Growing Processing Tomatoes in the Po Valley Is More Sustainable Under Regulated Deficit Irrigation
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Trial Design and Crop Management
2.2. Irrigation Strategies
2.3. Plant Growth Monitoring
- Modified soil-adjusted vegetation index [42]:
- Normalized difference vegetation index [43]:
- Optimized soil-adjusted vegetation index [44]:
- Renormalized difference vegetative index [45]:
- Soil-adjusted vegetation index [46]:
- Soil-adjusted vegetation index 2 [47]:
- Structure intensive pigment index 2 [48]:
- Transformed soil-adjusted vegetation index [49]:
2.4. Fruit Yield, Defects, and Sustainability Indicators
2.5. Technological Traits
2.6. Statistical Analysis
3. Results
3.1. Weather Conditions
3.2. Irrigation Management and Soil Water Content
3.3. Plant Growth
3.4. Fruit Yield, Defects, and Water Productivity
3.5. Technological Traits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GDD | Growing degree days; |
GLMM | Generalized linear mixed model; |
IRR | Full irrigation; |
LMM | Linear mixed model; |
MSAVI | Modified soil-adjusted vegetation index; |
MY | Marketable yield; |
NDVI | Normalized difference vegetation index; |
OSAVI | Optimized soil-adjusted vegetation index; |
RDI | Regulated deficit irrigation; |
RDVI | Renormalized difference vegetative index; |
SAR | Soluble solids-to-titratable acidity ratio; |
SAVI | Soil-adjusted vegetation index; |
SAVI2 | Soil-adjusted vegetation index 2; |
SIPI2 | Structure intensive pigment index 2; |
SSC | Soluble solids content; |
SWC | Soil water content; |
TSAVI | Transformed soil-adjusted vegetation index; |
TY | Total yield; |
WPI | Irrigation water productivity; |
YQ | Yield quality. |
References
- WPTC Crop Update. Available online: https://www.wptc.to/ (accessed on 20 February 2025).
- Italian National Institute of Statistics ISTAT Data. Available online: https://esploradati.istat.it/databrowser/ (accessed on 10 February 2024).
- Podsedek, A.; Sosnowska, D.; Anders, B. Antioxidative Capacity of Tomato Products. Eur. Food Res. Technol. 2003, 217, 296–300. [Google Scholar] [CrossRef]
- Balali, A.; Fathzadeh, K.; Askari, G.; Sadeghi, O.; El Ghoch, M.; Devarajan, S.; Erdman, J. Dietary Intake of Tomato and Lycopene, Blood Levels of Lycopene, and Risk of Total and Specific Cancers in Adults: A Systematic Review and Dose–Response Meta-Analysis of Prospective Cohort Studies. Front. Nutr. 2025, 12, 1516048. [Google Scholar] [CrossRef]
- Collins, E.J.; Bowyer, C.; Tsouza, A.; Chopra, M. Tomatoes: An Extensive Review of the Associated Health Impacts of Tomatoes and Factors That Can Affect Their Cultivation. Biology 2022, 11, 239. [Google Scholar] [CrossRef]
- Rinaldi, M.; Garofalo, P.; Rubino, P.; Steduto, P. Processing Tomatoes under Different Irrigation Regimes in Southern Italy: Agronomic and Economic Assessments in a Simulation Case Study. Ital. J. Agrometeorol. 2011, 3, 39–56. [Google Scholar]
- Cammarano, D.; Jamshidi, S.; Hoogenboom, G.; Ruane, A.C.; Niyogi, D.; Ronga, D. Processing Tomato Production is Expected to Decrease by 2050 Due to the Projected Increase in Temperature. Nat. Food 2022, 3, 437–444. [Google Scholar] [CrossRef]
- Monteleone, B.; Borzí, I. Drought in the Po Valley: Identification, Impacts and Strategies to Manage the Events. Water 2024, 16, 1187. [Google Scholar] [CrossRef]
- Kuzma, S.; Bierkens, M.F.P.; Lakshman, S.; Luo, T.; Saccoccia, L.; Sutanudjaja, E.H.; Van Beek, R. Aqueduct 4.0: Updated Decision-Relevant Global Water Risk Indicators; World Resources Institute: Washington, DC, USA, 2023. [Google Scholar] [CrossRef]
- FAO. AQUASTAT Dissemination System. Available online: https://data.apps.fao.org/aquastat/?lang=en (accessed on 12 February 2025).
