Monitoring Chlorophyll Content of Brassica napus L. Based on UAV Multispectral and RGB Feature Fusion
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. UAV Data Collection and Processing
2.3. Measurements of Chl Content
2.4. Data Analysis Methods
2.4.1. Image Feature Extraction
2.4.2. Predictive Model Construction
2.4.3. Software and Model Evaluation
3. Results
3.1. Analysis of Chl Content
3.2. Analysis of Fraction Vegetation Coverage
3.3. Analysis of Nitrogen Content and Spectral Reflectance
3.4. Correlation Analysis Between Feature Parameters and Chl Content
3.5. Prediction of Chl Content Based on Color Indices
3.6. Prediction of Chl Content Based on Spectral Indices
3.7. Prediction of Chl Content Based on the Fusion of Color and Spectral Indices
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, Q.; Liu, K. Worldwide rapeseed (Brassica napus L.) research: A bibliometric analysis during 2011–2021. Oil Crop Sci. 2022, 7, 157–165. [Google Scholar] [CrossRef]
- Croft, H.; Chen, J.M.; Wang, R.; Mo, G.; Luo, S.; Luo, X.; He, L.; Gonsamo, A.; Arabian, J.; Zhang, Y.; et al. The global distribution of leaf chlorophyll content. Remote Sens. Environ. 2020, 236, 111479. [Google Scholar] [CrossRef]
- Qiao, L.; Tang, W.; Gao, D.; Zhao, R.; An, L.; Li, M.; Sun, H.; Song, D. UAV-based chlorophyll content estimation by evaluating vegetation index responses under different crop coverages. Comput. Electron. Agric. 2022, 196, 106775. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, A.; Zhang, H.; Zhu, Q.; Zhang, H.; Sun, W.; Niu, Y. Estimating Leaf Chlorophyll Content of Winter Wheat from UAV Multispectral Images Using Machine Learning Algorithms under Different Species, Growth Stages, and Nitrogen Stress Conditions. Agriculture 2024, 14, 1064. [Google Scholar] [CrossRef]
- Yin, C.; Lv, X.; Zhang, L.; Ma, L.; Wang, H.; Zhang, L.; Zhang, Z. Hyperspectral UAV images at different altitudes for monitoring the leaf nitrogen content in cotton crops. Remote Sens. 2022, 14, 2576. [Google Scholar] [CrossRef]
- Wang, N.; Clevers, J.G.; Wieneke, S.; Bartholomeus, H.; Kooistra, L. Potential of UAV-based sun-induced chlorophyll fluorescence to detect water stress in sugar beet. Agric. For. Meteorol. 2022, 323, 109033. [Google Scholar] [CrossRef]
- Wang, W.; Gao, X.; Cheng, Y.; Ren, Y.; Zhang, Z.; Wang, R.; Cao, J.; Geng, H. QTL mapping of leaf area index and chlorophyll content based on UAV remote sensing in wheat. Agriculture 2022, 12, 595. [Google Scholar] [CrossRef]
- Vernon, L.P. Spectrophotometric Determination of Chlorophylls and Pheophytins in Plant Extracts. Anal. Chem. 1960, 32, 1144–1150. [Google Scholar] [CrossRef]
- Uddling, J.; Gelang-Alfredsson, J.; Piikki, K.; Pleijel, H. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynth. Res. 2007, 91, 37–46. [Google Scholar] [CrossRef]
- Blackburn, G.A. Hyperspectral remote sensing of plant pigments. J. Exp. Bot. 2007, 58, 855–867. [Google Scholar] [CrossRef]
- Richardson, A.D.; Duigan, S.P.; Berlyn, G.P. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol. 2002, 153, 185–194. [Google Scholar] [CrossRef]
