C.B.; Nunn, J.A.L.; Hoepers, A.M.; Nodari, R.O.; Agapito-Tenfen, S.Z. A DNA-Free Editing Platform for Genetic Screens in Soybean via CRISPR/Cas9 Ribonucleoprotein Delivery. Front. Plant Sci. 2022, 13, 939997. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Machin, F.; Wang, S.; Saplaoura, E.; Kragler, F. Heritable Transgene-Free Genome Editing in Plants by Grafting of Wild-Type Shoots to Transgenic Donor Rootstocks. Nat. Biotechnol. 2023, 41, 958–967. [Google Scholar] [CrossRef] [PubMed]
- Woo, J.W.; Kim, J.; Kwon, S.I.; Corvalán, C.; Cho, S.W.; Kim, H.; Kim, S.G.; Kim, S.T.; Choe, S.; Kim, J.S. DNA-Free Genome Editing in Plants with Preassembled CRISPR-Cas9 Ribonucleoproteins. Nat. Biotechnol. 2015, 33, 1162–1164. [Google Scholar] [CrossRef]
Trait | Target Gene(s)/Loci | References | |
---|---|---|---|
Seed contents | Oil composition | GmFAD2-1 | [31,32,33,34,35,36,37,38] |
GmFAD2-2 | [32,34,36,39] | ||
GmKASI | [40] | ||
GmPDCT | [41,42] | ||
GmFATA | [42] | ||
GmFAD3 | [38] | ||
GmSFAR4 | [43] | ||
Nutritional content (protein, amino acid, sugar) | GmKASI | [40] | |
GmAIP2 | [44] | ||
GmCG-1 | [45] | ||
GmRAV1; GmWRKY27 | [46] | ||
GmSWEET10 | [47] | ||
GmTCP670 | [48] | ||
Seed yield and development | Seed size | GmDMEa | [49] |
Seed number | GmFT2a; GmFT5a | [50] | |
GmJAG1 | [51] | ||
EIL3; EIL4; EIN2L | [52] | ||
miR396 | [53] | ||
GmAOC4H8 | [54] | ||
Modified pigmentation | GmDCL2 | [55] | |
Wrinkled shape | GmKASI | [40] | |
Abiotic stresses | Drought | gma-miR398c | [56] |
GmPLA | [57] | ||
GmHdz4 | [58] | ||
GmLCL | [59] | ||
GmNAC8 * | [60] | ||
GmNAC12 * | [61] | ||
Salt | GmAITR | [62] | |
GmCG-1 | [45] | ||
GmZAT10-1 | [63] | ||
GsSOS1 *; GsNSCC * | [64] | ||
GmAKT1 * | [65] | ||
Heat | GmSPL2b * | [66] | |
GmBSK1 * | [67] | ||
Multiple | GmArm | [68] | |
Biotic stresses and interactions | Disease resistance | GmArm | [68] |
GmF3H | [69] | ||
GmUGT | [70] | ||
GmTAP1 | [71] | ||
GmMLO | [72] | ||
GmSNAP02 | [73] | ||
GmTCP19L * | [74] | ||
Herbicide resistance | GmAHAS4 | [75] | |
GmALS1; GmALS3 | [76] | ||
Nodulation | Rfg1 | [77,78] | |
GmRIC1; GmRIC2 | [79] | ||
GmNMHC5 | [80] | ||
GmNLP1; GmNLP4 | [81] | ||
GmbZIP4 | [82] | ||
GmWRKY17 | [83] | ||
Flowering time | Early flowering | E1 | [84,85,86] |
EIL3; EIL4; EIN2L | [52] | ||
E1Lb | [86] | ||
GmNF-YC4 | [87] | ||
Late flowering | GmFT2a | [88,89,90] | |
GmFT5a | [89,91] | ||
GmFT4 | [90] | ||
GmFT5b | [92] | ||
Plant architecture | Growth enhancement | GmSPL9 | [93] |
GmFT2a; GmFT5a | [91] | ||
Dwarf phenotype | GmLHY | [94] | |
E1 | [85] | ||
GmDWF1 | [95] | ||
GmMET1 | [96] | ||
GmDRM | [97] | ||
Pod morphology | GmPPD | [98] | |