- Somefun, O.T.; Masasi, B.; Adelabu, A.O. Irrigation and Water Management of Romatoes—A Review. J. Sustain. Agric. Environ. 2024, 3, e70020. [Google Scholar] [CrossRef]
- Pedersen, S.M.; Boesen, M.V.; Ørum, J.E. Institutional and Structural Barriers for Implementing On-Farm Water Saving Irrigation Systems. Food Econ. 2013, 9, 11–26. [Google Scholar] [CrossRef]
- Staccione, A.; Broccoli, D.; Mazzoli, P.; Bagli, S.; Mysiak, J. Natural Water Retention Ponds for Water Management in Agriculture: A Potential Scenario in Northern Italy. J. Environ. Manag. 2021, 292, 112849. [Google Scholar] [CrossRef]
- Munaretto, S.; Battilani, A. Irrigation Water Governance in Practice: The Case of the Canale Emiliano Romagnolo District, Italy. Water Policy 2014, 16, 578–594. [Google Scholar] [CrossRef]
- Abduwaiti, A.; Liu, X.; Yan, C.; Xue, Y.; Jin, T.; Wu, H.; He, P.; Bao, Z.; Liu, Q. Testing Biodegradable Films as Alternatives to Plastic-Film Mulching for Enhancing the Yield and Economic Benefits of Processed Tomato in Xinjiang Region. Sustainability 2021, 13, 3093. [Google Scholar] [CrossRef]
- Dreni, M. The Use of Biodegradable Mulching on Industry Tomatoes in Northern Italy. Acta Hortic. 2019, 1252, 57–68. [Google Scholar] [CrossRef]
- Burato, A.; Fichera, D.; Cornali, S.; Reggiani, R.; Ronga, D. Soil-Biodegradable Mulching Films Improve Yield, Water Productivity, and Profitability in Organic Processing Tomato. Ital. J. Agron. 2025, 20, 100035. [Google Scholar] [CrossRef]
- Kasirajan, S.; Ngouajio, M. Polyethylene and Biodegradable Mulches for Agricultural Applications: A Review. Agron. Sustain. Dev. 2012, 32, 501–529. [Google Scholar] [CrossRef]
- Jensen, C.R.; Battilani, A.; Plauborg, F.; Psarras, G.; Chartzoulakis, K.; Janowiak, F.; Stikic, R.; Jovanovic, Z.; Li, G.; Qi, X.; et al. Deficit Irrigation Based on Drought Tolerance and Root Signalling in Potatoes and Tomatoes. Agric. Water Manag. 2010, 98, 403–413. [Google Scholar] [CrossRef]
- Iqbal, R.; Raza, M.A.S.; Toleikiene, M.; Ayaz, M.; Hashemi, F.; Habib-ur-Rahman, M.; Zaheer, M.S.; Ahmad, S.; Riaz, U.; Ali, M.; et al. Partial Root-Zone Drying (PRD), Its Effects and Agricultural Significance: A Review. Bull. Natl. Res. Cent. 2020, 44, 159. [Google Scholar] [CrossRef]
- Katerji, N.; Mastrorilli, M.; Rana, G. Water Use Efficiency of Crops Cultivated in the Mediterranean Region: Review and Analysis. Eur. J. Agron. 2008, 28, 493–507. [Google Scholar] [CrossRef]
- Kirda, C. Deficit Irrigation Scheduling Based on Plant Growth Stages Showing Water Stress Tolerance. In FAO Corporate Document Repository; Food and Agriculture Organization of the United Nations: Rome, Italy, 2002; Volume 22, pp. 3–10. [Google Scholar]
- Burato, A.; Fusco, G.M.; Pentangelo, A.; Nicastro, R.; Modugno, A.F.; Scotto di Covella, F.; Ronga, D.; Carillo, P.; Campi, P.; Parisi, M. Regulated Deficit Irrigation to Boost Processing Tomato Sustainability and Fruit Quality. Sustainability 2024, 16, 3798. [Google Scholar] [CrossRef]
- Patanè, C.; Cosentino, S.L. Effects of Soil Water Deficit on Yield and Quality of Processing Tomato under a Mediterranean Climate. Agric. Water Manag. 2010, 97, 131–138. [Google Scholar] [CrossRef]