- Hunt, E.R.; Daughtry, C.S.T. Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring. Remote Sens. 2010, 2, 290–305. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; González-Dugo, V.; Berni, J.A.J. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection. Remote Sens. Environ. 2012, 117, 322–337. [Google Scholar] [CrossRef]
- Feng, W.; Yao, X.; Zhu, Y.; Cao, W.; Tian, Y. Remote estimation of leaf nitrogen and chlorophyll contents using UAV-based hyperspectral imagery. Remote Sens. 2016, 8, 495. [Google Scholar] [CrossRef]
- Ban, S.; Liu, W.; Tian, M.; Wang, Q.; Yuan, T.; Chang, Q.; Li, L. Rice leaf chlorophyll content estimation using UAV-based spectral images in different regions. Agronomy 2022, 12, 2832. [Google Scholar] [CrossRef]
- Wang, Y.; Tan, S.; Jia, X.; Qi, L.; Liu, S.; Lu, H.; Wang, C.; Liu, W.; Zhao, X.; He, L. Estimating relative chlorophyll content in rice leaves using unmanned aerial vehicle multi-spectral images and spectral–textural analysis. Agronomy 2023, 13, 1541. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, Y.; Zhao, Z.; Xie, M.; Hou, D. Estimation of relative chlorophyll content in spring wheat based on multi-temporal UAV remote sensing. Agronomy 2023, 13, 211. [Google Scholar] [CrossRef]
- Wang, W.; Cheng, Y.; Ren, Y.; Zhang, Z.; Geng, H. Prediction of chlorophyll content in multi-temporal winter wheat based on multispectral and machine learning. Front. Plant Sci. 2022, 13, 896408. [Google Scholar] [CrossRef]
- Yan, P.; Feng, Y.; Han, Q.; Hu, Z.; Huang, X.; Su, K.; Kang, S. Enhanced cotton chlorophyll content estimation with UAV multispectral and LiDAR constrained SCOPE model. Int. J. Appl. Earth Obs. Geoinf. 2024, 132, 104052. [Google Scholar] [CrossRef]
- Hu, J.; Yue, J.; Xu, X.; Han, S.; Sun, T.; Liu, Y.; Feng, H.; Qiao, H. UAV-based remote sensing for soybean FVC, LCC, and maturity monitoring. Agriculture 2023, 13, 692. [Google Scholar] [CrossRef]
- Qi, H.; Wu, Z.; Zhang, L.; Li, J.; Zhou, J.; Jun, Z.; Zhu, B. Monitoring of peanut leaves chlorophyll content based on drone-based multispectral image feature extraction. Comput. Electron. Agric. 2021, 187, 106292. [Google Scholar] [CrossRef]
- Pan, Y.; Zhou, R.; Zhang, J.; Guo, W.; Yu, M.; Guo, C.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W. A new spectral index for estimation of wheat canopy chlorophyll density: Considering background interference and view zenith angle effect. Precis. Agric. 2023, 24, 2098–2125. [Google Scholar] [CrossRef]
- Yin, C.; Wang, Z.; Lv, X.; Qin, S.; Ma, L.; Zhang, Z.; Tang, Q. Reducing soil and leaf shadow interference in UAV imagery for cotton nitrogen monitoring. Front. Plant Sci. 2024, 15, 1380306. [Google Scholar] [CrossRef]
- Yang, H.; Hu, Y.; Zheng, Z.; Qiao, Y.; Zhang, K.; Guo, T.; Chen, J. Estimation of potato chlorophyll content from UAV multispectral images with stacking ensemble algorithm. Agronomy 2022, 12, 2318. [Google Scholar] [CrossRef]
