Optimizing Cropping Systems Using Biochar for Wheat Production Across Contrasting Seasons in Ethiopian Highland Agroecology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Descriptions of Experimental Site
2.2. Land Preparation
2.3. Biochar Production
2.4. Field Experimentation
2.5. Plant Data Collection
2.6. Soil and Biochar Sampling and Characterization
2.7. Statistical Analysis
3. Results
3.1. Fundamental Characteristics of Soil and Biochar
3.2. Effects of Biochar, Fertilizer, and Irrigation on Wheat Growth Components
3.3. Effects of Biochar, Fertilizer, and Irrigation on Wheat Yield Components
3.4. Correlation Analysis Between Growth and Yield Components
3.5. Production Cost–Benefit Analysis
4. Discussion
4.1. Effects of Biochar, Fertilizer, and Irrigation on Wheat Growth Components
4.2. Effects of Biochar, Fertilizer, and Irrigation on Wheat Yield Components
4.3. Correlation Analysis Between Yield and Growth Components
4.4. Production Cost–Benefit Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Plant Height | Spike Length | Spikelet Number | Grain Number | Leaf Area | Leaf SPAD Value | Dry Biomass | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
70 | 90 | 110 | 70 | 90 | 110 | 70 | 90 | 110 | 130 | |||||
Days After Sowing (DAS) | ||||||||||||||
B | ⁎⁎⁎ | ⁎⁎⁎ | ⁎⁎⁎ | ⁎⁎⁎ | ⁎⁎⁎ | ⁎⁎⁎ | ⁎⁎⁎ | ⁎⁎⁎ | ⁎⁎⁎ | ⁎⁎⁎ | ⁎⁎⁎ | ⁎⁎⁎ | ⁎⁎⁎ | ⁎⁎⁎ |
F | ns | ⁎⁎ | ⁎⁎⁎ | ⁎⁎⁎ | ⁎⁎⁎ | ⁎⁎⁎ | ⁎⁎⁎ | ⁎⁎⁎ | ⁎⁎ | ⁎⁎⁎ | ⁎⁎⁎ | ⁎⁎⁎ | ⁎⁎⁎ | ⁎⁎⁎ |
I | ns | ns | ns | ns | ⁎⁎⁎ | ⁎⁎⁎ | ⁎⁎⁎ | ns | ns | ns | ⁎⁎⁎ | ⁎⁎⁎ | ns | ns |
B ⁎ F | ns | ns | ns | ⁎⁎ | ns | ns | ns | ⁎⁎ | ns | ⁎⁎ | ⁎⁎⁎ | ⁎⁎⁎ | ⁎⁎⁎ | ns |
B ⁎ I | ns | ns | ns | ns | ⁎⁎⁎ | ns | ⁎⁎⁎ | ns | ns | ns | ⁎⁎⁎ | ⁎⁎ | ns | ns |
F ⁎ I | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ⁎⁎ | ns | ns | ns |
B ⁎ F ⁎ I | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ⁎⁎ | ns | ns | ns |
References
- Singh, S.K.; Kumar, S.; Kashyap, P.L.; Sendhil, R.; Gupta, O.P. Wheat BT—Trajectory of 75 Years of Indian Agriculture After Independence; Ghosh, P.K., Das, A., Saxena, R., Banerjee, K., Kar, G., Vijay, D., Eds.; Springer Nature: Singapore, 2023; pp. 137–162. ISBN 978-981-19-7997-2. [Google Scholar]
- Tadesse, W.; Zegeye, H.; Debele, T.; Kassa, D.; Shiferaw, W.; Solomon, T.; Negash, T.; Geleta, N.; Bishaw, Z.; Assefa, S. Wheat Production and Breeding in Ethiopia: Retrospect and Prospects. Crop Breed. Genet. Genom. 2022, 4, e220003. [Google Scholar] [CrossRef]
- Haile, G.G. Irrigation in Ethiopia, a Review. J. Environ. Earth Sci. 2015, 5, 141–147. [Google Scholar]
- Asmamaw, D.K.; Janssens, P.; Dessie, M.; Tilahun, S.A.; Adgo, E.; Nyssen, J.; Walraevens, K.; Assaye, H.; Yenehun, A.; Nigate, F.; et al. Effect of Deficit Irrigation and Soil Fertility Management on Wheat Production and Water Productivity in the Upper Blue Nile Basin, Ethiopia. Agric. Water Manag. 2023, 277, 108077. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, L.; Shen, Q.; Yang, J.; Han, X.; Tian, F.; Wu, J. Effects of Water Stress on Photosynthesis, Yield, and Water Use Efficiency in Winter Wheat. Water 2020, 12, 2127. [Google Scholar] [CrossRef]
- Takala, B. Soil Acidity and Its Management Options in Western Ethiopia: Review. J. Environ. Earth Sci. 2019, 9, 2224–3216. [Google Scholar] [CrossRef]
- Eshete, D.G.; Sinshaw, B.G.; Legese, K.G. Critical Review on Improving Irrigation Water Use Efficiency: Advances, Challenges, and Opportunities in the Ethiopia Context. Water-Energy Nexus 2020, 3, 143–154. [Google Scholar] [CrossRef]
- Khan, M.A.; Basir, A.; Fahad, S.; Adnan, M.; Saleem, M.H.; Iqbal, A.; Amanullah; Al-Huqail, A.A.; Alosaimi, A.A.; Saud, S.; et al. Biochar Optimizes Wheat Quality, Yield, and Nitrogen Acquisition in Low Fertile Calcareous Soil Treated with Organic and Mineral Nitrogen Fertilizers. Front. Plant Sci. 2022, 13, 879788. [Google Scholar] [CrossRef]