- Valcárcel, M.; Lahoz, I.; Campillo, C.; Martí, R.; Leiva-Brondo, M.; Roselló, S.; Cebolla-Cornejo, J. Controlled Deficit Irrigation as a Water-Saving Strategy for Processing Tomato. Sci. Hortic. 2020, 261, 108972. [Google Scholar] [CrossRef]
- Lovelli, S.; Potenza, G.; Castronuovo, D.; Perniola, M.; Candido, V. Yield, Quality and Water Use Efficiency of Processing Tomatoes Produced under Different Irrigation Regimes in Mediterranean Environment. Ital. J. Agron. 2017, 12, 17–24. [Google Scholar] [CrossRef]
- Favati, F.; Lovelli, S.; Galgano, F.; Miccolis, V.; Di Tommaso, T.; Candido, V. Processing Tomato Quality as Affected by Irrigation Scheduling. Sci. Hortic. 2009, 122, 562–571. [Google Scholar] [CrossRef]
- Campillo, C.; Gordillo, J.; Santiago, L.M.; Cordoba, A.; Martinez, L.; Prieto, M.H.; Fortes, R. Development of an Efficient Water Management System in Commercial Processing Tomato Farms. Acta Hortic. 2017, 1159, 23–30. [Google Scholar] [CrossRef]
- Xu, Y.; Fu, X.; Tran, P.; Patel, M.K.; Xu, Y.; Fu, X. Reprogramming of Plant Central Metabolism in Response to Abiotic Stresses: A Metabolomics View. Int. J. Mol. Sci. 2022, 23, 5716. [Google Scholar] [CrossRef]
- Montesano, F.F.; Serio, F.; Mininni, C.; Signore, A.; Parente, A.; Santamaria, P. Tensiometer-Based Irrigation Management of Subirrigated Soilless Tomato: Effects of Substrate Matric Potential Control on Crop Performance. Front. Plant Sci. 2015, 6, 151462. [Google Scholar] [CrossRef]
- El Chami, A.; Cortignani, R.; Dell’Unto, D.; Mariotti, R.; Santelli, P.; Ruggeri, R.; Colla, G.; Cardarelli, M. Optimization of Applied Irrigation Water for High Marketable Yield, Fruit Quality and Economic Benefits of Processing Tomato Using a Low-Cost Wireless Sensor. Horticulturae 2023, 9, 390. [Google Scholar] [CrossRef]
- Cesco, S.; Sambo, P.; Borin, M.; Basso, B.; Orzes, G.; Mazzetto, F. Smart Agriculture and Digital Twins: Applications and Challenges in a Vision of Sustainability. Eur. J. Agron. 2023, 146, 126809. [Google Scholar] [CrossRef]
- Francaviglia, R.; Di Bene, C. Deficit Drip Irrigation in Processing Tomato Production in the Mediterranean Basin. A Data Analysis for Italy. Agriculture 2019, 9, 79. [Google Scholar] [CrossRef]
- Burato, A.; Fusco, G.M.; Pentangelo, A.; Ronga, D.; Carillo, P.; Campi, P.; Parisi, M. Balancing Yield, Water Productivity, and Fruit Quality of Processing Tomatoes through the Combined Use of Biodegradable Mulch Film and Regulated Deficit Irrigation. Eur. J. Agron. 2025, 169, 127695. [Google Scholar] [CrossRef]
- Straffelini, E.; Tarolli, P. Climate Change-Induced Aridity Is Affecting Agriculture in Northeast Italy. Agric. Syst. 2023, 208, 103647. [Google Scholar] [CrossRef]
- Khapte, P.S.; Kumar, P.; Burman, U.; Kumar, P. Deficit Irrigation in Tomato: Agronomical and Physio-Biochemical Implications. Sci. Hortic. 2019, 248, 256–264. [Google Scholar] [CrossRef]
- USDA Soil Survey Staff. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; U.S. Government Printing Office: Washington, DC, USA, 1999; Volume 436.