- Liu, S.; Li, L.; Gao, W.; Zhang, Y.; Liu, Y.; Wang, S.; Lu, J. Diagnosis of nitrogen status in winter oilseed rape (Brassica napus L.) using in-situ hyperspectral data and unmanned aerial vehicle (UAV) multispectral images. Comput. Electron. Agric. 2018, 151, 185–195. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef]
- Meyer, G.E.; Neto, J.C. Verification of color vegetation indices for automated crop imaging applications. Comput. Electron. Agric. 2008, 63, 282–293. [Google Scholar] [CrossRef]
- Kawashima, S.; Nakatani, M. An algorithm for estimating chlorophyll content in leaves using a video camera. Ann. Bot. 1998, 81, 49–54. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, G.; Li, Z.; Song, X.; Li, Z.; Xu, X.; Wang, P.; Zhao, C. Winter wheat nitrogen status estimation using UAV-based RGB imagery and Gaussian processes regression. Remote Sens. 2020, 12, 3778. [Google Scholar] [CrossRef]
- Saberioon, M.; Amin, M.S.M.; Anuar, A.R.; Gholizadeh, A.; Wayayok, A. Assessment of rice leaf chlorophyll content using visible bands at different growth stages at both the leaf and canopy scale. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 35–45. [Google Scholar] [CrossRef]
- Kamiyama, M.; Taguchi, A. Color conversion formula with saturation correction from LSI color space to RGB color space. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2021, 104, 1000–1005. [Google Scholar] [CrossRef]
- Wang, F.; Huang, J.; Tang, Y.; Wang, X. New vegetation index and its application in estimating leaf area index of rice. Rice Sci. 2007, 14, 195–203. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Keydan, G.P.; Merzlyak, M.N. Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophys. Res. Lett. 2006, 33, L11402. [Google Scholar] [CrossRef]
- Fitzgerald, G.J.; Rodriguez, D.; Christensen, L.K.; Belford, R.; Sadras, V.O.; Clarke, T.R. Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat environments. Precis. Agric. 2006, 7, 233–248. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of leaf-area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Wu, C.; Niu, Z.; Tang, Q.; Huang, W. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agric. For. Meteorol. 2008, 148, 1230–1241. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Daughtry, C.S.; Walthall, C.; Kim, M.; De Colstoun, E.B.; McMurtrey Iii, J. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Guyot, M.L.; Li, G.F.; Lenz-Wiedemann, V.I.S.; Miao, Y.; Zhang, X.; Bareth, G. Development and implementation of a multiscale biomass model using hyperspectral vegetation indices for winter wheat in the North China Plain. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 232–245. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P.J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- Xiao, Q.; Tang, W.; Zhang, C.; Zhou, L.; Feng, L.; Shen, J.; Yan, T.; Gao, P.; He, Y.; Wu, N. Spectral Preprocessing Combined with Deep Transfer Learning to Evaluate Chlorophyll Content in Cotton Leaves. Plant Phenomics 2022, 2022, 9813841. [Google Scholar] [CrossRef]