- Ginebra, M.; Muñoz, C.; Calvelo-Pereira, R.; Doussoulin, M.; Zagal, E. Biochar Impacts on Soil Chemical Properties, Greenhouse Gas Emissions and Forage Productivity: A Field Experiment. Sci. Total Environ. 2022, 806, 150465. [Google Scholar] [CrossRef]
- Fentie, D.; Mihretie, F.A.; Kohira, Y.; Legesse, S.A.; Lewoyehu, M.; Sato, S. Enhancing Soil Environments and Wheat Production through Water Hyacinth Biochar under Deficit Irrigation in Ethiopian Acidic Silty Loam Soil. Soil Syst. 2024, 8, 72. [Google Scholar] [CrossRef]
- Gezahegn, A.; Selassie, G.Y.; Agegnehu, G.; Addisu, S.; Asargew Mihretie, F.; Kohira, Y.; Sato, S. Pyrolysis Temperature Changes the Physicochemical Characteristics of Water Hyacinth-Based Biochar as a Potential Soil Amendment. Biomass Convers. Biorefinery 2025, 15, 3737–3752. [Google Scholar] [CrossRef]
- Domingues, R.R.; Sánchez-Monedero, M.A.; Spokas, K.A.; Melo, L.C.A.; Trugilho, P.F.; Valenciano, M.N.; Silva, C.A. Enhancing Cation Exchange Capacity of Weathered Soils Using Biochar: Feedstock, Pyrolysis Conditions and Addition Rate. Agronomy 2020, 10, 824. [Google Scholar] [CrossRef]
- Ghorbani, M.; Amirahmadi, E. Biochar and Soil Contributions to Crop Lodging and Yield Performance—A Meta-Analysis. Plant Physiol. Biochem. 2024, 215, 109053. [Google Scholar] [CrossRef]
- Rehman, M.; Saleem, M.H.; Fahad, S.; Bashir, S.; Peng, D.; Deng, G.; Alamri, S.; Siddiqui, M.H.; Khan, S.M.; Shah, R.A.; et al. Effects of Rice Straw Biochar and Nitrogen Fertilizer on Ramie (Boehmeria nivea L.) Morpho-Physiological Traits, Copper Uptake and Post-Harvest Soil Characteristics, Grown in an Aged-Copper Contaminated Soil. J. Plant Nutr. 2021, 45, 11–24. [Google Scholar] [CrossRef]
- Jalal, F.; Khan, Z.H.; Imtiz, M.; Khan, M.A.; Said, F.; Hussain, S.; Shah, F.; Adnan, M. Biochar for Improving Crop Productivity and Soil Fertility. In Sustainable Agriculture Reviews 61: Biochar to Improve Crop Production and Decrease Plant Stress Under a Changing Climate; Fahad, S., Danish, S., Datta, R., Saud, S., Lichtfouse, E., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 75–98. ISBN 978-3-031-26983-7. [Google Scholar]
- Wondie, A.; Seid, A.; Molla, E.; Goshu, G.; Gkidan, W.; Shibabaw, A.; Genanew, M. Preliminary Assessment of Water Hyacinth (Eichornia crassipes) in Lake Tana. In Proceedings of the National Workshop (Biological Society of Ethiopia), Addis Ababa, Ethiopia; 2012. [Google Scholar]
- Baiamonte, G.; Minacapilli, M.; Crescimanno, G. Effects of Biochar on Irrigation Management and Water Use Efficiency for Three Different Crops in a Desert Sandy Soil. Sustainability 2020, 12, 7678. [Google Scholar] [CrossRef]
- Hou, J.; Zhang, J.; Liu, X.; Ma, Y.; Wei, Z.; Wan, H.; Liu, F. Effect of Biochar Addition and Reduced Irrigation Regimes on Growth, Physiology and Water Use Efficiency of Cotton Plants under Salt Stress. Ind. Crops Prod. 2023, 198, 116702. [Google Scholar] [CrossRef]
- Wang, H.; Shao, D.; Ji, B.; Gu, W.; Yao, M. Biochar Effects on Soil Properties, Water Movement and Irrigation Water Use Efficiency of Cultivated Land in Qinghai-Tibet Plateau. Sci. Total Environ. 2022, 829, 154520. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Feng, G.; Tewolde, H. Biochar Derived from Papermill Factories Improves Soil Physical and Hydraulic Properties in No-till Cotton Fields. Biochar 2023, 5, 35. [Google Scholar] [CrossRef]
- Ye, L.; Camps-Arbestain, M.; Shen, Q.; Lehmann, J.; Singh, B.; Sabir, M. Biochar Effects on Crop Yields with and without Fertilizer: A Meta-Analysis of Field Studies Using Separate Controls. Soil Use Manag. 2020, 36, 2–18. [Google Scholar] [CrossRef]
- Sun, Z.; Hu, Y.; Shi, L.; Li, G.; Pang, Z.; Liu, S.; Chen, Y.; Jia, B. Effects of Biochar on Soil Chemical Properties: A Global Meta-Analysis of Agricultural Soil. Plant Soil Environ. 2022, 68, 272–289. [Google Scholar] [CrossRef]