- Zhou, G.; Wang, Q. A New Nonlinear Method for Calculating Growing Degree Days. Sci. Rep. 2018, 8, 10149. [Google Scholar] [CrossRef] [PubMed]
- Meier, U. Growth Stages of Mono- and Dicotyledonous Plants: BBCH Monograph; Julius Kühn-Institut (JKI): Quedlinburg, Germany, 2018. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper No. 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Planet Labs PBC. Planet Application Program Interface: In Space for Life on Earth; Planet: San Francisco, CA, USA, 2024. [Google Scholar]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified Soil Adjusted Vegetation Index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Scheel, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the 3rd Earth Resource Technology Satellite (ERTS), College Station, TX, USA, 10–14 December 1974; pp. 48–62. [Google Scholar]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of Soil-Adjusted Vegetation Indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Roujean, J.-L.; Breon, F.-M. Estimating PAR Absorbed by Vegetation from Bidirectional Reflectance Measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Major, D.J.; Baret, F.; Guyot, G. A Ratio Vegetation Index Adjusted for Soil Brightness. Int. J. Remote Sens. 1990, 11, 727–740. [Google Scholar] [CrossRef]
- Blackburn, G.A. Spectral Indices for Estimating Photosynthetic Pigment Concentrations: A Test Using Senescent Tree Leaves. Int. J. Remote Sens. 1998, 19, 657–675. [Google Scholar] [CrossRef]
- Baret, F.; Guyot, G.; Major, D.J. TSAVI: A Vegetation Index Which Minimizes Soil Brightness Effects on LAI and APAR Estimation. In Proceedings of the 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 10–14 July 1989; IEEE: Piscataway, NJ, USA, 1989; pp. 1355–1358. [Google Scholar]
- Marino, S.; Cocozza, C.; Tognetti, R.; Alvino, A. Use of Proximal Sensing and Vegetation Indexes to Detect the Inefficient Spatial Allocation of Drip Irrigation in a Spot Area of Tomato Field Crop. Precis. Agric. 2015, 16, 613–629. [Google Scholar] [CrossRef]
- Marino, S.; Alvino, A. Proximal Sensing and Vegetation Indices for Site-Specific Evaluation on an Irrigated Crop Tomato. Eur. J. Remote Sens. 2014, 47, 271–283. [Google Scholar] [CrossRef]
- Alordzinu, K.E.; Li, J.; Lan, Y.; Appiah, S.A.; Al Aasmi, A.; Wang, H.; Liao, J.; Sam-Amoah, L.K.; Qiao, S. Ground-Based Hyperspectral Remote Sensing for Estimating Water Stress in Tomato Growth in Sandy Loam and Silty Lolam Soils. Sensors 2021, 21, 5705. [Google Scholar] [CrossRef]
- Fusco, G.M.; Burato, A.; Pentangelo, A.; Cardarelli, M.; Nicastro, R.; Carillo, P.; Parisi, M. Can Microbial Consortium Applications Affect Yield and Quality of Conventionally Managed Processing Tomato? Plants 2023, 12, 14. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.E.; Alcon, F.; Diaz-Espejo, A.; Hernandez-Santana, V.; Cuevas, M.V. Water Use Indicators and Economic Analysis for On-Farm Irrigation Decision: A Case Study of a Super High-Density Olive Tree Orchard. Agric. Water Manag. 2020, 237, 106074. [Google Scholar] [CrossRef]
- Giuliani, M.M.; Gatta, G.; Cappelli, G.; Gagliardi, A.; Donatelli, M.; Fanchini, D.; De Nart, D.; Mongiano, G.; Bregaglio, S. Identifying the Most Promising Agronomic Adaptation Strategies for the Tomato Growing Systems in Southern Italy via Simulation Modeling. Eur. J. Agron. 2019, 111, 125937. [Google Scholar] [CrossRef]