- Narmilan, A.; Gonzalez, F.; Salgadoe, A.S.A.; Kumarasiri, U.W.L.M.; Weerasinghe, H.A.S.; Kulasekara, B.R. Predicting canopy chlorophyll content in sugarcane crops using machine learning algorithms and spectral vegetation indices derived from UAV multispectral imagery. Remote Sens. 2022, 14, 1140. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Han, F.; Shi, Z.; Zhao, F.; Zhang, F.; Pan, W.; Zhang, Z.; Cui, Q. Estimation of Canopy Chlorophyll Content of Apple Trees Based on UAV Multispectral Remote Sensing Images. Agriculture 2025, 15, 1308. [Google Scholar] [CrossRef]
- Phang, S.K.; Chiang, T.H.A.; Happonen, A.; Chang, M.M.L. From Satellite to UAV-Based Remote Sensing: A Review on Precision Agriculture. IEEE Access 2023, 11, 127057–127076. [Google Scholar] [CrossRef]
- Rathke, G.-W.; Behrens, T.; Diepenbrock, W. Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): A review. Agric. Ecosyst. Environ. 2006, 117, 80–108. [Google Scholar] [CrossRef]
- Kwan, C.; Gribben, D.; Ayhan, B.; Li, J.; Bernabe, S.; Plaza, A. An accurate vegetation and non-vegetation differentiation approach based on land cover classification. Remote Sens. 2020, 12, 3880. [Google Scholar] [CrossRef]
- Zhao, Y. The Segmentation of Plants on RGB Images with Index Based Color Analysis. In Proceedings of the 2021 5th International Conference on Robotics and Automation Sciences (ICRAS), Wuhan, China, 11–13 June 2021; pp. 221–225. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Ghulam, A.; Sidike, P.; Hartling, S.; Maimaitiyiming, M.; Peterson, K.; Shavers, E.; Fishman, J.; Peterson, J.; Kadam, S. Unmanned Aerial System (UAS)-based phenotyping of soybean using multi-sensor data fusion and extreme learning machine. ISPRS J. Photogramm. Remote Sens. 2017, 134, 43–58. [Google Scholar] [CrossRef]
- Berger, K.; Machwitz, M.; Kycko, M.; Kefauver, S.C.; Van Wittenberghe, S.; Gerhards, M.; Verrelst, J.; Atzberger, C.; Van der Tol, C.; Damm, A. Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain: A review. Remote Sens. Environ. 2022, 280, 113198. [Google Scholar] [CrossRef]
- Liew, O.W.; Chong, P.C.J.; Li, B.; Asundi, A.K. Signature optical cues: Emerging technologies for monitoring plant health. Sensors 2008, 8, 3205–3239. [Google Scholar] [CrossRef]
- Li, X.; Zhu, B.; Li, S.; Liu, L.; Song, K.; Liu, J. A Comprehensive Review of Crop Chlorophyll Mapping Using Remote Sensing Approaches: Achievements, Limitations, and Future Perspectives. Sensors 2025, 25, 2345. [Google Scholar] [CrossRef]
- Gracia-Romero, A.; Kefauver, S.C.; Vergara-Díaz, O.; Zaman-Allah, M.A.; Prasanna, B.M.; Cairns, J.E.; Araus, J.L. Comparative Performance of Ground vs. Aerially Assessed RGB and Multispectral Indices for Early-Growth Evaluation of Maize Performance under Phosphorus Fertilization. Front. Plant Sci. 2017, 8, 2004. [Google Scholar] [CrossRef]
- Wan, L.; Cen, H.; Zhu, J.; Zhang, J.; Zhu, Y.; Sun, D.; Du, X.; Zhai, L.; Weng, H.; Li, Y. Grain yield prediction of rice using multi-temporal UAV-based RGB and multispectral images and model transfer–a case study of small farmlands in the South of China. Agric. For. Meteorol. 2020, 291, 108096. [Google Scholar] [CrossRef]