- Bornø, M.L.; Müller-Stöver, D.S.; Liu, F. Contrasting Effects of Biochar on Phosphorus Dynamics and Bioavailability in Different Soil Types. Sci. Total Environ. 2018, 627, 963–974. [Google Scholar] [CrossRef]
- Alkharabsheh, H.M.; Seleiman, M.F.; Battaglia, M.L.; Shami, A.; Jalal, R.S.; Alhammad, B.A.; Almutairi, K.F.; Al-Saif, A.M. Biochar and Its Broad Impacts in Soil Quality and Fertility, Nutrient Leaching and Crop Productivity: A Review. Agronomy 2021, 11, 993. [Google Scholar] [CrossRef]
- Weber, K.; Quicker, P. Properties of Biochar. Fuel 2018, 217, 240–261. [Google Scholar] [CrossRef]
- Bai, S.H.; Omidvar, N.; Gallart, M.; Kämper, W.; Tahmasbian, I.; Farrar, M.B.; Singh, K.; Zhou, G.; Muqadass, B.; Xu, C.Y.; et al. Combined Effects of Biochar and Fertilizer Applications on Yield: A Review and Meta-Analysis. Sci. Total Environ. 2022, 808, 152073. [Google Scholar] [CrossRef] [PubMed]
- Habtie, A.; Mezgebu, G.; Esubalew, S.; Bainesagn, W. Screening of Napier Grass (Pennisetum purpureum) Accessions Tolerant to Acid Soils in Some Areas of Ethiopia. Int. J. Sci. 2020, 4, 1–6. [Google Scholar]
- Alemayehu, M.; Jemberie, M. Optimum Rates of NPS Fertilizer Application for Economically Profitable Production of Potato Varieties at Koga Irrigation Scheme, Northwestern Ethiopia. Cogent Food Agric. 2018, 4, 1439663. [Google Scholar] [CrossRef]
- Alfadil, A.A.; Xia, J.; Shaghaleh, H.; Alhaj Hamoud, Y.; Ibrahim, J.N.; Hamad, A.A.A.; Fahad Rahim, S.; Sheteiwy, M.S.; Wu, T. Wheat Straw Biochar Application Improves the Morphological, Physiological, and Yield Attributes of Maize and the Physicochemical Properties of Soil under Deficit Irrigation and Salinity Stress. J. Plant Nutr. 2021, 44, 2399–2420. [Google Scholar] [CrossRef]
- Singh, M.; Saini, R.K.; Singh, S.; Sharma, S.P. Potential of Integrating Biochar and Deficit Irrigation Strategies for Sustaining Vegetable Production in Water-Limited Regions: A Review. HortScience 2019, 54, 1872–1878. [Google Scholar] [CrossRef]
- Faloye, O.T.; Alatise, M.O.; Ajayi, A.E.; Ewulo, B.S. Effects of Biochar and Inorganic Fertiliser Applications on Growth, Yield and Water Use Efficiency of Maize under Deficit Irrigation. Agric. Water Manag. 2019, 217, 165–178. [Google Scholar] [CrossRef]
- Cakmakcı, T.; Sahın, U. Yield, Physiological Responses and Irrigation Water Productivity of Capia Pepper (Capsicum annuum L.) at Deficit Irrigation and Different Biochar Levels. Gesunde Pflanz. 2023, 75, 317–327. [Google Scholar] [CrossRef]
- Ullah, N.; Ditta, A.; Khalid, A.; Mehmood, S.; Rizwan, M.S.; Ashraf, M.; Mubeen, F.; Imtiaz, M.; Iqbal, M.M. Integrated Effect of Algal Biochar and Plant Growth Promoting Rhizobacteria on Physiology and Growth of Maize Under Deficit Irrigations. J. Soil Sci. Plant Nutr. 2020, 20, 346–356. [Google Scholar] [CrossRef]
- Derebe, B.; Bitew, Y.; Asargew, F.; Chakelie, G. Optimizing Time and Split Application of Nitrogen Fertilizer to Harness Grain Yield and Quality of Bread Wheat (Triticum aestivum L.) in Northwestern Ethiopia. PLoS ONE 2022, 17, e0279193. [Google Scholar] [CrossRef]
- Deo, K.; Singh, A.; Mishra, S.R.; Singh, A.K.; Mishra, A.N. Water Requirement of Wheat Crop for Optimum Production Using CROPWAT Model. J. Med. Plants 2017, 5, 338–342. [Google Scholar]
- Tewabe, D. Determination of Crop Water Requirements and Irrigation Scheduling of Wheat Using Cropwat at Koga and Rib Irrigation Scheme, Ethiopia. Indian J. Ecol. 2022, 49, 363–371. [Google Scholar] [CrossRef]
- Desalegn, T.; Abera, D.; Indris, S.; Tolcha, W.; Hordofa, T. Results of Natural Resources Management Research In Proceedings of the Natural Resources Management Research Completed Research Activities Workshop, Addis Ababa, Ethiopia, 25–26 November 2019; ISBN 9789994466580.