- Parisi, M.; Burato, A.; Pentangelo, A.; Ronga, D. Towards the Optimal Mineral N Fertilization for Improving Peeled Tomato Quality Grown in Southern Italy. Horticulturae 2022, 8, 697. [Google Scholar] [CrossRef]
- Parisi, M.; Di Dato, F.; Ricci, S.; Mennella, G.; Cardi, T.; Tripodi, P. A Multi-Trait Characterization of the ‘Friariello’ Landrace: A Mediterranean Resource for Sweet Pepper Breeding. Plant Genet. Resour. 2017, 15, 165–176. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Zurich, E.; Bolker, B.M.; Walker, S.C. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Peterson, R.A. Finding Optimal Normalizing Transformations via BestNormalize. R J. 2021, 13, 310–329. [Google Scholar] [CrossRef]
- Patanè, C.; Tringali, S.; Sortino, O. Effects of Deficit Irrigation on Biomass, Yield, Water Productivity and Fruit Quality of Processing Tomato under Semi-Arid Mediterranean Climate Conditions. Sci. Hortic. 2011, 129, 590–596. [Google Scholar] [CrossRef]
- Marouelli, W.A.; Silva, W.L.C. Water Tension Thresholds for Processing Tomatoes under Drip Irrigation in Central Brazil. Irrig. Sci. 2007, 25, 411–418. [Google Scholar] [CrossRef]
- Zegbe, J.A.; Behboudian, M.H.; Clothier, B.E. Responses of “Petopride” Processing Tomato to Partial Rootzone Drying at Different Phenological Stages. Irrig. Sci. 2006, 24, 203–210. [Google Scholar] [CrossRef]
- Bertin, N.; Génard, M. Tomato Quality as Influenced by Preharvest Factors. Sci. Hortic. 2018, 233, 264–276. [Google Scholar] [CrossRef]
- Kuşçu, H.; Turhan, A.; Demir, A.O. The Response of Processing Tomato to Deficit Irrigation at Various Phenological Stages in a Sub-Humid Environment. Agric. Water Manag. 2014, 133, 92–103. [Google Scholar] [CrossRef]
- Guichard, S.; Gary, C.; Leonardi, C.; Bertin, N. Analysis of Growth and Water Relations of Tomato Fruits in Relation to Air Vapor Pressure Deficit and Plant Fruit Load. J. Plant Growth Regul. 2005, 24, 201–213. [Google Scholar] [CrossRef]
- Colla, G.; Casa, R.; Lo Cascio, B.; Saccardo, F.; Temperini, O.; Leoni, C. Responses of Processing Tomato to Water Regime and Fertilization in Central Italy. Acta Hortic. 1999, 487, 531–535. [Google Scholar] [CrossRef]
- Hagassou, D.; Francia, E.; Ronga, D.; Buti, M. Blossom End-Rot in Tomato (Solanum Lycopersicum L.): A Multi-Disciplinary Overview of Inducing Factors and Control Strategies. Sci. Hortic. 2019, 249, 49–58. [Google Scholar] [CrossRef]
- Kosterna, E. The Effect of Covering and Mulching on the Soil Temperature, Growth and Yield of Tomato. Folia Hortic. 2014, 26, 91–101. [Google Scholar] [CrossRef]
- Beckles, D.M. Factors Affecting the Postharvest Soluble Solids and Sugar Content of Tomato (Solanum lycopersicum L.) Fruit. Postharvest Biol. Technol. 2012, 63, 129–140. [Google Scholar] [CrossRef]
- Jones, H.G. Irrigation Scheduling: Advantages and Pitfalls of Plant-Based Methods. J. Exp. Bot. 2004, 55, 2427–2436. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Pastor, A.; Ruiz-Sánchez, M.C.; Domingo, R. Effects of Timing and Intensity of Deficit Irrigation on Vegetative and Fruit Growth of Apricot Trees. Agric. Water Manag. 2014, 134, 110–118. [Google Scholar] [CrossRef]