- Wang, Y.; Braghiere, R.K.; Longo, M.; Norton, A.J.; Köhler, P.; Doughty, R.; Yin, Y.; Bloom, A.A.; Frankenberg, C. Modeling Global Vegetation Gross Primary Productivity, Transpiration and Hyperspectral Canopy Radiative Transfer Simultaneously Using a Next Generation Land Surface Model—CliMA Land. J. Adv. Model. Earth Syst. 2023, 15, e2021MS002964. [Google Scholar] [CrossRef]
- Zhou, J.; Lu, X.; Yang, R.; Chen, H.; Wang, Y.; Zhang, Y.; Huang, J.; Liu, F. Developing novel rice yield index using UAV remote sensing imagery fusion technology. Drones 2022, 6, 151. [Google Scholar] [CrossRef]
- Wei, L.; Yang, H.; Niu, Y.; Zhang, Y.; Xu, L.; Chai, X. Wheat biomass, yield, and straw-grain ratio estimation from multi-temporal UAV-based RGB and multispectral images. Biosyst. Eng. 2023, 234, 187–205. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, J.; Sudduth, K.A.; Kitchen, N.R. Estimation of maize yield and effects of variable-rate nitrogen application using UAV-based RGB imagery. Biosyst. Eng. 2020, 189, 24–35. [Google Scholar] [CrossRef]
- Ochiai, S.; Kamada, E.; Sugiura, R. Comparative analysis of RGB and multispectral UAV image data for leaf area index estimation of sweet potato. Smart Agric. Technol. 2024, 9, 100579. [Google Scholar] [CrossRef]
- Bai, Y.; Shi, L.; Zha, Y.; Liu, S.; Nie, C.; Xu, H.; Yang, H.; Shao, M.; Yu, X.; Cheng, M.; et al. Estimating leaf age of maize seedlings using UAV-based RGB and multispectral images. Comput. Electron. Agric. 2023, 215, 108349. [Google Scholar] [CrossRef]
- Zhang, P.; Lu, B.; Ge, J.; Wang, X.; Yang, Y.; Shang, J.; La, Z.; Zang, H.; Zeng, Z. Using UAV-based multispectral and RGB imagery to monitor above-ground biomass of oat-based diversified cropping. Eur. J. Agron. 2025, 162, 127422. [Google Scholar] [CrossRef]
Color Index | Formula | Reference |
---|---|---|
R | R | / |
G | G | / |
B | B | / |
NRI | R/(R + G + B) | [28] |
NGI | G/(R + G + B) | [28] |
NBI | B/(R + G + B) | [28] |
G/R | G/R | [28] |
G/B | G/B | [28] |
R/B | R/B | [28] |
GRRI | R/G | [29] |
VIGreen | (G − R)/(G + R) | [29] |
VIB,R | (B − R)/(B + R) | [29] |
VIG | 2G × (R − B)/(R + B) | [29] |
VIR | 2R × (G − B)/(G + B) | [29] |
VARI | (NGI − NRI)/(NGI + NRI − NBI) | [30] |
GLI | (2 × NGI ‒ NBI − NRI)/(2 × NGI + NBI + NRI) | [30] |
GLI_ORI | (2 × NGI − NBI − NRI)/(−NBI − NRI) | [30] |
MGRVI | (NGI2 − NRI2)/(NGI2 + NRI2) | [29] |
RGBVI | (NGI2 − NBI × NRI)/(NGI2 + NBI × NRI) | [29] |
NDYI | (NGI − NBI)/(NGI + NBI) | [29] |
CIVE | 0.441 × NRI − 0.811 × NGI + 0.385 × NBI + 18.78745 | [29] |
VEG | NGI/(NRI0.667 × NBI(1−0.667)) | [29] |
IPCA | 0.994 × |NRI − NBI| + 0.961 × |NGI − NBI| + 0.914 × |NGI − NRI| | [29] |
H | Arccos (0.5 × [(R − G) + (R − B)]/[(R − G)2 + (R − B)(G − B)]0.5) | [31] |
S | 1 − (3 × [min (R,G,B)])/(R + G + B) | [31] |
I | (R + G + B)/3 | [31] |
L* | 116 × (0.299R + 0.587G + 0.114B)1/3 ‒ 16 | [29] |