- Islam, M.R.; Haque, K.M.S.; Akter, N.; Karim, M.A. Leaf Chlorophyll Dynamics in Wheat Based on SPAD Meter Reading and Its Relationship with Grain Yield. Sci. Agric. 2014, 4, 4–9. [Google Scholar] [CrossRef]
- Vijay, V.; Shreedhar, S.; Adlak, K.; Payyanad, S.; Sreedharan, V.; Gopi, G.; Sophia van der Voort, T.; Malarvizhi, P.; Yi, S.; Gebert, J.; et al. Review of Large-Scale Biochar Field-Trials for Soil Amendment and the Observed Influences on Crop Yield Variations. Front. Energy Res. 2021, 9, 710766. [Google Scholar] [CrossRef]
- The R Core Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2010.
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Gupta, R.K.; Vashisht, M.; Naresh, R.K.; Dhingra, N.; Sidhu, M.S.; Singh, P.K.; Rani, N.; Al-Ansari, N.; Alataway, A.; Dewidar, A.Z.; et al. Biochar Influences Nitrogen and Phosphorus Dynamics in Two Texturally Different Soils. Sci. Rep. 2024, 14, 6533. [Google Scholar] [CrossRef]
- Park, J.H.; Yun, J.J.; Kim, S.H.; Park, J.H.; Acharya, B.S.; Cho, J.S.; Kang, S.W. Biochar Improves Soil Properties and Corn Productivity under Drought Conditions in South Korea. Biochar 2023, 5, 66. [Google Scholar] [CrossRef]
- Huang, K.; Zhang, J.; Tang, G.; Bao, D.; Wang, T.; Kong, D. Impacts and Mechanisms of Biochar on Soil Microorganisms. Plant Soil Environ. 2023, 69, 45–54. [Google Scholar] [CrossRef]
- Kong, L.; Song, B.; Zhang, T.; Gao, K.; Liu, J. Effects of Soil Organic Matter on Biochar Application in Developing the Biodegradation Potentials of Polycyclic Aromatic Hydrocarbons (PAHs). Appl. Soil Ecol. 2021, 167, 104046. [Google Scholar] [CrossRef]
- Wang, X.; Singh, D.; Marla, S.; Morris, G.; Poland, J. Field-Based High-Throughput Phenotyping of Plant Height in Sorghum Using Different Sensing Technologies. Plant Methods 2018, 14, 53. [Google Scholar] [CrossRef]
- Sial, T.A.; Lan, Z.; Wang, L.; Zhao, Y.; Zhang, J.; Kumbhar, F.; Memon, M.; Lashari, M.S.; Shah, A.N. Effects of Different Biochars on Wheat Growth Parameters, Yield and Soil Fertility Status in a Silty Clay Loam Soil. Molecules 2019, 24, 1798. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Li, M.; Li, R.; Rasul, F.; Shahzad, S.; Wu, C.; Shao, J.; Huang, G.; Li, R.; Almari, S.; et al. Soil Acidification and Salinity: The Importance of Biochar Application to Agricultural Soils. Front. Plant Sci. 2023, 14, 1206820. [Google Scholar] [CrossRef]
- Razzaghi, F.; Obour, P.B.; Arthur, E. Does Biochar Improve Soil Water Retention? A Systematic Review and Meta-Analysis. Geoderma 2020, 361, 114055. [Google Scholar] [CrossRef]
- Kangoma, E.; Blango, M.M.; Rashid-Noah, A.B.; Sherman-Kamara, J.; Moiwo, J.P.; Kamara, A. Potential of Biochar-Amended Soil to Enhance Crop Productivity under Deficit Irrigation. Irrig. Drain. 2017, 66, 600–614. [Google Scholar] [CrossRef]
- Richards, R.A. Selectable Traits to Increase Crop Photosynthesis and Yield of Grain Crops. J. Exp. Bot. 2000, 51, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Minhas, W.A.; Hussain, M.; Mehboob, N.; Nawaz, A.; UL-Allah, S.; Rizwan, M.S.; Hassan, Z. Synergetic Use of Biochar and Synthetic Nitrogen and Phosphorus Fertilizers to Improves Maize Productivity and Nutrient Retention in Loamy Soil. J. Plant Nutr. 2020, 43, 1356–1368. [Google Scholar] [CrossRef]