- Ronga, D.; Pentangelo, A.; Parisi, M. Optimizing N Fertilization to Improve Yield, Technological and Nutritional Quality of Tomato Grown in High Fertility Soil Conditions. Plants 2020, 9, 575. [Google Scholar] [CrossRef] [PubMed]
- Sapkota, A.; Haghverdi, A.; Avila, C.C.E.; Ying, S.C. Irrigation and Greenhouse Gas Emissions: A Review of Field-Based Studies. Soil. Syst. 2020, 4, 20. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, J.-H.; Chen, M.-X.; Zhu, F.-Y.; Song, T. Optimizing Water Conservation and Utilization with a Regulated Deficit Irrigation Strategy in Woody Crops: A Review. Agric. Water Manag. 2023, 289, 108523. [Google Scholar] [CrossRef]
- Foster, S.; Pulido-Bosch, A.; Vallejos, Á.; Molina, L.; Llop, A.; MacDonald, A.M. Impact of Irrigated Agriculture on Groundwater-Recharge Salinity: A Major Sustainability Concern in Semi-Arid Regions. Hydrogeol. J. 2018, 26, 2781–2791. [Google Scholar] [CrossRef]
- Griebler, C.; Avramov, M. Groundwater Ecosystem Services: A Review. Freshw. Sci. 2015, 34, 355–367. [Google Scholar] [CrossRef]
Parma (2019) | Piacenza (2022) | |
---|---|---|
GPS coordinates | 44°45′25.7″ N 10°22′11.7″ E | 45°04′26.4″ N 9°37′33.7″ E |
Elevation (m a.s.l.) | 68.7 | 51.0 |
Skeleton (%) | 0.0 ± 0.0 | 17.9 ± 1.0 |
Sand (g kg−1) | 180.0 ± 10.6 | 280.0 ± 16.9 |
Silt (g kg−1) | 510.0 ± 26.7 | 440.0 ± 19.1 |
Clay (g kg−1) | 310.0 ± 13.4 | 280.0 ± 14.7 |
Texture | Silty clay loam | Clay loam |
pH | 7.6 ± 0.3 | 7.8 ± 0.2 |
Total limestone (%) | 12.0 ± 0.5 | 13.0 ± 0.3 |
Active limestone (%) | 5.5 ± 0.2 | 6.8 ± 0.2 |
Organic carbon (%) | 1.8 ± 0.1 | 1.1 ± 0.0 |
Organic matter (%) | 3.1 ± 0.1 | 1.9 ± 0.0 |
Total N (‰) | 1.6 ± 0.0 | 1.4 ± 0.1 |
C/N ratio | 11.3 ± 0.5 | 7.9 ± 0.2 |
P2O5 (mg kg−1) | 54.1 ± 2.7 | 77.3 ± 3.6 |
K2O (mg kg−1) | 299.0 ± 4.2 | 363.0 ± 12.6 |
Field capacity (m3 m−3) | 0.35 | 0.37 |
Wilting point (m3 m−3) | 0.17 | 0.20 |
Site | Year | N | I in IRR (mm) | I in RDI (mm) | IRR Depth 1 (mm) | RDI Depth 1 (mm) | Rain (mm) | Total IRR Volume (mm) | Total RDI Volume (mm) | Turn 2 (d) |
---|---|---|---|---|---|---|---|---|---|---|
Parma | 2019 | 24 | 483 | 319 | 20 | 13 | 166 | 649 | 485 | 5 |
Piacenza | 2022 | 23 | 479 | 405 | 21 | 18 | 117 | 596 | 522 | 5 |
Yield Fraction | IRR | RDI | |
---|---|---|---|
Unripe | Green | 2.5 ± 0.9 a | 2.6 ± 0.9 a |
Color-breaking | 1.0 ± 0.4 a | 1.1 ± 0.6 a | |
Total | 3.5 ± 1.2 a | 3.6 ± 1.2 a | |
Ripe | 96.5 ± 1.2 a | 96.4 ± 1.2 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burato, A.; Campi, P.; Pentangelo, A.; Parisi, M. Growing Processing Tomatoes in the Po Valley Is More Sustainable Under Regulated Deficit Irrigation. Agronomy 2025, 15, 1805. https://doi.org/10.3390/agronomy15081805
Burato A, Campi P, Pentangelo A, Parisi M. Growing Processing Tomatoes in the Po Valley Is More Sustainable Under Regulated Deficit Irrigation. Agronomy. 2025; 15(8):1805. https://doi.org/10.3390/agronomy15081805
Chicago/Turabian StyleBurato, Andrea, Pasquale Campi, Alfonso Pentangelo, and Mario Parisi. 2025. "Growing Processing Tomatoes in the Po Valley Is More Sustainable Under Regulated Deficit Irrigation" Agronomy 15, no. 8: 1805. https://doi.org/10.3390/agronomy15081805
APA StyleBurato, A., Campi, P., Pentangelo, A., & Parisi, M. (2025). Growing Processing Tomatoes in the Po Valley Is More Sustainable Under Regulated Deficit Irrigation. Agronomy, 15(8), 1805. https://doi.org/10.3390/agronomy15081805