a* | 500 × [1.006 × (0.607R + 0.174G + 0.201B)1/3 − (0.299R + 0.587G + 0.114B)1/3] | [29] |
b* | 200 × [(0.299R + 0.587G + 0.114B)1/3 − 0.846 × (0.066G + 1.117B)1/3] | [29] |
Vegetation Index | Formula | Reference |
---|---|---|
Green | R560 | / |
Red | R650 | / |
RedEdge | R730 | / |
NIR | R860 | / |
NDVI | (R860 − R650)/(R860 + R650) | [32] |
GNDVI | (R860 − R560)/(R860 + R560) | [32] |
CIgreen | R860/R560 − 1 | [33] |
CIre | R860/R730 − 1 | [33] |
NDRE | (R860 − R730)/(R86 + R730) | [34] |
OSAVI | (R860 − R650)/(R860 + R650 + 0.16) | [35] |
SAVI | (1 + L) × (R860 − R650)/(R860 + R650 + L) | [36] |
RVI | R860/R650 | [37] |
DVI | R860 − R650 | [37] |
MCARI | [(R730 − R650) − 0.2 × (R730 − R560)](R730/R650) | [38] |
TVI | 0.5 × (120 × (R860 − R560) – 200 × (R650 − R560)) | [39] |
MSAVI | (2 × R860 + 1 – sqrt ((2 × R860 + 1)2 − 8 × (R860 − R650)))/2 | [40] |
NRI | (R560 − R650)/(R560 + R650) | [41] |
MTCI | (R860 − R730)/(R730 − R650) | [42] |
Number of Features | Source Dataset | Model | Calibration Set | Prediction Set | ||
---|---|---|---|---|---|---|
R2c | RMSEc | R2p | RMSEp | |||
5 | GreenPix | PLSR | 0.764 | 72.782 | 0.747 | 75.314 |
SVR | 0.764 | 72.765 | 0.760 | 73.458 | ||
MLR | 0.764 | 72.782 | 0.747 | 75.314 | ||
AllPix | PLSR | 0.620 | 92.455 | 0.595 | 95.385 | |
SVR | 0.644 | 89.510 | 0.626 | 91.637 | ||
MLR | 0.620 | 92.455 | 0.595 | 95.385 | ||
10 | GreenPix | PLSR | 0.775 | 71.049 | 0.734 | 77.305 |
SVR | 0.781 | 70.173 | 0.765 | 72.556 | ||
MLR | 0.777 | 70.803 | 0.739 | 76.563 | ||
AllPix | PLSR | 0.662 | 87.127 | 0.631 | 91.047 | |
SVR | 0.715 | 79.992 | 0.673 | 85.605 | ||
MLR | 0.680 | 84.791 | 0.651 | 88.543 | ||
15 | GreenPix | PLSR | 0.775 | 71.068 | 0.734 | 77.229 |
SVR | 0.781 | 70.178 | 0.761 | 73.232 | ||
MLR | 0.783 | 69.886 | 0.742 | 76.154 | ||
AllPix | PLSR | 0.664 | 86.918 | 0.635 | 90.543 | |
SVR | 0.713 | 80.349 | 0.679 | 84.813 | ||
MLR | 0.690 | 83.464 | 0.664 | 86.826 | ||
20 | GreenPix | PLSR | 0.776 | 70.964 | 0.736 | 76.982 |
SVR | 0.783 | 69.760 | 0.761 | 73.278 | ||
MLR | 0.784 | 69.623 | 0.747 | 75.365 | ||
AllPix | PLSR | 0.662 | 87.099 | 0.631 | 91.019 | |
SVR | 0.713 | 80.279 | 0.681 | 84.552 | ||
MLR | 0.697 | 82.577 | 0.658 | 87.667 | ||
25 | GreenPix | PLSR | 0.776 | 70.929 | 0.736 | 76.993 |
SVR | 0.783 | 69.891 | 0.761 | 73.246 | ||
MLR | 0.787 | 69.253 | 0.742 | 76.138 | ||
AllPix | PLSR | 0.663 | 87.089 | 0.631 | 90.988 | |
SVR | 0.712 | 80.389 | 0.683 | 84.334 | ||
MLR | 0.701 | 81.998 | 0.541 | 101.514 | ||
All | GreenPix | PLSR | 0.776 | 71.017 | 0.739 | 76.502 |
SVR | 0.783 | 69.898 | 0.763 | 72.991 | ||
MLR | 0.788 | 68.960 | 0.743 | 76.016 | ||
AllPix | PLSR | 0.662 | 87.208 | 0.630 | 91.065 | |
SVR | 0.711 | 80.604 | 0.683 | 84.383 | ||
MLR | 0.704 | 81.526 | 0.591 | 95.861 |
Number of Features | Source Dataset | Model | Calibration Set | Prediction Set | ||
---|---|---|---|---|---|---|
R2c | RMSEc | R2p | RMSEp | |||
3 | GreenPix | PLSR | 0.840 | 60.566 | 0.838 | 60.826 |
SVR | 0.851 | 58.121 | 0.832 | 62.113 | ||