- de Jesus Duarte, S.; Cerri, C.E.P.; Rittl, T.F.; Abbruzzin, T.F.; Pano, B.L.P. Biochar Physical and Hydrological Characterization to Improve Soil Attributes for Plant Production. J. Soil. Sci. Plant Nutr. 2023, 23, 3051–3057. [Google Scholar] [CrossRef]
- Yeboah, S.; Zhang, R.; Cai, L.; Li, L.; Xie, J.; Luo, Z.; Wu, J.; Antille, D.L. Soil Water Content and Photosynthetic Capacity of Spring Wheat as Affected by Soil Application of Nitrogen-Enriched Biochar in a Semiarid Environment. Photosynthetica 2017, 55, 532–542. [Google Scholar] [CrossRef]
- Sadaf, J.; Shah, G.A.; Shahzad, K.; Ali, N.; Shahid, M.; Ali, S.; Hussain, R.A.; Ahmed, Z.I.; Traore, B.; Ismail, I.M.I.; et al. Improvements in Wheat Productivity and Soil Quality Can Accomplish by Co-Application of Biochars and Chemical Fertilizers. Sci. Total Environ. 2017, 607–608, 715–724. [Google Scholar] [CrossRef]
- Babalola, T.E.; Adabembe, B.A.; Faloye, O.T. Water Use—Yield Relationship of Maize as Influenced by Biochar and Inorganic Fertilizer Applications in a Tropical Sandy Clay Loam Soil. Agric. Water Manag. 2022, 271, 107801. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.; Wei, Q.; Liu, L.; Gu, X.; Gou, J.; Wang, M. Chemical Fertilizer Reduction Combined with Biochar Application Ameliorates the Biological Property and Fertilizer Utilization of Pod Pepper. Agronomy 2023, 13, 1616. [Google Scholar] [CrossRef]
- Olmo, M.; Alburquerque, J.A.; Barrón, V.; del Campillo, M.C.; Gallardo, A.; Fuentes, M.; Villar, R. Wheat Growth and Yield Responses to Biochar Addition under Mediterranean Climate Conditions. Biol. Fertil. Soils 2014, 50, 1177–1187. [Google Scholar] [CrossRef]
- Cong, X.; Zhou, S.; Wang, T.; Pang, G.; Xu, Z. Effects of Biochar Application and Irrigation on Soil Preferential Flow and Winter Wheat Productivity. Pol. J. Environ. Stud. 2022, 31, 625–635. [Google Scholar] [CrossRef]
- Murdock, L.; Jones, S.; Bowley, C.; Needham, P.; James, J.; Howe, P. Using a Chlorophyll Meter to Make Nitrogen Recommendations on Wheat; University of Kentucky: Lexington, KY, USA, 1997. [Google Scholar]
- Schlichting, A.F.; Bonfim-silva, E.M.; Silva, M.D.C.; Pietro-souza, W.; Silva, T.J.A.; Farias, L.N. Revista Brasileira de Engenharia Agrícola e Ambiental Efficiency of Portable Chlorophyll Meters in Assessing the Nutritional Status of Wheat Plants. Rev. Bras. Eng. Agrícola Ambient. 2015, 19, 1148–1151. [Google Scholar] [CrossRef]
- Mehrabi, F.; Sepaskhah, A.R. Leaf Nitrogen, Based on SPAD Chlorophyll Reading Can Determine Agronomic Parameters of Winter Wheat. Int. J. Plant Prod. 2022, 16, 77–91. [Google Scholar] [CrossRef]
- Monostori, I.; Árendás, T.; Hoffman, B.; Galiba, G.; Gierczik, K.; Szira, F.; Vágújfalvi, A. Relationship between SPAD Value and Grain Yield Can Be Affected by Cultivar, Environment and Soil Nitrogen Content in Wheat. Euphytica 2016, 211, 103–112. [Google Scholar] [CrossRef]
- Zulfiqar, B.; Raza, M.A.S.; Saleem, M.F.; Aslam, M.U.; Iqbal, R.; Muhammad, F.; Amin, J.; Ibrahim, M.A.; Khan, I.H. Biochar Enhances Wheat Crop Productivity by Mitigating the Effects of Drought: Insights into Physiological and Antioxidant Defense Mechanisms. PLoS ONE 2022, 17, e0267819. [Google Scholar] [CrossRef]