Functional property | Digestibility enhancement | GmGOLS | [99] |
GmRS | [100] | ||
GmKTI | [101] | ||
GmKTI3 | [102] | ||
Flavor optimization | GmLOX-2 | [103] | |
GmBADH | [104,105] | ||
GmBAS1; GmBAS2 | [106] | ||
Nutritional improvement | GmIPK1 | [107,108] | |
GmGLY1 | [109] | ||
Allergen elimination | GmLOX | [110] | |
Gly m Bd 28K | [111] | ||
Gly m Bd 30K | [111,112,113] | ||
lincCG1 | [114] | ||
GmP34 | [102] |
Soybean Cultivar * | Target Gene(s)/Loci | Editing Tool | References |
---|---|---|---|
Bert | GmKASI | CRISPR/Cas9 | [40] |
GmLE; GmKTI3; GmP34 | [102] | ||
Daewon | GmFAD2-1A, GmFAD2-1B | CRISPR/LbCpf1 | [34] |
DongNong 50 (DN50) | GmPDCT1; GmPDCT2 | CRISPR/Cas9 | [41] |
GmDMEa | [49] | ||
GmArm | [68] | ||
lincCG1 | [114] | ||
GmTCP670 | [48] | ||
GmAKT1 | [65] | ||
DT26 | GmGOLS | CRISPR/Cas9 | [99] |
GmMLO | [72] | ||
Enrei | Gly m Bd 28K; Gly m Bd 30K | CRISPR/Cas9 | [111] |
Fukuyutaka | Gly m Bd 30K loci | CRISPR/Cas9 | [113] |
GL3510 | GmBAS1; GmBAS2 | CRISPR/Cas9 | [106] |
Harosoy | GmLHY | CRISPR/Cas9 | [94] |
GmLCL | [59] | ||
Huachun 6 | GmRIC | CRISPR/Cas9 | [79] |
GmLOX | [110] | ||
GmJAG1 | [51] | ||
GmIPK1; GmMRP5 | [108] | ||
GmNLP1; GmNLP4 | [81] | ||
GmSWEET10 | [47] | ||
Jack | GmFT2a | CRISPR/Cas9 | [50,88,89] |
Cas9n (D10A) | [90] | ||
GmFT5a | CRISPR/Cas9 | [88,89] | |
E1 | [84] | ||
GmF3H | [69] | ||
GmFT4 | [90] | ||
Gly m Bd 30K | [112] | ||
GmFAD2-1a; GmFAD2-1b | [33] | ||
GmAIP2 | [44] | ||
GmNMHC5 | [80] | ||
GmCG-1 | [45] | ||
GmNF-YC4 | [87] | ||
GmFT5b | [92] | ||
GmGLY1 | [109] | ||
Jinong 18 | GmFAD2 | CRISPR/Cas9 | [36] |
Jinong 38 | GmFAD2 | CRISPR/Cas9 | [32,35,36,38] |
Kariyutaka | Gly m Bd 28K; Gly m Bd 30K | CRISPR/Cas9 | [111] |
GmPPD | [98] | ||
Kefeng No.1 | GmAOC4H8 | CRISPR/Cas9 | [54] |
Kwangan | GmFAD2 | CRISPR/LbCpf1 | [34] |
GmIPK1 | CRISPR/Cas9 | [108] | |
Lee 68 | GmZAT10-1 | CRISPR/Cas9 | [63] |
Maverick | GmFAD2 | CRISPR/Cas9 | [32] |
GmGOLS1 | [99] | ||
Peking | GmSNAP02 | CRISPR/Cas9 | [73] |
PI 377578 | Rfg1 | CRISPR/Cas9 | [78] |
SL1074 | GmLOX-2 | CRISPR/Cas9 | [103] |
Tianlong No. 1 | GmDCL2 | CRISPR/Cas9 | [55] |
GmNAC8 | [60] | ||
GmPLA | [57] | ||
GmHdz4 | [58] | ||
GmNAC12 | [61] | ||
GmUGT | [70] | ||
E1 | [85] | ||
GmBADH2 | [104] | ||
GmAHAS4 | Cytosine base editor (CBE3) | [75] | |
GmFT2a; GmFT5a | CRISPR/Cas9 | [91] | |
Tianlong No. 2 | GmDWF1 | CRISPR/Cas9 | [95] |
Wandou 28 | GmFAD2; GmFAD3 | CRISPR/Cas9 | [38] |
Williams 82 (Reference genome) | GmSFAR4 | CRISPR/Cas9 | [122] |
Rfg1 | [77] | ||
GmFAD2 | [31] | ||
CRISPR/LbCpf1 | [34] | ||
CRISPR/SpRY | [37] | ||
GmSPL9 | CRISPR/Cas9 | [93] | |