MLR | 0.840 | 60.566 | 0.838 | 60.826 | ||
AllPix | PLSR | 0.794 | 70.642 | 0.795 | 70.098 | |
SVR | 0.809 | 67.345 | 0.797 | 69.473 | ||
MLR | 0.794 | 70.642 | 0.795 | 70.098 | ||
6 | GreenPix | PLSR | 0.861 | 55.768 | 0.851 | 58.014 |
SVR | 0.862 | 55.605 | 0.845 | 59.264 | ||
MLR | 0.862 | 55.760 | 0.851 | 57.934 | ||
AllPix | PLSR | 0.819 | 65.191 | 0.820 | 64.617 | |
SVR | 0.811 | 66.865 | 0.800 | 68.983 | ||
MLR | 0.819 | 65.191 | 0.820 | 64.617 | ||
9 | GreenPix | PLSR | 0.854 | 57.407 | 0.846 | 58.967 |
SVR | 0.870 | 53.929 | 0.858 | 56.374 | ||
MLR | 0.862 | 55.551 | 0.852 | 57.646 | ||
AllPix | PLSR | 0.820 | 64.954 | 0.825 | 63.566 | |
SVR | 0.830 | 62.854 | 0.826 | 63.394 | ||
MLR | 0.825 | 63.876 | 0.824 | 63.672 | ||
12 | GreenPix | PLSR | 0.862 | 55.577 | 0.855 | 57.061 |
SVR | 0.873 | 53.275 | 0.862 | 55.534 | ||
MLR | 0.866 | 54.677 | 0.862 | 55.462 | ||
AllPix | PLSR | 0.825 | 63.839 | 0.828 | 62.829 | |
SVR | 0.831 | 62.427 | 0.827 | 63.174 | ||
MLR | 0.828 | 63.191 | 0.829 | 62.738 | ||
15 | GreenPix | PLSR | 0.862 | 55.695 | 0.855 | 57.057 |
SVR | 0.868 | 53.953 | 0.866 | 54.622 | ||
MLR | 0.870 | 53.882 | 0.866 | 54.713 | ||
AllPix | PLSR | 0.825 | 63.807 | 0.827 | 63.094 | |
SVR | 0.830 | 62.840 | 0.828 | 62.846 | ||
MLR | 0.829 | 62.998 | 0.830 | 62.511 | ||
All | GreenPix | PLSR | 0.864 | 55.142 | 0.857 | 56.706 |
SVR | 0.877 | 52.382 | 0.866 | 54.597 | ||
MLR | 0.870 | 53.833 | 0.864 | 54.787 | ||
AllPix | PLSR | 0.824 | 64.018 | 0.820 | 63.593 | |
SVR | 0.831 | 62.524 | 0.835 | 63.449 | ||
MLR | 0.829 | 62.898 | 0.821 | 62.216 |
Number of Add Color Features | Number of All Features | Model | Calibration Set | Prediction Set | ||
---|---|---|---|---|---|---|
R2c | RMSEc | R2p | RMSEp | |||
0 | 18 | PLSR | 0.824 | 64.018 | 0.825 | 63.593 |
SVR | 0.831 | 62.524 | 0.835 | 63.449 | ||
MLR | 0.829 | 62.898 | 0.821 | 62.216 | ||
1 | 19 | PLSR | 0.832 | 62.384 | 0.826 | 63.429 |
SVR | 0.843 | 59.855 | 0.836 | 61.207 | ||
MLR | 0.838 | 61.021 | 0.830 | 62.553 | ||
2 | 20 | PLSR | 0.832 | 62.287 | 0.827 | 63.040 |
SVR | 0.844 | 59.724 | 0.835 | 61.361 | ||
MLR | 0.839 | 60.801 | 0.832 | 62.032 | ||
3 | 21 | PLSR | 0.833 | 62.067 | 0.829 | 62.696 |
SVR | 0.844 | 59.668 | 0.834 | 61.502 | ||
MLR | 0.839 | 60.774 | 0.831 | 62.250 | ||
4 | 22 | PLSR | 0.834 | 61.925 | 0.829 | 62.660 |
SVR | 0.844 | 59.630 | 0.834 | 61.688 | ||
MLR | 0.839 | 60.774 | 0.831 | 62.246 | ||
5 | 23 | PLSR | 0.834 | 61.842 | 0.829 | 62.657 |
SVR | 0.844 | 59.634 | 0.832 | 61.934 | ||
MLR | 0.839 | 60.694 | 0.832 | 62.111 | ||
6 | 24 | PLSR | 0.834 | 61.813 | 0.829 | 62.690 |
SVR | 0.844 | 59.664 | 0.832 | 62.067 | ||
MLR | 0.839 | 60.688 | 0.832 | 61.951 | ||
7 | 25 | PLSR | 0.842 | 60.132 | 0.838 | 60.748 |
SVR | 0.847 | 58.969 | 0.837 | 61.020 | ||
MLR | 0.854 | 57.447 | 0.847 | 58.893 | ||
8 | 26 | PLSR | 0.844 | 59.574 | 0.844 | 59.429 |
SVR | 0.855 | 57.214 | 0.845 | 59.179 | ||
MLR | 0.854 | 57.424 | 0.847 | 58.869 | ||
9 | 27 | PLSR | 0.846 | 59.111 | 0.848 | 58.514 |
SVR | 0.856 | 56.888 | 0.846 | 59.057 | ||