- Ghorbani, M.; Konvalina, P.; Neugschwandtner, R.W.; Kopecký, M.; Amirahmadi, E.; Bucur, D.; Walkiewicz, A. Interaction of Biochar with Chemical, Green and Biological Nitrogen Fertilizers on Nitrogen Use Efficiency Indices. Agronomy 2022, 12, 2106. [Google Scholar] [CrossRef]
- He, Y.; Yao, Y.; Ji, Y.; Deng, J.; Zhou, G.; Liu, R.; Shao, J.; Zhou, L.; Li, N.; Zhou, X.; et al. Biochar Amendment Boosts Photosynthesis and Biomass in C3 but Not C4 Plants: A Global Synthesis. GCB Bioenergy 2020, 12, 605–617. [Google Scholar] [CrossRef]
- Seyedsadr, S.; Šípek, V.; Jačka, L.; Sněhota, M.; Beesley, L.; Pohořelý, M.; Kovář, M.; Trakal, L. Biochar Considerably Increases the Easily Available Water and Nutrient Content in Low-Organic Soils Amended with Compost and Manure. Chemosphere 2022, 293, 133586. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Sun, B.; Wu, S.; Feng, H.; Gao, M.; Zhang, B.; Liu, Y. After-Effects of Straw and Straw-Derived Biochar Application on Crop Growth, Yield, and Soil Properties in Wheat (Triticum aestivum L.)-Maize (Zea mays L.) Rotations: A Four-Year Field Experiment. Sci. Total Environ. 2021, 780, 146560. [Google Scholar] [CrossRef]
- Jena, T.; Dayal, P.; Pradhan, S.; Sow, S.; Ranjan, S. Role of Biochar in Soil Carbon Dynamics. In Innovations in Nutrient Management: Improving Efficiency and Crop Production; Elite Publishing House: New Delhi, India, 2023. [Google Scholar]
- Bo, X.; Zhang, Z.; Wang, J.; Guo, S.; Li, Z.; Lin, H.; Huang, Y.; Han, Z.; Kuzyakov, Y.; Zou, J. Benefits and Limitations of Biochar for Climate-Smart Agriculture: A Review and Case Study from China. Biochar 2023, 5, 77. [Google Scholar] [CrossRef]
- Moradi, S.; Sajedi, N.A.; Madani, H.; Gomarian, M.; Chavoshi, S. Integrated Effects of Nitrogen Fertilizer, Biochar, and Salicylic Acid on Yield and Fatty Acid Profile of Six Rapeseed Cultivars. J. Soil Sci. Plant Nutr. 2023, 23, 380–397. [Google Scholar] [CrossRef]
- Singh, M.; Singh, S.; Parkash, V.; Ritchie, G.; Wallace, R.W.; Deb, S.K. Biochar Implications Under Limited Irrigation for Sweet Corn Production in a Semi-Arid Environment. Front. Plant Sci. 2022, 13, 853746. [Google Scholar] [CrossRef]
- Haider, I.; Raza, M.A.S.; Iqbal, R.; Aslam, M.U.; Habib-ur-Rahman, M.; Raja, S.; Khan, M.T.; Aslam, M.M.; Waqas, M.; Ahmad, S. Potential Effects of Biochar Application on Mitigating the Drought Stress Implications on Wheat (Triticum aestivum L.) under Various Growth Stages. J. Saudi Chem. Soc. 2020, 24, 974–981. [Google Scholar] [CrossRef]
- Yang, X.; McMaster, G.S.; Yu, Q. Spatial Patterns of Relationship Between Wheat Yield and Yield Components in China. Int. J. Plant Prod. 2018, 12, 61–71. [Google Scholar] [CrossRef]
- Latawiec, A.E.; Koryś, A.; Koryś, K.A.; Kuboń, M.; Sadowska, U.; Gliniak, M.; Sikora, J.; Drosik, A.; Niemiec, M.; Klimek-Kopyra, A.; et al. Economic Analysis of Biochar Use in Soybean Production in Poland. Agronomy 2021, 11, 2108. [Google Scholar] [CrossRef]
- Wang, L.; Li, L.; Cheng, K.; Ji, C.; Yue, Q.; Bian, R.; Pan, G. An Assessment of Emergy, Energy, and Cost-Benefits of Grain Production over 6 Years Following a Biochar Amendment in a Rice Paddy from China. Environ. Sci. Pollut. Res. 2018, 25, 9683–9696. [Google Scholar] [CrossRef]
- Apori, S.O.; Byalebeka, J.; Murongo, M.; Ssekandi, J.; Noel, G.L. Effect of Co-Applied Corncob Biochar with Farmyard Manure and NPK Fertilizer on Tropical Soil. Resour. Environ. Sustain. 2021, 5, 100034. [Google Scholar] [CrossRef]