gma-miR398c | [56] | ||
GmAITR | [62] | ||
Gly m Bd 30K | [112] | ||
GmTCP19L | [74] | ||
GmRS2 | [100] | ||
EIN2L; EIL3; EIL4 | [52] | ||
GmSPL2b | [66] | ||
GmTAP1 | [71] | ||
GmKTI1; GmKTI3 | [101] | ||
GmFATA | [42] | ||
GmRAV1 | [46] | ||
GmbZIP4 | [82] | ||
GmBSK1 | [67] | ||
GmWRKY17 | [83] | ||
GmMET1 | [96] | ||
GmDRM | [97] | ||
Xudou 18 | GmALS1; GmALS3 | Cas12-SF01-based cytosine base editor | [76] |
Xudou 20 | GmBADH1; GmBADH2 | CRISPR/Cas12i3 | [105] |
Yukihomare | Gly m Bd 30K | CRISPR/Cas9 | [113] |
Zhonghuang 302 | miR396 | CRISPR/Cas12SF01 | [53] |
ZYD1239 | GsSOS1; GsNSCC | CRISPR/Cas9 | [64] |
06KG218440 | E1; E1Lb | CRISPR/LbCas12a | [86] |
USDA’s Response Date | Description of the Edited Trait | Institution |
---|---|---|
January 2014 | Altered-flavonoid profile | University of Georgia |
May 2015 | FAD2KO | Cellectis Plant Sciences |
May 2015 | FAD3KO | Cellectis Plant Sciences |
October 2017 | Drought and salt tolerance | USDA ARS |
June 2019 | Changes in seed composition | University of Minnesota |
June 2019 | Changes in petiole length | University of Minnesota |
March 2020 | Resistance to soybean cyst nematode (SCN) | Evogene, Ltd. |
May 2020 | High oleic and low linolenic acid | Calyxt, Inc. |
July 2020 | High oleic acid | ToolGen, Inc. |
August 2020 | Increased carbon flux | University of Georgia |
August 2020 | Increased ketocarotenoids | University of Georgia |
September 2020 | Altered seed composition | University of Missouri |
September 2020 | Changes in leaf size and seed weight | University of Missouri |
September 2020 | Increased oil and protein content | Corteva Agriscience |
March 2025 | Herbicide resistance | Inari Agriculture, Inc. |
April 2025 | Improved architecture | Bayer Crop Science |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, C.Y.; Karthik, S.; Kim, H. Soybean Molecular Breeding Through Genome Editing Tools: Recent Advances and Future Perspectives. Agronomy 2025, 15, 1983. https://doi.org/10.3390/agronomy15081983
Kim CY, Karthik S, Kim H. Soybean Molecular Breeding Through Genome Editing Tools: Recent Advances and Future Perspectives. Agronomy. 2025; 15(8):1983. https://doi.org/10.3390/agronomy15081983
Chicago/Turabian StyleKim, Chan Yong, Sivabalan Karthik, and Hyeran Kim. 2025. "Soybean Molecular Breeding Through Genome Editing Tools: Recent Advances and Future Perspectives" Agronomy 15, no. 8: 1983. https://doi.org/10.3390/agronomy15081983
APA StyleKim, C. Y., Karthik, S., & Kim, H. (2025). Soybean Molecular Breeding Through Genome Editing Tools: Recent Advances and Future Perspectives. Agronomy, 15(8), 1983. https://doi.org/10.3390/agronomy15081983