MLR | 0.855 | 57.312 | 0.849 | 58.376 | ||
10 | 28 | PLSR | 0.846 | 59.210 | 0.848 | 58.631 |
SVR | 0.857 | 56.856 | 0.845 | 59.177 | ||
MLR | 0.855 | 57.104 | 0.850 | 58.096 |
Number of Add Color Features | Number of All Features | Model | Calibration Set | Prediction Set | ||
---|---|---|---|---|---|---|
R2c | RMSEc | R2p | RMSEp | |||
0 | 18 | PLSR | 0.864 | 55.142 | 0.857 | 56.706 |
SVR | 0.877 | 52.382 | 0.866 | 54.597 | ||
MLR | 0.870 | 53.833 | 0.864 | 54.787 | ||
1 | 19 | PLSR | 0.872 | 53.437 | 0.860 | 55.916 |
SVR | 0.878 | 52.178 | 0.870 | 53.771 | ||
MLR | 0.879 | 51.923 | 0.871 | 53.649 | ||
2 | 20 | PLSR | 0.872 | 53.353 | 0.860 | 56.018 |
SVR | 0.877 | 52.236 | 0.869 | 54.024 | ||
MLR | 0.880 | 51.629 | 0.867 | 54.580 | ||
3 | 21 | PLSR | 0.873 | 53.303 | 0.860 | 56.083 |
SVR | 0.877 | 52.383 | 0.869 | 54.160 | ||
MLR | 0.880 | 51.553 | 0.869 | 54.151 | ||
4 | 22 | PLSR | 0.873 | 53.246 | 0.859 | 56.188 |
SVR | 0.876 | 52.473 | 0.868 | 54.287 | ||
MLR | 0.881 | 51.539 | 0.869 | 54.093 | ||
5 | 23 | PLSR | 0.874 | 52.957 | 0.859 | 56.191 |
SVR | 0.879 | 51.934 | 0.871 | 53.695 | ||
MLR | 0.883 | 51.107 | 0.870 | 53.775 | ||
6 | 24 | PLSR | 0.874 | 52.992 | 0.859 | 56.167 |
SVR | 0.883 | 50.961 | 0.875 | 52.707 | ||
MLR | 0.885 | 50.626 | 0.872 | 53.432 | ||
7 | 25 | PLSR | 0.871 | 53.644 | 0.861 | 55.753 |
SVR | 0.884 | 50.685 | 0.878 | 52.187 | ||
MLR | 0.885 | 50.529 | 0.872 | 53.304 | ||
8 | 26 | PLSR | 0.870 | 53.890 | 0.851 | 57.859 |
SVR | 0.886 | 50.375 | 0.878 | 52.070 | ||
MLR | 0.886 | 50.270 | 0.872 | 53.370 | ||
9 | 27 | PLSR | 0.871 | 53.749 | 0.855 | 57.036 |
SVR | 0.886 | 50.313 | 0.878 | 52.160 | ||
MLR | 0.887 | 50.213 | 0.872 | 53.301 | ||
10 | 28 | PLSR | 0.869 | 54.155 | 0.855 | 57.149 |
SVR | 0.886 | 50.294 | 0.878 | 52.150 | ||
MLR | 0.887 | 50.206 | 0.872 | 53.298 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Ma, J.; Lyu, M.; Shen, J.; Ying, J.; Ali, S.; Ali, B.; Lan, W.; Hu, Y.; Liu, F.; et al. Monitoring Chlorophyll Content of Brassica napus L. Based on UAV Multispectral and RGB Feature Fusion. Agronomy 2025, 15, 1900. https://doi.org/10.3390/agronomy15081900
Sun Y, Ma J, Lyu M, Shen J, Ying J, Ali S, Ali B, Lan W, Hu Y, Liu F, et al. Monitoring Chlorophyll Content of Brassica napus L. Based on UAV Multispectral and RGB Feature Fusion. Agronomy. 2025; 15(8):1900. https://doi.org/10.3390/agronomy15081900
Chicago/Turabian StyleSun, Yongqi, Jiali Ma, Mengting Lyu, Jianxun Shen, Jianping Ying, Skhawat Ali, Basharat Ali, Wenqiang Lan, Yiwa Hu, Fei Liu, and et al. 2025. "Monitoring Chlorophyll Content of Brassica napus L. Based on UAV Multispectral and RGB Feature Fusion" Agronomy 15, no. 8: 1900. https://doi.org/10.3390/agronomy15081900
APA StyleSun, Y., Ma, J., Lyu, M., Shen, J., Ying, J., Ali, S., Ali, B., Lan, W., Hu, Y., Liu, F., Zhou, W., & Song, W. (2025). Monitoring Chlorophyll Content of Brassica napus L. Based on UAV Multispectral and RGB Feature Fusion. Agronomy, 15(8), 1900. https://doi.org/10.3390/agronomy15081900