Biochar (t ha−1) | Fertilizer (kg ha−1) | Treatments | Explanation |
---|---|---|---|
0 | 200 | WHB0F200 | No biochar, only 200 kg ha−1 NPS fertilizer |
5 | 200 | WHB5F200 | 5 t ha−1 water hyacinth biochar with 200 kg ha−1 NPS fertilizer |
10 | 200 | WHB10F200 | 10 t ha−1 water hyacinth biochar with 200 kg ha−1 NPS fertilizer |
20 | 0 | WHB20F0 | 20 t ha−1 water hyacinth biochar only |
20 | 100 | WHB20F100 | 20 t ha−1 water hyacinth biochar with 100 kg ha−1 NPS fertilizer |
20 | 200 | WHB20F200 | 20 t ha−1 water hyacinth biochar with 200 kg ha−1 NPS fertilizer |
Biochar (t ha−1) | Fertilizer (kg ha 1) | Irrigation Water (%) | Treatments | Explanation |
---|---|---|---|---|
0 | 0 | 100 | WHB0F0I100 | No biochar + No fertilizer + 100% Full irrigation |
0 | 200 | 100 | WHB0F200I100 | No biochar + 200 kg ha−1 fertilizer + 100% Full irrigation |
5 | 200 | 50 | WHB5F200I50 | 5 t ha−1 biochar + 200 kg ha−1 fertilizer + 50% Full irrigation |
5 | 200 | 100 | WHB5F200I100 | 5 t ha−1 biochar + 200 kg ha−1 fertilizer + 100% Full irrigation |
10 | 200 | 50 | WHB10F200I50 | 10 t ha−1 biochar + 200 kg ha−1 fertilizer + 50% Full irrigation |
10 | 200 | 100 | WHB10F200I100 | 10 t ha−1 biochar + 200 kg ha−1 fertilizer + 100% Full irrigation |
20 | 0 | 50 | WHB20F0I50 | 20 t ha−1 biochar + No fertilizer + 50% Full irrigation |
20 | 0 | 100 | WHB20F0F100 | 20 t ha−1 biochar + No fertilizer + 100% Full irrigation |
20 | 100 | 50 | WHB20F100I50 | 20 t ha−1 biochar + 100 kg ha−1 fertilizer + 50% Full irrigation |
20 | 100 | 100 | WHB20F100I100 | 20 t ha−1 biochar + 100 kg ha−1 fertilizer + 100% Full irrigation |
20 | 200 | 50 | WHB20F200I50 | 20 t ha−1 biochar + 200 kg ha−1 fertilizer + 50% Full irrigation |
20 | 200 | 100 | WHB20F200I100 | 20 t ha−1 biochar + 200 kg ha−1 fertilizer + 100% Full irrigation |
Sand | Silt | Clay | Bulk Density | pH | T-C ≈ | T-N ⁕ | NH4+-N | NO3−-N | Available P § | CEC # | Ash Content | Fixed Carbon | Surface Area | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% | g cm−3 | % | mg kg−1 | cmolc kg−1 | % | m2 g−1 | ||||||||
Rainy season 2021 | ||||||||||||||
Soil † | 30.0 | 51.9 | 18.1 | 1.14 | 5.23 | 9.3 | 0.677 | 1.67 | 11.6 | 4.19 | 19.2 | - | - | - |
Biochar ‡ | - | - | - | - | 9.33 | 33.9 | 0.783 | 2.13 | 3.21 | 613 | 32.2 | 42.0 | 17.7 | 12.4 |
Dry season 2023 | ||||||||||||||
Soil † | 20.4 | 65.9 | 13.7 | 1.21 | 4.42 | 3.71 | 0.483 | 1.52 | 15.7 | 0.392 | 18.2 | - | - | - |
Biochar ‡ | - | - | - | - | 10.7 | 35.2 | 0.930 | 0.748 | 0.676 | 837 | 33.4 | 20.5 | 20.3 | 53.2 |
Treatments | PH (cm) | SL (cm) | SN | GN |
---|---|---|---|---|
2021 Rainy season | ||||
WHB0F200 | 85.9 ± 1.7 a | 6.63 ± 0.63 a | 13.9 ± 0.63 a | 34.9 ± 1.2 a |
WHB5F200 | 87.8 ± 0.16 a | 6.68 ± 0.15 a | 14.2 ± 0.23 a | 36.5 ± 3.2 a |
WHB10F200 | 86.6 ± 3.2 a | 6.75 ± 0.11 a | 14.2 ± 0.51 a | 35.3 ± 3.6 a |
WHB20F0 | 87.1 ± 1.6 a | 6.53 ± 0.39 a | 14.0 ± 0.19 a | 35.3 ± 1.8 a |
WHB20F100 | 88.2 ± 0.68 a | 6.70 ± 0.07 a | 14.0 ± 0.16 a | 36.4 ± 1.5 a |
WHB20F200 | 89.2 ± 1.4 a | 6.68 ± 0.26 a | 14.2 ± 0.73 a | 36.7 ± 1.5 a |
2023 Dry season | ||||
WHB0F0I100 | 42.2 ± 5.8 d | 6.60 ± 0.91 d | 8.80 ± 1.0 c | 19.4 ± 3.7 b |
WHB0F200I100 | 43.7 ± 4.2 d | 7.93 ± 0.99 bcd | 12.2 ± 1.2 b | 31.8 ± 3.5 a |
WHB5F200I50 | 60.9 ± 3.1 bc | 9.27 ± 0.41 ab | 13.8 ± 0.98 ab | 38.4 ± 4.0 a |
WHB5F200I100 | 66.6 ± 2.0 abc | 9.67 ± 0.25 a | 15.1 ± 0.09 ab | 39.1 ± 0.84 a |
WHB10F200I50 | 63.3 ± 1.1 abc | 9.47 ± 0.34 a | 15.1 ± 0.96 ab | 39.2 ± 1.8 a |
WHB10F200I100 | 70.9 ± 4.5 ab | 9.87 ± 0.34 a | 16.3 ± 0.41 a | 39.2 ± 4.5 a |
WHB20F0I50 | 57.9 ± 4.2 c | 7.87 ± 0.77 cd | 12.5 ± 1.4 b | 30.3 ± 2.8 ab |
WHB20F0I100 | 65.1 ± 2.5 abc | 9.67 ± 0.25 a | 14.2 ± 0.33 ab | 33.9 ± 3.3 a |
WHB20F100I50 | 66.5 ± 0.929 abc | 8.87 ± 0.19 abc | 13.4 ± 1.1 ab | 34.8 ± 6.1 a |
WHB20F100I100 | 69.9 ± 2.5 ab | 9.47 ± 0.50 a | 15.7 ± 0.61 a | 40.3 ± 1.8 a |
WHB20F200I50 | 66.1 ± 2.7 abc | 9.47 ± 0.19 a | 15.7 ± 0.84 a | 38.8 ± 1.3 a |
WHB20F200I100 | 71.5 ± 3.4 a | 10.1 ± 0.47 a | 16.3 ± 0.57 a | 40.7 ± 5.3 a |
Farm Activities | 2021 Rainy Season | 2023 Dry Season | |||||||
---|---|---|---|---|---|---|---|---|---|
WHB0F200 | WHB10F200 | WHB20F100 | WHB20F200 | WHB0F0I100 | WHB0F200I100 | WHB10F200I100 | WHB20F100I100 | WHB20F200I100 | |
Input and labor costs (USD ha−1) | |||||||||
NPS fertilizer | 140 | 140 | 70 | 140 | 0 | 143 | 143 | 72 | 143 |
Urea fertilizer | 141 | 141 | 141 | 141 | 145 | 145 | 145 | 145 | 145 |
Biochar production | 0 | 178 | 356 | 356 | 0 | 0 | 179 | 357 | 357 |
Sowing | 177 | 178 | 178 | 178 | 179 | 179 | 179 | 179 | 179 |
Fertilizer application | 178 | 178 | 160 | 178 | 89.3 | 179 | 179 | 161 | 179 |
Irrigation | – | – | – | – | 518 | 518 | 518 | 518 | 518 |
Total cost | 636 | 815 | 905 | 993 | 931 | 1164 | 1343 | 1432 | 1521 |
Output (t ha−1) and return (USD ha−1) | |||||||||
Output of wheat grain | 5.34 | 5.68 | 5.51 | 5.44 | 0.881 | 1.5 | 3.94 | 3.71 | 4.1 |
Output of wheat straw | 7.68 | 8.53 | 7.51 | 9.23 | 1.13 | 3.81 | 14.4 | 12.8 | 15 |
Gross return | 5794 | 6166 | 5977 | 5924 | 960 | 1662 | 4427 | 4147 | 4598 |
Net return † | 5158 | 5351 | 5072 | 4931 | 29.0 | 498 | 3084 | 2715 | 3077 |
Cost–benefit ratio ‡ | 9.11 | 7.57 | 6.60 | 5.97 | 1.03 | 1.43 | 3.30 | 2.90 | 3.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fentie, D.; Mihretie, F.A.; Kohira, Y.; Legesse, S.A.; Lewoyehu, M.; Wutisirirattanachai, T.; Sato, S. Optimizing Cropping Systems Using Biochar for Wheat Production Across Contrasting Seasons in Ethiopian Highland Agroecology. Agronomy 2025, 15, 1227. https://doi.org/10.3390/agronomy15051227
Fentie D, Mihretie FA, Kohira Y, Legesse SA, Lewoyehu M, Wutisirirattanachai T, Sato S. Optimizing Cropping Systems Using Biochar for Wheat Production Across Contrasting Seasons in Ethiopian Highland Agroecology. Agronomy. 2025; 15(5):1227. https://doi.org/10.3390/agronomy15051227
Chicago/Turabian StyleFentie, Desalew, Fekremariam Asargew Mihretie, Yudai Kohira, Solomon Addisu Legesse, Mekuanint Lewoyehu, Tassapak Wutisirirattanachai, and Shinjiro Sato. 2025. "Optimizing Cropping Systems Using Biochar for Wheat Production Across Contrasting Seasons in Ethiopian Highland Agroecology" Agronomy 15, no. 5: 1227. https://doi.org/10.3390/agronomy15051227
APA StyleFentie, D., Mihretie, F. A., Kohira, Y., Legesse, S. A., Lewoyehu, M., Wutisirirattanachai, T., & Sato, S. (2025). Optimizing Cropping Systems Using Biochar for Wheat Production Across Contrasting Seasons in Ethiopian Highland Agroecology. Agronomy, 15(5), 1227. https://doi.org/10.3390/agronomy15051227